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Abstract 
 

Inspired by Zhang’s work, a new easy technique for calibrating a camera based on 
circular points is proposed. The proposed technique only requires the camera to observe 
a newly designed planar calibration pattern (referred to as the model plane hereinafter) 
which includes a circle and a pencil of lines passing through the circle’s center, at a few 
(at least three) different unknown orientations, then all the five intrinsic parameters can 
be determined linearly. The main point of our new technique is that it needs to know 
neither metric measurement on the model plane, nor the correspondences between 
points on the model plane and image ones, hence it can be done fully automatically. The 
proposed technique is particularly useful for those people who are not familiar with 
computer vision. Experiments with simulated data as well as with real images show that 
our new technique is robust and accurate. 
 

1. Introduction  
 
Camera calibration is an essential step to extract 3D information from 2D images. An 
abundant literature on camera calibration has appeared during the last decade. With the 
increasing popularity of cameras used in offices and families, many people who are not 
experts in computer vision look more and more concerned with an easy and cheap 
calibration technique to help them to perform vision tasks. 

To this end, Zhang recently proposed a flexible camera calibration technique by 
replacing an expensive classical calibration grid with a planar pattern [1]. Zhang’s 
technique needs to print a dotted sheet (see Figure1) as the model plane, and the 
Euclidean coordinates of every dot on the model plane should be measured accurately. 
After taking a few images of the model plane at different orientations by moving either 
the model plane or the camera, the homographies between the model plane and its 
projections can be determined, then camera’s intrinsic parameters can be derived 
linearly from these homographies. Zhang’s technique is flexible and cheap, its accuracy 
is generally higher than self-calibration. Hence it is particularly suitable to desktop  






   

 
 

 
 
vision system (DVS) applied in offices and families. However a major drawback in 
Zhang’s technique is that it firstly needs to measure the Euclidean coordinates of every 
corner on the model plane, and secondly correspondences between points on the model 
plane and their projections need to be established. The above two requirements are 
obviously inconvenient to users, in particular to those who are not familiar with 
computer vision. To overcome this drawback, a novel model plane (see Figure 2) is 
designed and used in this paper. It is composed of a circle and a pencil of lines passing 
through the circle’s center (referred to as the model circle and the model lines later on). 
With this new model plane, our calibration technique needs neither physical 
measurement for the model plane, nor point correspondences, and the whole calibrating 
process can be done totally automatically. 
 

2. Theory  

 

2.1  Camera model and concept of circular points 
 
The camera model is assumed to be a pinhole one. The following notation is used in this 
paper: An image point is denoted by [ ]Tvu,=m , a 3D point is denoted by [ ]TZYX ,,=M , 

and their homogeneous coordinates are denoted by [ ]Ttvu ,,~ =m and [ ]TtZYX ,,,~ =M  
respectively.  Then the imaging process from a 3D point M to its image m can be 
expressed as: 

  [ ]M~~ tm RKs =                    (1) 

Where s is a non zero scale factor, ( )tR  are the rotation matrix and translation vector 

from the world system to the camera system, and K  is the camera matrix with the 
following explicit form: 
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We will first consider that the world is embedded in a 3D projective space. In this 
projective space, points satisfying the equation 0=t  are called points at infinity. They 
form the plane at infinity which is a 2D projective subspace embedded in the 3D 
projective space. In the plane at infinity, points satisfying 0MMT =~~  constitute the 

Figure 1: Zhang’s planar pattern Figure 2: Proposed planar pattern 






   

absolute conic ω . By using (1), we can easily verify that the image of ω  (IAC) is the 
conic 1−− KK T . This indicates that IAC encapsulates all the information about camera’s 
intrinsic parameters. Hence if we can determine IAC, we can easily derive all the 
intrinsic parameters, e.g., via Cholesky factorisation [5]. 

Without loss of generality, we can assume the model plane lies on theYX − plane in 
the world coordinate system, so the equation of the model plane is 0=Z . Let us denote 
the ith column of the rotation matrix R  by ir , we have: 
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From (2), a point [ ]Ttzyx ,,, on the model plane can also be defined by 2D 

homogenous coordinates [ ]Ttyx ,, . According to the projective geometry theory, points 
on the model plane satisfying the equation 0=t  form the line at infinity of the model 
plane (denoted by ∞l ). Now we consider two specific points I )0,0,,1( i J )0,0,,1( i− on 

∞l  (generally called the circular points) [6]. Obviously both I and J  satisfy the 

equation 0MMT =~~ , so I and J  are points on the absolute conic ω . If the images of 

I and J  are denoted by mI and mJ , then mI and mJ  should lie on IAC, which 

yields: 
01 =−−

m
T

m
T IKKI 01 =−−

m
T

m
T JKKJ                 (3) 

