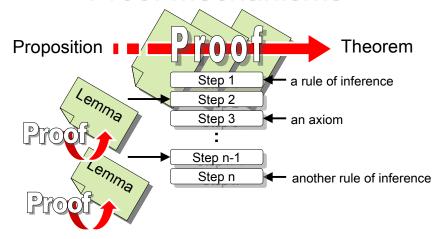
Rules of Inference

+ examples on showing that two sets are equal

2110200 Discrete Structures Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Faculty of ENGINEERING | Chulalongkorn University

Proof Mechanisms



2110200 Discrete Structures
Department of Computer Engineering

Faculty of ENGINEERING | Chulalongkorn University

Rules of Inference

- Provide justification of the steps used to show that a conclusion follows a set of hypotheses.
- Each uses a tautology as its basis.
- E.g.:

The law of detachment or Modus ponens

$$\begin{array}{c} \mathsf{p} \\ \underline{\mathsf{p} \to \mathsf{q}} \\ \therefore \mathsf{q} \\ \text{(Based on } (p \wedge (p \to q)) \to q \text{)} \end{array}$$

Rules of Inference

Addition	<u>p</u> .∴ p ∨ q
Simplification	<u>p ∧ q</u> ∴ p
Conjunction	p <u>q .</u> ∴ p∧q
Modus ponen	$\begin{array}{c} p \\ p \to q \\ \vdots \\ q \end{array}$

Modus tollens	¬q
	<u>p →q</u>
	¬p
Hypothetical	p →q
syllogism	<u>q →r</u>
	∴ p →r
Disjunction	p∨q
syllogism	<u>¬p .</u>
	∴ q
Resolution	p∨q
	$\neg p \lor r$
	. . q ∨ r

2110200 Discrete Structures
Department of Computer Engineering

Valid Arguments

 An argument is called valid if whenever all the hypotheses are true, the conclusion is also true.

Showing that $(p_1 \wedge p_2 \wedge ... \wedge p_n) \rightarrow q$ is true.

2110200 Discrete Structures

Faculty of ENGINEERING I Chulalongkorn University

Example (Rosen Ex. 6, P.67)

จงแสดงว่าสมมติฐานต่อไปนี้

- บ่ายวันนี้อากาศไม่แจ่มใสและหนาวกว่าเมื่อวาน
- เราจะไปว่ายน้ำเมื่ออากาศแจ่มใสเท่านั้น
- ถ้าเราไม่ไปว่ายน้ำเราจะไปพายเรือ
- ถ้าเราไปพายเรือแล้วเราจะถึงบ้านก่อนพระอาทิตย์ตกดิน สรุปได้ว่า
- เราจะถึงบ้านก่อนพระอาทิตย์ตกดิน

2110200 Discrete Structures
Department of Computer Enginee

Faculty of ENGINEERING | Chulalongkorn Universit

Example (Rosen Ex. 7, P.67)

จงแสดงว่าสมมติฐานต่อไปนี้

- ถ้าคุณส่งอีเมล์ให้ผม ผมจะเขียนโปรแกรมเสร็จ
- ถ้าคุณไม่ส่ง ผมจะเข้านอนแต่หัวค่ำ
- ถ้าผมเข้านอนแต่หัวค่ำ ผมจะตื่นขึ้นมาตอนเช้าอย่างสดชื่น สรุปได้ว่า
- ถ้าผมเขียนโปรแกรมไม่เสร็จ ผมจะตื่นขึ้นมาตอนเช้าอย่างสด ชื่น

Example (Rosen Ex. 8, P.67)

จงแสดงว่าสมมติฐานต่อไปนี้

- นส.มะลิไปเล่นสกีหรือไม่หิมะก็ไม่ได้ตกอยู่
- หิมะตกอยู่หรือไม่นายบาสก็ไปเล่นฮอกกี้ สรุปได้ว่า
- นส.มะลิกำลังเล่นสกีหรือนายบาสก็กำลังเล่นฮอกกี้

2110200 Discrete Structures Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

2110200 Discrete Structures
Department of Computer Engineering

Faculty of ENGINEERING | Chulalongkorn University

Example (Rosen Ex. 11, P.69)

เราจะสามารถสรุปได้หรือไม่ว่า

"คุณจะเรียนวิชาโครงสร้างดิสครีตไม่รู้เรื่อง"

หากสมมติว่า

"ถ้าคุณทำโจทย์ในหนังสือโรเซนหมดทุกข้อแล้วคุณจะเรียน โครงสร้างดิสครีตรู้เรื่อง"

และ

"คุณไม่ได้ทำโจทย์ในหนังสือโรเซนทุกข้อ"

2110200 Discrete Structures

Department of Computer Engine

Faculty of ENGINEERING | Chulalongkorn University

Rules of Inference: Quantified Statements

Universal Instantiation	<u>∀xP(x)</u>
	∴ P(c)
Universal Generalization	P(c) for an arbitrary c
	∴ ∀xP(x)
Existential Instantiation	<u>∃xP(x)</u>
	∴ P(c) for some element c
Existential Generalization	P(c) for some element c
	∴ ∃xP(x)

2110200 Discrete Structures
Department of Computer Engineeri

Faculty of ENGINEERING I Chulalongkorn University

Example (Rosen Ex. 13, P.71)

หากทราบว่า

- นิสิตทุกคนในห้องนี้ไม่เคยอ่านหนังสือ
- ทุก ๆ คนในห้องนี้ทำ quiz 1 ได้

จงแสดงว่า

• นิสิตที่ทำ quiz 1 ได้บางคน ไม่เคยอ่านหนังสือเลย

Showing that 2 sets are equal

- 1. Use set builder notation + logical equivalences
- 2. Use series of set identities (for example)

Distributive Laws	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	
	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	
De Morgan's Laws	$\overline{A \cup B} = \overline{A} \cap \overline{B}$	
	$\overline{A \cap B} = \overline{A} \cup \overline{B}$	
Absorption Laws	$A \cup (A \cap B) = A$	
	$A \cap (A \cup B) = A$	

3. Build membership tables

epartment of Computer Engineering

Example (Rosen Ex. 11, P.125)

Prove the second De Morgan's law, $\overline{A \cap B} = \overline{A} \cup \overline{B}$

2110200 Discrete Structures Department of Computer Engineerin

Faculty of ENGINEERING | Chulalongkorn University

Example (Rosen Ex. 12, P.125)

Prove the first distributive law, $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

2110200 Discrete Structures
Department of Computer Engineering

Faculty of ENGINEERING | Chulalongkorn University

Example (Rosen Ex. 14, P.126)

Use series of set identities to show that $\overline{A \cup (B \cap C)} = (\overline{C} \cup \overline{B}) \cap \overline{A}$