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• A set is an unordered collection of objects.
• Objects in a set are called “members” or 

“elements” of that set.
• Two sets are equal ↔ they have the same 

elements

• A set is an unordered collection of objects.
• Objects in a set are called “members” or 

“elements” of that set.
• Two sets are equal ↔ they have the same 

elements

• Are {1,2,3} and {3,2,1} equal?
• Are {0,1,2} and {0,0,0,1,1,2} equal?
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• Stating the properties that all elements must 
have to be members.

O = {x | x is a prime number less than 100}
R = {x | x is a real number}
U = {x | x is any of the objects

under consideration}
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A ⊆ B ↔ ∀x ( x ∈ A → x ∈ B )A ⊆ B ↔ ∀x ( x ∈ A → x ∈ B )

  

A ⊂ B ↔ (A ⊆ B) ∧ (A ≠ B)A ⊂ B ↔ (A ⊆ B) ∧ (A ≠ B)

For any set S, “∅ ⊆ S” and “S ⊆ S”
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  ∅∅ ⊆⊆      ⊆⊆ 

• Show that  ∀x( x∈∅ → x∈S)
– Since x∈∅ is always false, then x∈∅ → x∈S

is always true no matter what x is.
• Show that  ∀x( x∈S → x∈S)

– Since p → p is a tautology the x∈S → x∈S is 
true no matter what.
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• For a set S, if there are exactly n distinct 
elements in S, where n is a nonnegative interger, 
we say that S is a finite set and that n is the 
cardinality of S ( |S|=n )

• A set is “infinite” if it is not finite.
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• Given a set S, the power set of S, P(S), is the set 
of all subsets of S

• If S has n elements, then P(S) has 2n elements.

• Examples (Rosen p.82):

{∅,{∅}}{∅}
{∅}∅

{∅,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2}}{0,1,2}
P(S)S
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• The ordered n-tuple (a1,a2,..,an) is the ordered 
collection that has a1 as its first element, a2 as its 
second element,…, and an as its nth element.

• The ordered n-tuple (a1,a2,..,an) is the ordered 
collection that has a1 as its first element, a2 as its 
second element,…, and an as its nth element.

Two ordered n-tuples are equal ↔ each 
corresponding pair of their elements is equal
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A x B = { (a,b) | a ∈ A ∧ b ∈ B}

A1 x A2 x … x An =
{ (a1,a2,…,an,) | ai ∈ Ai for i=1,2,..,n}

• Examples:
• What is the Cartesian product AxBxC, where 

A={0,1}, B={j,k}, C={x,y,z}?
AxBxC={(0,j,x),(0,j,y),(0,j,z),(0,k,x),(0,k,y),(0,k,z),

(1,j,x),(1,j,y),(1,j,z),(1,k,x),(1,k,y),(1,k,z)}
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• Specify the universe of discourse .
• E.g.:

∀x∈R(x2≥0)
means “for every real number x2≥0”
which is true.
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• Union (∪)
• Intersection (∩)
• Difference (−)

• Complement ( ′)
• Symmetric difference (⊕)
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• A⊕B is the set containing those elements in 
either A or B but NOT in both A and B.

Example:
A = {1,3,5}, B = {1,2,3}, A⊕B = {2,5}
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|A ∪ B| = |A|+|B|-|A ∩ B||A ∪ B| = |A|+|B|-|A ∩ B|

More general (Chapter 6):

|A1 ∪ A2 ∪ … ∪ An| =
Σ|Ai| -Σ|Ai ∩ Aj| + Σ|Ai ∩ Aj ∩ Ak | - …
+(-1)n+1| A1 ∩ A2 ∩ … ∩ An|

|A1 ∪ A2 ∪ … ∪ An| =
Σ|Ai| -Σ|Ai ∩ Aj| + Σ|Ai ∩ Aj ∩ Ak | - …
+(-1)n+1| A1 ∩ A2 ∩ … ∩ An|
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• Distributive Laws
A ∩ ( B ∪ C ) = ( A ∩ B ) ∪ ( A ∩ C )
A ∪ ( B ∩ C ) = ( A ∪ B ) ∩ ( A ∪ C )

• De Morgan’s Laws
(A ∪ B)′ = A′ ∩ B′
(A ∩ B)′ = A′ ∪ B′

• More can be found in Rosen p.89
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Show that each set is a subset of the other.

