

Relations

Rosen: Section ____



Atiwong Suchato

Department of Computer Engineering, Chulalongkorn University

Discrete Mathematics

Relations

- A (binary) relation form A to B is a subset of AxB
- A relation on the set A is a relation from A to A
- A function from A to B is a relation from A to B
- Examples:

$$R_1 = \{(1,1),(1,2),(2,1),(2,3)\}$$

 $R_2 = \{(a,b) \mid a = b \text{ or } a = -b\}$
a and b are integers

Atiwong Suchato

Department of Computer Engineering, Chulalongkorn University

Discrete Mathematics

Properties of Relations

• R on the set A is *reflexive* $\leftrightarrow \forall a ((a,a) \in R)$

Example: Consider relations on {1,2,3,4}

R must contain (1,1),(2,2),(3,3),(4,4)

$$R1 = \{(1,1),(1,2),(1,3),(2,2),(3,3),(4,1),(4,4)\}$$

$$R2 = \{(1,1),(2,1),(2,3),(3,1),(3,2),(3,3),(3,4),(4,4)\}$$

Symmetric and Antisymmetric

• R on a set A is symmetric

$$\leftrightarrow \forall a \forall b ((a,b) \in R \rightarrow (b,a) \in R)$$

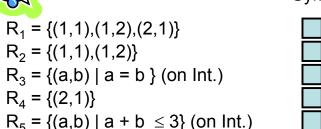
• R on a set A is antisymmetric

$$\leftrightarrow \forall a \forall b (((a,b) \in R \land (b,a) \in R) \rightarrow (a=b))$$

These two are NOT opposite.

Symmetric and Antisymmetric

- Symmetric $\leftrightarrow \forall a \forall b ((a,b) \in R \rightarrow (b,a) \in R)$
- Antisym. $\leftrightarrow \forall a \forall b (((a,b) \in R \land (b,a) \in R) \rightarrow (a=b))$



Department of Computer Engineering, Chulalongkorn University

Discrete Mathematics

Transitive Relations

R on a set A is transitive

 → ∀a∀b∀c(((a,b)∈R∧(b,c)∈R) → (a,c)∈R)

Example:

$$R_1 = \{(1,2),(2,3),(1,3),(1,4)\}$$

$$R_2 = \{(1,1),(1,2),(1,3),(2,4)\}$$

$$R_3 = \{(a,b) \mid a < b\}$$

Atiwong Suchato

Department of Computer Engineering, Chulalongkorn University

Discrete Mathematics

Combining Relations

- Since a relation is a set, we can apply all set operators to relations.
- Example

$$R_1 = \{(1,1),(2,2),(3,3)\},\$$

 $R_2 = \{(1,1),(1,2),(1,3),(1,4)\}$

$$R_1 \cap R_2 = \{(1,1)\}$$

 $R_1 - R_2 = \{(2,2),(3,3)\}$

Composite Relations

- R is a relation from A to B
- S is a relation from B to C
- SoR = {(a,c)| a∈A,c∈C, and there exists b∈B such that (a,b)∈R and (b,c)∈S}

Composite Relations

Example

R is a relation from $\{1,2,3\}$ to $\{1,2,3,4\}$ with $R=\{(1,1),(1,4),(2,3),(3,1),(3,4)\}$ and S is a relation from $\{1,2,3,4\}$ to $\{0,1,2\}$ with $S=\{(1,0),(2,0),(3,1),(3,2),(4,1)\}$.

What is the composite of R and S?

