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• 4 parts:
• Part1: Logic, Sets, Relations, Functions, and 

Mathematical Reasoning
• Part2: Graphs and Trees 
• Part3: Counting, Recurrence Relations, and 

Generating Functions
• Part4: Number Theory
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• In-class Quiz 1 15%
• In-class Quiz 2 15%
• In-class Quiz 3 15%
• In-class Quiz 4 15%
• Final Exam 40%
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ProblemProblem

SolutionSolution

Formulate associated 
Mathematical 

arguments

Solve the problem 
mathematically
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•• Mathematical ReasoningMathematical Reasoning
– Read, comprehend, and construct mathematical 

arguments

•• Combinatorial AnalysisCombinatorial Analysis
– Perform analysis to solve counting problems

•• Discrete StructureDiscrete Structure
– Able to work with discrete structures: sets, graphs, 

finite-state machines, etc.
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•• Algorithmic ThinkingAlgorithmic Thinking
– Specify, verify, and analyze an algorithm

•• Applications and ModelingApplications and Modeling
– Apply the obtained problem-solving skills to model and 

solve problems in computer science and other areas, 
such as:

• Business
• Chemistry
• Linguistics
• Geology
• etc
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Data Structures

Algorithms

Database
Theory

Automata
Theory

Formal
Languages

Compiler
Theory

Operating
Systems

Computer
Securities
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•• LogicLogic
– Specify the meaning of Mathematical statements
– Basis of all Mathematical reasoning

•• SetsSets
– Sets are collections of objects, which are used for 

building many important discrete structures.

•• FunctionsFunctions
– Used in the definition of some important structures
– Represent complexity of an algorithm, and etc.
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• Rosen: 1.1-1.4, 1.6-1.8, 7.1
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• Rules of logic gives precise meaning to 
mathematical statements.
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• Proposition =
– Declarative sentence
– Either TRUE or FALSE (not both)

propositionproposition proposition

proposition proposition proposition

Logical operator

Compound
proposition
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• Negation (NOT)
• Conjunction (AND)
• Disjunction (OR)

• Exclusive OR (XOR)
• Implication (IF..THEN)

• Biconditional (IF & ONLY IF)
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TF
FT
¬ pp

• The negation of p has opposite truth value to p
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• The conjunction of p and q, is true when, and 
only when, both p and q are true.

FFF
FTF
FFT
TTT

p ∧ qqp
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• The disjunction of p and q, is true when at least 
one of  p or q is true.

FFF
TTF
TFT
TTT

p ∨ qqp
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⌧ ⌧ 

• Exclusive or = OR but NOT both
p ⊕ q = (p ∨ q) ∧ ¬(p ∧ q)

FFF
TTF
TFT
FTT

p ⊕ qqp
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• It is false when p is true and q is false, and true 
otherwise.

TFF
TTF
FFT
TTT

p → qqp
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• p ↔ q is true when p and q have the same truth 
value.

• Intuitively, p ↔ q is (p→q)∧(q→p)

TFF
FTF
FFT
TTT

p ↔ qqp
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• The contrapositive of an implication p → q is:
¬q → ¬p

• has the same truth values as p → q
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• The converse of an implication p → q is:
q → p

• The inverse of an implication p → q is:
¬p → ¬q

• DO NOT have the same truth values as p → q
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5↔

4→

3∨

2∧

1¬
PrecedenceOperator p ∧¬q ∨ r→ p ↔ s

((p ∧(¬q) ∨ r)→ p) ↔ s
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• Translating natural language to logical expressions 
is essential to specifying system spec.

• Specifications are ““consistentconsistent”” when they do not 
conflict with one another. i.e.:

There must be an assignment of truth values 
to every expression that make all the 
expression true.
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• Whenever the system is being upgraded, users 

cannot access the file system.
• If users can access the file system, they can 

save new files.
• If users cannot save new files, the system is not 

being upgraded.

• Whenever the system is being upgraded, users 
cannot access the file system.

• If users can access the file system, they can 
save new files.

• If users cannot save new files, the system is not 
being upgraded.
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• Whenever the system is being upgraded, users 

cannot access the file system.
• If users can access the file system, they can 

save new files.
• If users cannot save new files, the system is not 

being upgraded.

• Whenever the system is being upgraded, users 
cannot access the file system.

• If users can access the file system, they can 
save new files.

• If users cannot save new files, the system is not 
being upgraded.

p → ¬ qp → ¬ q

q → rq → r

¬r → ¬p¬r → ¬p

TTTTFT

¬r → ¬pq → rp → ¬ qrqp

These spec. are consistent.
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• A compound proposition that is always true is 
called a ““tautologytautology””.

• A compound proposition that is always false is 
called a ““contradictioncontradiction””.

• If neither a tautology nor a contradiction, it is 
called a ““contingencycontingency””.
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The propositions p and q are called “logical 
equivalent” (p ≡ q) if p ↔ q is a tautology

The propositions p and q are called “logical 
equivalent” (p ≡ q) if p ↔ q is a tautology
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Show that the truth values of these propositions 
are always the same.