Use set builder notation and logical 
equivalences.

Build membership tables.

Use set identities.

11

22

33

44
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• Example (Rosen p.89): Prove that (A ∩ B)′ = A′ ∪ B′

1) Suppose x∈ (A ∩ B)′ . So, x∉ A ∩ B
Then, ¬((x∈ A)∧ (x∈ B)) is true.

2) De Morgan’s  ⇒ ¬(x∈ A)∨ ¬(x∈ B) is true.
Then, x∈ A′ ∨ x∈ B′

3) Definition of Union ⇒ x∈ A′ ∪ B′
x∈ (A ∩ B)′ → x∈ A′ ∪ B′

This shows (A ∩ B)′ ⊆ A′ ∪ B′
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• Example (Rosen p.89): Continued

4) Suppose x∈ A′ ∪ B′.
Definition of Union ⇒ x∈ A′ ∨ x∈ B′
¬(x∈ A)∨ ¬(x∈ B) is true.

5) Then, ¬(x∈ A ∩ B) is true.
∴x∉ A ∩ B. So, x∈ (A ∩ B)′ . 

6) x∈ A′ ∪ B′ → x∈ (A ∩ B)′
This shows A′ ∪ B′⊆ (A ∩ B)′
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• Example (Rosen p.89): Continued

6) A′ ∪ B′⊆ (A ∩ B)′

3) (A ∩ B)′ ⊆ A′ ∪ B′
and →(A ∩ B)′ = A′ ∪ B′

Atiwong Suchato

Department of Computer Engineering, Chulalongkorn University Discrete Mathematics

    
            

• Example (Rosen p.89): Prove that (A ∩ B)′ = A′ ∪ B′

(A ∩ B)′ = { x | x ∉ A ∩ B }
= { x | ¬(x ∈ A ∩ B) }

= { x | (x ∉ A) ∨ (x ∉ B) }

= { x | (x ∈ A′ ) ∪ (x ∈ B′) }

= { x | x ∈ A′ ∪ B′ }
= A′ ∪ B′

= { x | ¬((x ∈ A) ∧ (x ∈ B)) }
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• Example Prove that (A ∩ B)′ = A′ ∪ B′

01
10
10
10

(A ∩ B)′(A ∩ B)

11
01
10
00
BA

0
1
0
1
B′

0
1
1
1

A′ ∪ B′

0
0
1
1
A′
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• Example (Rosen p.91):
Show that (A∪ (B ∩ C))′ = (C′ ∪ B′ ) ∩ A′

(A∪ (B ∩ C))′ = A′ ∩ (B ∩ C)′
= A′ ∩ (B′ ∪ C′)
= (B′ ∪ C′) ∩ A′
= (C′ ∪ B′) ∩ A′
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A1 ∪ A2 ∪ … ∪ An =  ∪Ai
i=1

n

A1 ∩ A2 ∩ … ∩ An =  ∩Ai
i=1

n
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Definition:
• A function f from A to B is an assignment.
• assigns exactly one element of B to each of A

AA BB

a b=f(a)
ff

A: Domain
B: Codomain
b is the image of a.
a is a pre-image of b.
Range of f is the set of
all images.

•Function cannot be “one-to-many”.
•∀a∈A, f(a) must be assigned to some b.
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• Two real-valued functions with the same domain
can be added and multiplied.
f1, f2 are functions from A to R
→ f1+f2 and f1f2 are also functions from A to R.

