

Department of Computer Engineering, Chulalongkorn University

Discrete Structures



### **Adjacency Matrices**



#### **Adjacency Matrices**



when  $e_{j}$  is incident with  $v_{i}$ 

otherwise

Discrete Structures



#### **Incidence Matrices**



Department of Computer Engineering, Chulalongkorn University

# ٥

#### **Isomorphism of Graphs**

 $G_1 = (V_1, E_1)$  and  $G_2 = (V_2, E_2)$  are two simple graphs.  $G_1$  and  $G_2$  are **isomorphic** when:

There is a <u>1-to-1</u> and <u>onto</u> function f from  $V_1$  to  $V_2$  with the property that

 $\forall a \text{ and } b \text{ are adjacent in G1} \leftrightarrow a, b \in V_1 \quad f(a) \text{ and } f(b) \text{ are adjacent in G2.}$ 

#### f is called an isomorphism.

Department of Computer Engineering, Chulalongkorn University

Discrete Structures

## ٥

### **Isomorphism of Graphs**





# ٢

#### **Isomorphism of Graphs**

• To show that two graphs are isomorphic

Find an isomorphism.

• To show that two graphs are NOT isomorphic

Argue that no isomorphism exists.

Discrete Structures



#### **Graph Invariants**

• A property preserved by isomorphism of graphs is called a **graph invariant**.





#### Paths

- A **path** is a sequence of edges that begins with a vertex of a graph and travels from vertex to vertex along edges of the graph.
- The **length** of a path is the number of edges in that path.
- A path is a **circuit** if it begins and ends at the same vertex and the length is not 0.
- A path is **simple** if it does not contain the same edge more than once.

| Department of Computer Engineering, Chulalongkorn University | Discrete Struct | Jres De | Department of Computer Engineering, Chulalor | gkorn University | Discrete Structures |
|--------------------------------------------------------------|-----------------|---------|----------------------------------------------|------------------|---------------------|
| Ø                                                            | Paths           | (       | 0                                            | Connectedness    |                     |

An <u>undirected graph</u> is called **connected**  $\leftrightarrow$  There is a path between every pair of distinct vertices of the graph.

An <u>directed graph</u> is **strongly connected**  $\Leftrightarrow$  There is a path from *a* to *b* and from *b* to *a* whenever *a* and *b* are distinct vertices in the graph.

An <u>directed graph</u> is **weakly connected** ↔ There is a path between every pair of distinct vertices of the graph. (Disregard the edge directions.)

c d When there are no multiple particular to the second seco

 $({a,b},{b,c},{c,d},{d,e})$  is a simple path of length 4.

When there are no multiple paths, we can represent a path by the sequence of vertices it pass through.

 $(\{a,b\},\{b,c\},\{c,d\},\{d,e\}) \longrightarrow (a,b,c,d,e)$ 



- A vertex is called a **cut vertex** (or **articulation point**) if the removal of that vertex along with all edges incident with it produces a subgraph with more connected components.
- An edge whose removal produces a subgraph with more connected components is called a **cut edge** (or **bridge**).

(

d

G



#### Paths and Isomorphism

- The existence of a simple circuit of a particular length is a graph invariant.
- Paths are sometimes useful in finding an isomorphism.



Show that a simple circuit of length 3 does not exist in G.





Department of Computer Engineering, Chulalongkorn University

Discrete Structures

Department of Computer Engineering, Chulalongkorn University

Discrete Structures

#### **Counting Paths Between Vertices**

How many paths of length 4 are there from a to d in the following graph?



#### **Counting Paths Between Vertices**

The number of paths of a certain length between two vertices in a graph can also be determined from the graph's adjacency matrix.

