Proof Strategy & Mathematical Induction
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Mathematical Induction

* A proof by induction that P(n) is true for every
positive integer n consists of 2 steps:

BASIC STEP: Show that P(1) is true.

INDUCTIVE STEP:
Show that P(k)—P(k+1) is true for every
positive integer k
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Example :

Prove that the sum of the first n odd positive
integers is nZ2.

P(n):
Basic Step:

Inductive Step:
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Example:
Prove that n < 2" for all positive integers n.

P(n):
Basic Step:

Inductive Step:
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Example :

Prove that n3-n is divisible by 3 all positive
integers n.

P(n):
Basic Step:

Inductive Step:
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Mathematical Induction

+ Sometimes we want to prove that P(n) is true for

n=b, b+1, b+2, ... where b is an integer other
than 1.

BASIC STEP: Show that P(b) is true.

INDUCTIVE STEP:

Show that P(k)—P(k+1) is true for every
positive integer k
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Prove that H2n21+g Hj=1+£+%+-~ 1
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whenever n is a nonnegative integer.
P(n):
Basic Step:

Inductive Step:
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Proving Mathematical Induction

* The well-ordering property:

Every nonempty set of nonnegative
integers has a least element.
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Proving Mathematical Induction

Show that P(n) must be true for all positive
integers when P(1) and P(k)—P(k+1) are true.

Assume that P(n) is not true for at least a positive
integer. Then, the set S for which P(n) is false is
nonempty.

S has the least element, called m. (m = 1)

Since m-1 <m, then m-1¢S (or P(m-1) is true)
But P(m-1)—P(m) is true. So, P(m) must be true.
 This contradicts the choice of m.
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Strong Induction

* A proof by induction that P(n) is true for every
positive integer n consists of 2 steps:

» Use a different induction step.

BASIC STEP: Show that P(1) is true.
INDUCTIVE STEP:

Show that [P(L)AP(2) ... AP(K)]—P(k+1) is
true for every positive integer k
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Example:

Show that if n is an integer greater than 1, then n
can be written as the product of primes.

P(n):
Basic Step:

Inductive Step:
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Example:

Prove that every amount of postage of 12 cents
or more can be formed using just 4-cent and 5-
cent stamps.
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