Atiwong Suchato

Department of Computer Engineering, Chulalongkorn University

Discrete Mathematics

Discrete Mathematics

Methods of Proof

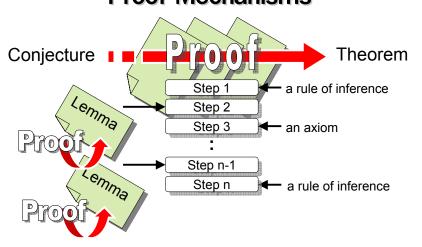
Readings:

Rosen Section ____

Atiwong Suchato

Department of Computer Engineering, Chulalongkorn University

Discrete Mathematics



Rules of Inference

- Provide justification of the steps used to show that a conclusion follows a set of hypotheses.
- Each uses a tautology as its basis.
- E.g.:

The law of detachment or Modus ponens

$$b \rightarrow 0$$
 $\therefore d$

(Based on $(p \land (p \rightarrow q)) \rightarrow q$)

Atiwong Suchato

Department of Computer Engineering, Chulalongkorn University

Discrete Mathematics

Department of Computer Engineering, Chulalongkorn University

Rules of Inference

Addition	<u>p</u> p ∨ q
Simplification	<u>p ∧ q</u> ∴ p
Conjunction	p <u>q</u> ∴ p∨q
Modus ponen	$ \begin{array}{c} p \\ \underline{p \to q} \\ \therefore q \end{array} $

Modus tollens	¬q <u>p →q</u> ∴ ¬p
Hypothetical syllogism	p →q <u>q →r</u> ∴ p →r
Disjunction syllogism	p∨q <u>¬p .</u> ∴ q
Resolution	p ∨ q ¬p ∨ r ∴ q ∨ r

Department of Computer Engineering, Chulalongkorn University

Discrete Mathematics

Rules of Inference

Example:

If it rains today, we will not have a barbecue today. If we do not have a barbecue today, we will have it tomorrow

Therefore, if it rains today, then we will have a barbecue tomorrow.

Which rule of inference is used?

Department of Computer Engineering, Chulalongkorn University

Discrete Mathematics

Rules of Inference

• Example:

If it floods today, Chula will close.

Chula is not closed today.

Therefore, it did not flood today.

Which rule of inference is used?

Valid Arguments

 An argument is called valid if whenever all the hypotheses are true, the conclusion is also true.

Showing that $(p_1 \land p_2 \land ... \land p_n) \rightarrow q$ is true.

Valid Arguments

Example:

h₁: If you send me an email, I will finish writing this program.

h₂: If you do not send me an email, I will go to bed early.

h₃: If I go to bed early, I will wake up feeling refreshed.

Lead to?: If I do not finish writing program, then I will wake up feeling refreshed.

Department of Computer Engineering, Chulalongkorn University

Discrete Mathematics

Valid Arguments

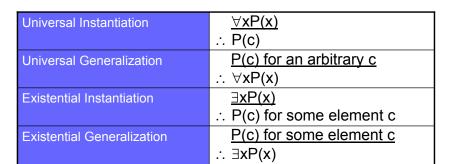
Example

Show that $(p \land q) \lor r$ and $r \rightarrow s$ imply $p \lor s$

Department of Computer Engineering, Chulalongkorn University

Discrete Mathematics

Rules of Inference: **Quantified Statements**



Rules of Inference: **Quantified Statements**

Example

Show that:

A student in this class has not read the book.

Everyone in this class passed the first exam.

imply:

Someone who passed the first exam has not read the book.

Methods of Proving Theorems

Department of Computer Engineering, Chulalongkorn University

Discrete Mathematics

Proving p→q

Trivial Proof

Proof by Contradiction

Atiwong Suchato

Department of Computer Engineering, Chulalongkorn University

Discrete Mathematics

Proving p→q

Show that if p is true, q must be true.

Indirect Proof >

$$p \rightarrow q \equiv \neg q \rightarrow \neg p$$

Vacuous Proof

Show that if -q is true, ¬p must be true.

• Example: Show that "If n is an odd integer, n^2 is an odd integer"

Indirect Proof

Vacuous Proof

Proving p→q

• Example :

Show that "If n is an integer and n^2 is odd, then n is odd."

Atiwong Suchato

Department of Computer Engineering, Chulalongkorn University

Discrete Mathematics

Proving p→q

Direct Proof

Indirect Droof

Vacuous Proof

Trivial Proof

Proof by Contradiction

Show that p is false. So, $p\rightarrow q$ is always true.