11

→ Construct truth tables.
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• Example (Rosen p22):
Show that p → q ≡ ¬p ∨ q

FF
TF
FT
TT
qp

T
T
F
T

p → q

T
T
F
F
¬ p

T
T
F
T

¬ p∨ q

Logically EquivalentLogically Equivalent
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Show that the truth values of these propositions 
are always the same.

11

Use series of established equivalences.22
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• Distributive Laws
p ∨ ( q ∧ r ) ≡ ( p ∨ q ) ∧ ( p ∨ r )
p ∧ ( q ∨ r ) ≡ ( p ∧ q ) ∨ ( p ∧ r )

• De Morgan’s Laws
¬ ( p ∧ q ) ≡ ¬ p ∨ ¬ q
¬ ( p ∨ q ) ≡ ¬ p ∧ ¬ q

• More can be found in Rosen p.24
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• Example (Rosen p25):
Show that ¬ (p ∨ (¬ p ∧ q )) ≡ ¬ p ∧ ¬ q

¬(p ∨ (¬p ∧ q )) ≡ ¬p ∧ ¬(¬p ∧ q )       De Morgan’s
≡ ¬p ∧ (¬(¬p) ∨ ¬q )  De Morgan’s
≡ ¬p ∧ (p ∨ ¬q )    Double negative
≡ (¬p ∧ p) ∨ (¬p ∧ ¬q ) Distributive
≡ F ∨ (¬p ∧ ¬q )
≡ ¬p ∧ ¬q
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• In Propositional Logic, ‘the atomic units’ are 
propositions.

• E.g.:
– p: John goes to school., q: Mary goes to school.

• In Predicate Logic, we look at each
proposition as the combination of variablesvariables
and predicatespredicates .

• E.g.:
– X goes to school, where X can be John or Mary.
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• The statement “x go to school” has two parts:
Variable “x”
The predicate “go to school”

• This statement can be denoted by P(x), where P
denotes the predicate “go to school”.

• P(x) is said to be the value of the propositional 
function P at x.

• Once a value has been assigned to the variable
x, the statement P(x) becomes a proposition and 
has a truth value.

• E.g: P(John) and P(Mary) have truth values.
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Assign values to all variables in a propositional 
function.
Use “Quantification”

11

22
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•• ∀∀xP(xxP(x)) ( read “for all x P(x)” ) denotes:

P(x) is true for all values x in the universal of 
discourse.
P(x) is true for all values x in the universal of 
discourse.

•• ∀∀xP(xxP(x)) is the same as:
P(x1)∧P(x2)∧…∧P(xn)

When all elements in the universe of discourse 
can be listed as (x1 , x2 , … , xn)
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• Example (Rosen p.31):
• What is the truth value of ∀xP(x), when P(x) is x2

≥ x and the universe of discourse consists of:
– all real numbers?
– all integers?

Since x2 ≥ x only when x ≤ 0 or x ≥ 1, ∀xP(x2 ≥ x) 
is false if the universe consists of all real 
numbers. However, it is true when the universe 
consists of only the integers.
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⌧ ⌧ 

•• ∃∃xP(xxP(x)) ( read “for some x P(x)” ) denotes:

There exists an element x in the universe of 
discourse that P(x) is true.
There exists an element x in the universe of 
discourse that P(x) is true.

•• ∃∃xP(xxP(x)) is the same as:
P(x1)∨ P(x2)∨ …∨ P(xn)

When all elements in the universe of discourse 
can be listed as (x1 , x2 , … , xn)
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⌧ ⌧ 

• Example (Rosen p.32):
• What is the truth value of ∃xP(x) where P(x) is 

the statement x2 > 10, and the universe of 
discourse consists of the positive integers not 
exceeding 4?
Since the elements in the universe can be listed 
as {1,2,3,4}, ∃xP(x) is the same as P(1)∨P(2)∨
P(3)∨P(4). There for ∃xP(x) is true since P(4) is 
true.
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Negation of
“Every ICE students loves Discrete math.” is
“There is an ICE student who does not love Discrete math.”

¬∀xP(x) ≡ ∃x ¬P(x)

¬∃xP(x) ≡ ∀x ¬P(x)

Negation of
“Some student in this class get ‘A’.” is
“None of the students in this class get ‘A’.”
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• Quantifiers that occur within the scope of other 
quantifiers.

• E.g.:
∀x∀y( ( x > 0 ) ∧ ( y < 0 ) → (xy < 0))
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There is a pair x,y for which P(x,y) is true.∃x∃y P(x,y)
∃y∃x P(x,y)

There is an x for which P(x,y) is true for 
every y.

∃x∀y P(x,y)

For every x, there is a y for which P(x,y) is 
true.

∀x∃y P(x,y)

P(x,y) is true for every pair of x,y∀x∀y P(x,y)
∀y∀x P(x,y)

… is TRUE whenStatement
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• Proposition
• Truth value
• Negation
• Logical Operator
• Compound 

proposition
• Truth table
• Disjunction
• Conjunction
• Exclusive or
• Implication

• Inverse
• Converse
• Contrapositive
• Biconditional
• Bit operations
• Tautology
• Contradiction
• Contingency
• Consistency
• Logical 

equivalence

• Predicate
• Propositional 

function
• Universe of 

discourse
• Existential 

quantifier
• Universal 

quantifier