Since I and J  are conjugated points, under the perspective transformation, 

mI and mJ are also conjugated ones. Hence the two equations in (3) are actually 
identical. However, each equation in (3) can actually produce two linear constraints on 
IAC by enforcing both its real and imaginary parts to zero. i.e.,    
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Now let us look at the newly designed model plane (in Figure 2). As shown in 
Figure 2, there is a pencil of lines passing through the circle’s center O . If we assume 
that the coordinates of O  is )0,,( yx OO  and the circle’s radius is r which is unknown, 
then the circle equation in homogenous coordinates is: 

  2222 )()( trtOytOx yx =−+−                      (4) 

To compute the intersecting points of the line at infinity ∞l  with circle O , we combine 
the equation of ∞l   ( 0=t ) and  (4) to give:  

022 =+ yx .  
The solution is ixy ±= . That is to say, the two intersecting points can be expressed 

as )0,,1( i± in homogeneous coordinates, which are independent of xO yO r . This  

means also that “any circle in the model plane should intersects the line at infinity of the 
model plane at two circular points” [2]. Accordingly in the image plane, the image of 
the line at infinity should intersect the image of the model circle at the image of the two 
circular points. 

In most cases, the image of the model circle is an ellipse, which can be directly 
extracted from image. Hence if we can get the image of the line at infinity (generally 
called the vanishing line), then we can obtain the images of the two circular points. 
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2.2 Computing the vanishing line 
 
As sketched in Figure 3, line 1L  which passes through the model circle’s center O  
intersects the circle at point 1A 1B , and intersects the vanishing line ∞l  at 1C . Based 
on the theory of projective geometry, the cross-ratio of collinear points 1A 1B O 1C  
will be -1, i.e.,  
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Since O  is the midpoint of 11BA  and 1C  is a point at infinity, we can also say that 
points 1A 1B  harmonically conjugate with respect to points O 1C .  Suppose the 
corresponding images points of 1A 1B O 1C  are 1Am 1Bm Om 1Cm  respectively, 
since collinearity and cross-ratio are both projective invariant, we may easily conclude 
that 1Am 1Bm Om 1Cm  are also collinear and their cross-ratio is –1. Based on these 
two properties, we can obtain the following two equations: 

0)( 111 =⋅× CBA mmm              (5) 
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From the above two equations, 1Cm  can be computed, and obviously 1Cm  is on the 
vanishing line. If there exist more lines on the model plane similar to 1L , more points 
on the vanishing line can be similarly computed. Then we can finally obtain the 
vanishing line by a least squares fitting. 

As described above, during computing 1Cm , we have assumed that points 1Am

1Bm Om  are collinear. In practice, such a collinearity usually does not hold due to noise 
and errors introduced in the line detecting process, and extracted image lines 

},2,1{ �=il i  do not in practice always intersect with each other precisely at the image 
of the model circle’s center. In this case, we define the following cost function to 
minimize with respect to point 0m : 

∑=
i

iO lmdE ),(2          

Where ),( iO lmd  is the distance from point Om  to line il . This is a standard 
nonlinear minimization problem, which can be solved with Levenberg-Marquardt 

Figure 3: From model plane to image plane






   

Algorithm or others. After obtaining Om , we back-project Om  onto every il  to obtain 

Oim . Then when using (5) to compute Cim , we will replace Om  by Oim  in order to 
ensure 1Am 1Bm Om  are indeed collinear. 

2.3 Extracting ellipse and lines 
 
Accurately extracting the ellipse and lines, i.e., the projections of the model circle and 
the model lines, from image is an essential step to our new technique. Here we use 
random sample consensus paradigm (RANSAC) to extract lines and it proves 
performing well. In contrast to extracting lines, extracting the ellipse is a bit more 
involved. In our experiments reported in this paper, we use a least squares fitting 
technique based on algebraic distance to extract the ellipse. Assume that there are n  
image points on the ellipse { } ( ){ }niyx iii ,,1, �==x , and the equation of the ellipse is, 

FEyDxCyBxyAxyxQ +++++= 222),( 22  

Then we minimize the cost function ∑
=

=
n

i
ii yxQ

1

2 ),(F subject to the constraint of 

1222222 =+++++ FEDCBA  to extract the ellipse. More detailed discussions on 
extracting ellipses can be found in [8]. It is worth noting that generally speaking, using 
the Euclidean distance as the minimizing criterion will outperform that using algebraic 
distance in feature extraction. However, since our model plane is a white sheet 
containing a black circle and some black lines, its projected image is quite ideal, we 
found the extracted ellipse by minimizing the algebraic distance was already accurately 
enough, consequently we did not explore other more involved techniques.  