(f1+f2)(x) = f1(x)+f2(x)
(f1f2)(x) = f1(x)f2(x)
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• Example (Rosen p.99):
• f1, f2 are functions from R to R. f1(x)=x2, f2(x)=x-

x2. What are the functions f1+f2 and f1f2?

(f1+f2 )(x) = f1(x)+f2(x) = x2 + x - x2 = x

(f1f2 )(x) = f1(x)f2(x) = x2 (x - x2 ) = x3 – x4
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A function f is one-to-one or injective

↔ ∀x∀y ( f(x)=f(y) → x=y )

Examples (Rosen p.100)
Determine whether these functions are one-to-one.

f1(x) = x2 from the set of integers to the set of integers

f2(x) = x+1

Since f(1) = f(-1) = 1, f1(x) is not one-to-one.

x+1 ≠ y+1 when x ≠ y, then f2(x) is one-to-one. 
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• Strictly increasing function:

∀x ∀y ( (x<y) → (f(x)<f(y)) )∀x ∀y ( (x<y) → (f(x)<f(y)) )

• Strictly decreasing function:

∀x ∀y ( (x<y) → (f(x)>f(y)) )∀x ∀y ( (x<y) → (f(x)>f(y)) )

where the universe of discourse = domain of f

Strictly increasing function
or

Strictly decreasing function
→ one-to-one
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A function f is onto or surjective

↔ ∀y∃x ( f(x) = y )

Examples (Rosen p.101)
Determine whether these functions are onto.

f1(x) = x2 from the set of integers to the set of integers

f2(x) = x+1

No, since there is no integer x that f1(x)=-1

Yes, for every f2(x)=y, there is an integer x=y-1 
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• One-to-one AND Onto
• Also called “bijection”
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a
b
c

1
2
3
4

a
b
c
d

1
2
3

a
b
c
d

1
2
3
4

a
b
c
d

1
2
3
4

a
b
c

1
2
3
4

1-to-1, not onto not 1-to-1,onto 1-to-1,onto

neither 1-to-1,nor onto not a function
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• Let f be a one-to-one correspondent function 
from A to B.

• f-1(b) assigns to b, belonging to B, the unique 
element a, belonging to A, such that f(a)=b.

f-1(b)=a ↔ f(a)=bf-1(b)=a ↔ f(a)=b

A function that is NOT one-to-one 
correspondent is NOT invertible.
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• (f • g)(a) = f( g(a) )
• f • g cannot be defined unless the range of g is a 

subset of the domain of f.
• If f is a one-to-one correspondent function from A 

to B
( f -1  • f )(a) = a,     a ∈ A
( f  • f -1 )(b) = b,     b ∈ B
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• Floor function  ⎣ ⎦
⎣x⎦ = the largest integer  ≤ x

• Ceiling function ⎡ ⎤
⎡x⎤ = the smallest integer  ≥ x

⎣1/2⎦ =
⎡1/2⎤ =

⎣1⎦ =
⎡1⎤ =

⎣-1/2 ⎦ = 
⎡-1/2⎤ =
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• Example (Rosen p.106):
• Each byte is made up of 8 bits. How many bytes 

are required to encoded 100 bits of data?

⎡100/8⎤ =  ⎡12.5⎤ = 13 bytes
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• f(n) = n! is the product of the first n positive 
integers, so that

f(n) = 1 ⋅ 2 ⋅ … ⋅ (n-1) ⋅ n
and f(0) = 0! = 1
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• Cardinality
• Power set
• Union
• Intersection
• Difference
• Complement
• Symmetric 

difference
• Membership 

table

• Set
• Element
• Member
• Empty/Null set
• Universal set
• Venn diagram
• Set equality
• Subset
• Proper subset
• Finite set
• Infinite set
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• Inverse
• Composition
• Floor function
• Ceiling function
• Factorial

• Function
• Domain
• Codomain
• Image
• Pre-image
• Range
• Onto / Surjection
• One-to-one / 

Injection
• One-to-one 

correspondence / 
bijection


