Proof Strategy & Mathematical Induction

• Readings: Mathematical Induction: Rosen Section

Atiwong Suchato Department of Computer Engineering, Chulalongkorn University

Discrete Mathematics

Example :

Prove that the sum of the first *n* odd positive integers is n^2 .

P(n):

Basic Step:

Inductive Step:

Mathematical Induction

• A proof by induction that *P*(*n*) is true for every positive integer *n* consists of 2 steps:

BASIC STEP: Show that *P*(1) is true.

INDUCTIVE STEP: Show that $P(k) \rightarrow P(k+1)$ is true for every positive integer k

Atiwong Suchato Department of Computer Engineering, Chulalongkorn University

Discrete Mathematics

Prove that $n < 2^n$ for all positive integers *n*.

P(n):

Basic Step:

Inductive Step:

Example :

Prove that n^3 -n is divisible by 3 all positive integers n.

P(n):

Basic Step:

Inductive Step:

Atiwong Suchato Department of Computer Engineering, Chulalongkorn University

Discrete Mathematics

Example :

Prove that $H_{2^n} \ge 1 + \frac{n}{2}$ $H_j = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{i}$

whenever n is a nonnegative integer.

P(n):

Basic Step:

Inductive Step:

Mathematical Induction

 Sometimes we want to prove that P(n) is true for n = b, b+1, b+2, ... where b is an integer other than 1.

BASIC STEP: Show that P(b) is true. **INDUCTIVE STEP:** Show that $P(k) \rightarrow P(k+1)$ is true for every positive integer k

Atiwong Suchato			
Department of Compute	r Engineering,	Chulalongkorn	University

Discrete Mathematics

٥

Proving Mathematical Induction

• The well-ordering property:

Every nonempty set of nonnegative integers has a least element.

Proving Mathematical Induction

- Show that *P*(*n*) must be true for all positive integers when *P*(1) and *P*(*k*)→*P*(*k*+1) are true.
- Assume that *P*(*n*) is not true for at least a positive integer. Then, the set *S* for which *P*(*n*) is false is nonempty.
- S has the least element, called m. ($m \neq 1$)
- Since m-1 < m, then $m-1 \notin S$ (or P(m-1) is true)
- But $P(m-1) \rightarrow P(m)$ is true. So, P(m) must be true.
- This contradicts the choice of *m*.

a difference of the local diversion of the local diversion of the local diversion of the local diversion of the
- T - M - T -
S. 🛎 🖈 .
State of the local division of the local div

Strong Induction

- A proof by induction that *P*(*n*) is true for every positive integer *n* consists of 2 steps:
- Use a different induction step.

<u>BASIC STEP</u>: Show that P(1) is true. <u>INDUCTIVE STEP</u>: Show that $[P(1) \land P(2) \land ... \land P(k)] \rightarrow P(k+1)$ is true for every positive integer k

Atiwong Suchato Department of Computer Engineering, Chulalongkorn University

Discrete Mathematics

Atiwong Suchato

Example:

Department of Computer Engineering, Chulalongkorn University

Show that if *n* is an integer greater than 1, then *n* can be written as the product of primes.

P(n):

Basic Step:

Inductive Step:

Discrete Mathematics

Example:

Prove that every amount of postage of 12 cents or more can be formed using just 4-cent and 5cent stamps.