2.4 Determining the intrinsic parameters 
 
As discussed in section 2.1 and 2.2, once the image ( generally an ellipse) of the model 
circle and the vanishing line are obtained, the images of the two circular points mI

mJ can be easily derived which are the intersecting points between the ellipse and the 

vanishing line . 

Let mI = [ ]Tmmm III 321 ,, , and 
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From (3), we have 
             [ ] [ ] 0,,,, 321321 =T

mmmmmm IIICIII                           (6) 

Note that matrix C  is symmetric, we can define a 16×  vector 

[ ]TCCCCCCc 332313221211 ,,,,,=  

Thus, (6) can be rewritten as 
0=Ac                                (7) 

With 
[ ]333223311322122111 ,,,,, mmmmmmmmmmmmmmmmmm IIIIIIIIIIIIIIIIIIA +++=  

SinceA  is a complex vector, c  is a real vector, (7) is equivalent to the following two 
homogeneous equations 
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If n  images of the model plane are observed, by stacking n  such equations, we have 
  0=cV                              9  

Where V  is a 62 ×n  matrix. If 3≥n  and rank(V)≥ 5, c  can be determined 
uniquely up to a scale factor  in the least squares sense (If the skew factor γ  can be 
assumed to be zero in advance, then two images are sufficient for the calibration). The 
result can also be interpreted this way as shown in [9]: In general, 5 points are required 
to fit the image of the absolute conic, since each image can only provide two such points, 
the minimum number of images required is: [5/2]=3. The solution to (9) is well known 
as the eigenvector of VV T associated with the smallest eigenvalue [5]. 

Once vector c  is obtained, 1−K  can be computed using Cholesky factorization [5], 
and K  can then be obtained by inverting 1−K . This K  is equal to the actual camera 
intrinsic parameters matrix up to a scale. We can obtain the actual intrinsic parameters 
matrix by normalizing K  such that 133 =k . 

2.5  Recovering partial extrinsic parameters 
 
As indicated in section 2.1: Any point )0,,( yx  in the model plane if satisfying ixy ±=  

( x y  are complex number) will correspond to mI (or mJ ). Relating this to (2) we 

will have, 
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Where s  is a constant, let biaxs +=/ , then 
))Im(*)Re(*(1

11 mm IbIaK −= −λr  

))Im(*)Re(*(1
22 mm IaIbK += −λr  ( 1λ 1λ  are constants) 

Where a b  are unknown constants, so 1r 2r  can not be uniquely obtained. It is 
worth noting that 021 =rr T  is always true regardless of the takings of a and b, hence it 
cannot add any new more constraints on a and b. In the contrast, 3r  can be derived 
from , 

[ ] [ ])Im()Re( 11
33 mm IKIK −− ×= λr  

Where 3λ  can be obtained by 13 =r . 

We can also recover t  up to a unknown scale factor tλ  by Om , the image point 

of the model circle’s center.  

Ot mK 1−= λt  

Now we can see that the extrinsic parameters 1r 2r  have been lost with our model 

plane. It is chiefly due to the centrosymmetry of our model plane. Suppose C  is the 
camera’s optical center, and the origin of the camera coordinate system CCC ZYX  is 

located at C  also. From section 2.1, we know that the coordinates of the circular 
points on the model plane are independent of the model circle’s center O , thus without 






   

loss of generality, let CZ  pass through the circle’s center O  and let O be the origin of 

the world coordinate system WWW ZYX , and WZ  axis be perpendicular to the model 

plane. Under such a setup, vectors 1r 2r 3r  of the rotation matrix R correspond to the 

unit vector of WX WY WZ axes in the camera coordinate system, and the image of the 

model plane is only affected by WZ  axis, but independent of WX WY  axes because of 

the centrosymmetry of the model plane. As a result, once camera’s intrinsic parameters 
and the image of the model plane are obtained, we can only compute 3r  from them. 

Fortunately in most cases, the camera’s extrinsic parameters are not required  
by DVS, so the loss of 1r 2r  is not a major deficiency of our new technique.  

2.6  Degenerate configurations 
 
A complete analysis of all possible degenerate configurations in self-calibration has 
been carried out by Sturm [3] and Ma [7]. For our technique, degenerate configurations 
will only occur when the projected images of circular points in different images are 
identical. From (10) we can see that mI  depends only on rotation matrix R  and is 

independent of translation vector t. Hence in order to avoid degenerate configurations, 
R  should be altered at each image taking. In other words, the relative orientation 
between the camera and the model plane must be different for different image taking. 