Show that \mathbf{q} is true. So, $\mathbf{p} \rightarrow \mathbf{q}$ is always true.

Atiwong Suchato

Department of Computer Engineering, Chulalongkorn University

Discrete Mathematics

Proving p→q

Example

P(n) ="If n > 1,then $n^2 > n$ " Show that P(0) is true.

Example

P(n) = "If a and b are positive integers with $a \ge b$, then $a^n \ge b^n$ " Show that P(0) is true.

- Proof by Contradiction
 - Suppose we want to prove a statement s
 - Start by assuming ¬s is true.
 - Show that $\neg s$ implies a contradiction. ($\neg s \rightarrow F$)
 - Then, ¬s must be false (or s must be true).

Proof by Contradiction

• Example:

Show that at least 10 of any 64 days chosen must fall on the same day of the week.

Atiwong Suchato

Department of Computer Engineering, Chulalongkorn University

Discrete Mathematics

Proof p→q by Contradiction

- Proof by Contradiction
 - Start by assuming $\neg (p \rightarrow q)$ is true.
 - That means $p \land \neg q$ is true. (since $\neg (p \rightarrow q) \equiv \neg (\neg p \lor q) \equiv p \land \neg q$)
 - Show that $p \wedge \neg q$ is a contradiction
 - Then, $\neg (p \rightarrow q)$ must be false (or $(p \rightarrow q)$ must be true).

Atiwona Suchato

Department of Computer Engineering, Chulalongkorn University

Discrete Mathematics

Proving p→q

• Example:

Prove that "If n is an integer and n^3+5 is odd, then n is even". Using:

- (a) an indirect proof.
- (b) a proof by contradiction.

Proof by Cases

Prove an implication of the form:

$$(p_1 \vee p_2 \vee ... \vee p_n) \rightarrow q$$

by proving that:

$$p_i \to q$$
, i = 1,2, ..., n

Discrete Mathematics

Proof by Cases

Example:

Show that |xy| = |x||y|, where x and y are real numbers.

Department of Computer Engineering, Chulalongkorn University

Discrete Mathematics

proven by proving $p_1 \rightarrow p_2$, $p_2 \rightarrow p_3$, ..., $p_n \rightarrow p_1$

both $p \rightarrow q$ and $q \rightarrow p$

Department of Computer Engineering, Chulalongkorn University

Department of Computer Engineering, Chulalongkorn University

Discrete Mathematics

Equivalent Propositions

Example

Show that these statements are equivalent:

 p_1 : *n* is an even integer.

 p_2 : n - 1 is an odd integer.

 p_3 : n^2 is an even integer.

Proof of Proposition Involving Quantifiers

Proof of p↔q

• Since ($p \leftrightarrow q$) \leftrightarrow ($p \rightarrow q$) \land ($q \rightarrow p$), then *prove*

• Equivalent propositions $(p_1 \leftrightarrow p_2 \leftrightarrow ... \leftrightarrow p_n)$ are

- Existence proofs: A proof of ∃xP(x)
- Constructive existence proof:
 - Find an element c such that P(c) is true.
- Non-constructive existence proof:
 - Do not find an element c such that P(c) is true, but use some other ways.

Existence Proofs

 Example: Show that ∃x ∃y (x^y is rational.) where x and y are irrational.

Atiwong Suchato

Department of Computer Engineering, Chulalongkorn University

Discrete Mathematics

Proof of Proposition Involving Quantifiers

- Uniqueness proofs: showing that there is a unique element x such that P(x).
 - 1) Existence:

Show that $\exists x P(x)$

2) Uniqueness:

Show that if $y \neq x$, P(y) is false.

• is the same as proving:

Atiwong Suchato

Department of Computer Engineering, Chulalongkorn University

Discrete Mathematics

Uniqueness Proofs

• Example:

Show every integer has a unique additive inverse. (If p is an integer, there exists a unique integer q such that p+q=0.)

- Show that $\forall x P(x)$ is false.
- Example:

"Every positive integer is the sum of the squares of three integers"?