Another degenerate configuration occurs when the image plane is parallel to the 
model plane. In this case, any point at infinity of the model plane )0,0,,( yx  will 
correspond to  
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[ ]Tyyx 0,,βγα +  is a point at infinity of the image plane. It means that the vanishing line 
coincides with the line at infinity of the image plane. In this case, the method of 
computing the vanishing line in section 2.1 becomes invalid. Such a degenerate 
configuration can be easily detected and avoided as follows: assume Om  is the image 
of the model circle’s center, its corresponding polar line associated with the ellipse ( the 
projection of the model circle) is the vanishing line ∞l . And we assume E  is the 
center of the ellipse whose corresponding polar line is the line at infinity of the image 
plane (denoted as ∞L ). According to the principle of polarity transformation in 
projective geometry, a polar line is uniquely determined by its corresponding polar 
associated with any proper quadric conic and vice versa. Hence, ∞l  will coincide with 

∞L  as well as Om  coincides with E  while image plane is parallel to the model plane. 
Based on this property, by checking the coincidence of E  and Om , this degenerate 
configuration can be detected and avoided easily.  

2.7  Algorithm  
 
The proposed calibration algorithm can be outlined as follows: 

1. Print a circle and a pencil of lines passing through the circle’s center on a 
white sheet, and attach the sheet to a planar surface; 






   

2. Take 3 or more images of the sheet at different orientations; 
3.   For each image 

3.1. Extract the ellipse and the pencil of lines, then check whether the 
configuration is a degenerate one as shown in section 2.6;   

3.2. Compute the vanishing line as shown in section 2.2;  
3.3. Compute the image points of the two circular points by intersecting the 

vanishing line with the ellipse; 
    4.  Determine vector c and matrix K as shown in section 2.4, 
 

3. Experiments 
 
In this section, both synthetic and real experiments are reported.  

3.1 Simulation results 
 
In the computer simulations, the camera’s setup is: 1200=α 1000=β 2.0=γ

000 == vu . The image resolution is: 10001000× . The orientation of the model plane is 

characterized by a rotating axis r and a rotating angleθ  about this axis (unit: degree). 
The position of the model plane is represented by a 3D vector t (unit: centimeter). The 
model plane includes a circle with radius=50 (unit: centimeter) and 10 lines passing 
through the circle’s center. The including angle between any two consecutive model 
lines is equal to 18 degrees.  Standard deviations of the five intrinsic parameters at 
each different noise level are computed and shown in Figure 5. From this Figure, we can 
see that though the noise level increases to 6.0 pixels, the standard deviations of the 
intrinsic parameters are still low. This indicates that the proposed technique is accurate 
enough even with the presence of a high degree of noise. 

3.2 Experiments with real images 
 
Real images were taken with a KODAK-DC120 digital camera. The image resolution is 

9601280× . We printed a circle with 6 lines passing through the circle’s center on a 
white paper with a laser printer, and attached the paper to the wall.  4 images of the 
model plane were taken at different orientations as shown in Figure 4. Then we applied 
the proposed technique in this paper to these 4 images. The calibration results are shown 
in Table 1. 

 

Figure 4: Four real images taken by digital camera 






   

    u0 v0 

Results 1396.220 1400.731 -0.827 568.401 453.079 
Table 1: Calibrating results from the 4 images in figure 4 

In order to verify the truthfulness of the calibration results in Table 1, a well- 
structured calibration pattern was reconstructed. Figure 6 consists of two images of the 
calibration pattern taken by previously calibrated camera. We manually picked 9 
corresponding points from each one of the two visible sides (marked by cross). 
Applying the structure-from-motion algorithm as described in [4], we reconstructed the 
two visible sides. Two views of the reconstructed pattern under different view directions 
are shown in Figure 7. From Figure 7, we can see that reconstructed points on the same 
side of the calibration pattern are indeed coplanar. In addition, the computed including 
angle between the two reconstructed sides is °91.10 , which accords well with the 
ground truth (of o0.90 ). This proves indirectly that the calibrating results in Table 1 are 
reliable. 

 

4. Conclusion 
 
Inspired by Zhang’s technique, we proposed a new flexible calibrating technique based 
on the concept of circular points. Our new technique uses a novel model plane which 
includes a circle and a pencil of lines passing through the circle’s center. The main 
points of our technique are(1) It need not to establish point correspondences between 
the model points and resulting image ones, hence the calibration process can be fully 
automatic; (2) It need not to know the circle’s center and radius, hence it is more 
convenient for the design and making of a model plane. The proposed technique is 
particularly useful for those people who are not familiar with computer vision. 
Experiments with simulated data as well as with real images show that our new 
technique is robust and accurate. 
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Figure 6: Two images of a calibration object taken by digital camera 

Figure 7: Two views of the reconstructed calibration object 

Figure 5: Calibrating results at different noise level 





