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Abstract

In manufacturing, it is often necessary to orient parts prior to packing or assembly. We
say that a planar part is polygonal if its convex hull is a polygon. We consider the following
problem: given a list of n vertices describing a polygonal part whose initial orientation is
unknown, find the shortest sequence of mechanical gripper actions that is guaranteed to orient
the part up to symmetry in its convex hull. We show that such a sequence exists for any
polygonal part by giving an O(n2 logn) algorithm for finding the sequence. Since the gripper
actions do not require feedback, this result implies that any polygonal part can be oriented
without sensors.

Keywords: Robotics, Parts Feeding, Planning, Grasping, Compliance, Motion Planning with
Uncertainty, Compliant Motion Planning.

1 Introduction

Manufacturing processes such as injection molding and stamping often produce a stream of parts
that must be reoriented before assembly. A parts feeder is a machine that orients parts (Figure
1). Although there are many designs for parts feeders, most use hand-crafted mechanisms
that depend on the shape of the part. When part geometry changes, the hardware must be
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Figure 1: A parts feeder is a machine that orients parts.

mechanically redesigned with a trial-and-error process that can require several months. Such
delays are problematic when production runs are short and part geometry changes frequently.

Hence we desire a parts feeder that can be reprogrammed rather than physically modified.
Furthermore, we desire an algorithm for automatically generating the appropriate program (or
plan) from part geometry. In this paper we present a design for a programmable parts feeder
for the class of polygonal parts: a planar part is polygonal if its convex hull is a polygon. The
mechanism is the ubiquitous parallel-jaw gripper (Figure 2). We focus on the algorithm, which
takes a description of part geometry as input and generates a plan for controlling the gripper.

Figure 2: A parallel-jaw gripper poised above a rectangular part.

We index each gripper action with an angle. Let a squeeze action, �, be the combination
of orienting the gripper at angle � with respect a fixed world frame, closing the jaws as far as
possible (e. g. with a binary pneumatic valve), and then opening the jaws. As illustrated in
figure 3 for a rectangular part, a sequence of two squeeze actions, < 0; �=4 >, will insure that
the part’s major axis is aligned with the gripper. Note that no sensing is required; the sequence
orients the part using only mechanical compliance.

In the next section we review related work. We then specify assumptions and analyze the
mechanics of squeeze actions before formally defining the problem. In section 4 we describe
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Figure 3: Four traces, running from top to bottom, of a two-stage plan for
orienting a rectangular part. Each squeeze action is indicated with a pair of
bold parallel lines. In the absence of friction between the part and the jaws,
the part will always rotate into a vertical or horizontal orientation after the
first action at 0�. After the second action at 45�, the part is constrained to be
in one of two symmetric orientations.
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a planning algorithm that maps a geometric part description into a sequence of actions for
orienting the part. Sections 5 and 6 prove the correctness and completeness of the algorithm,
establishing that such a sequence exists for any polygonal part. Section 7 analyzes the time
complexity of the algorithm. In section 8, we show how the algorithm can be extended to the
more robust class of push-grasp gripper actions.

2 Previous Work

This method for orienting parts is rooted in two bodies of research: the theory of compliant
motion planning and the mechanical analysis of parts feeders.

2.1 Relation to the Theory of Compliant Motion Planning

In exact robot motion planning (also known as the Piano Mover’s Problem) , the objective is to
find a path (or motion plan) from a known initial configuration (position and orientation of the
robot) to a desired final configuration while avoiding a given set of obstacles. For a review of
heuristic and algebraic techniques for this problem, see [1, 2, 3, 4].

In robot motion planning with uncertainty, the initial configuration of the robot is not known
precisely. For example, suppose we are uncertain about the initial position of a mobile robot
in a square room, yet we desire a plan that will move the robot into a corner. In the absence
of obstacles, we can achieve this by driving the robot North long enough so that it is stopped
by some wall, and then driving it West long enough to guarantee that the robot reaches the
Northwest corner of the room. Since mechanical compliance is used to reduce uncertainty, this
type of solution is known as a compliant motion plan1.

A geometric approach to compliant motion planning was introduced by Lozano-Perez,
Mason, and Taylor [5]. In this approach, the robot is represented as a point in the space
of possible configurations. Mechanical properties such as stability, friction, and kinematic
constraints are related to geometric conditions in this space. To express uncertainty, both the
initial conditions and the desired configuration (the goal) are represented as a subset of the
configuration space such that the subset is guaranteed to contain the true configuration of the
robot. It is also possible to represent uncertainty in the outcome of a nominal commanded
motion (e. g. arising from control error) using a one-to-many mapping on the configuration
space. A plan, or sequence of motions, creates a composite mapping. A plan that maps
the initial set of possible configurations into the goal set is guaranteed to achieve the desired
outcome.

1Also called a fine motion plan in [5].
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One way to automatically generate such a plan is to work backward, known as preimage
backchaining. Lozano-Perez, Mason, and Taylor considered a class of planar problems such
as inserting a peg into a hole, where peg velocity can only be controlled to within a worst-case
error cone. Uncertainty can be reduced by sliding the peg along a surface as in the example
above. By transforming the peg into a point in configuration space and projecting a cone
that represents velocity error for a nominal commanded motion, it is possible to identify a
geometrical region from which the motion is guaranteed to succeed. This region, called the
strong pre-image, then becomes the goal for another motion. If, by chaining backward, we
can find a strong pre-image that contains the initial set of possible configurations, the sequence
of pre-images defines a plan that is guaranteed to successfully insert the peg.

Erdmann [6] differentiated between the reachability and recognizability of goal configura-
tions and proposed a restricted class of computable pre-images. Donald [7] showed how the
approach could be generalized to cope with model error and plan failure and gave an algorithm
for planning compliant motions in the plane. Brost [8] developed numerical methods for planar
compliant motion planning that are robust to bounded uncertainties in position, orientation,
friction and mass distribution. For other related work, see [9, 10, 11, 12, 13].

A guaranteed plan does not exist for all problems. For example, the robot’s initial configu-
ration may be sufficiently uncertain such that no sequence of actions are guaranteed to achieve
the desired goal configuration. Many algorithms for compliant motion planning are complete
in the sense that they will find a guaranteed plan if one exists. Canny and Reif [14] found
that deciding if a guaranteed compliant motion plan exists is nondeterministic exponential time
hard. For the problem proposed in this paper, we show that a guaranteed plan always exists.

Both Lozano-Perez [15] and Natarajan [16] noted the similarity between compliant mo-
tion planning and the design of parts feeders. The algorithm presented here uses pre-image
backchaining to find compliant motion plans for a class of planar problems where the system
configuration describes the orientation of a polygonal part with respect the robot gripper. Dur-
ing commanded gripper actions, the part experiences compliant motion, rotating into a stable
configuration as the jaws are closed. Subsequently, jaw motion complies to the geometry of
the part, halting at this stable configuration. In a manner analogous to sliding a peg along a
sequence of surfaces, the generated sequence of gripper actions constrains the final orientation
of the part without recourse to sensors. Mason [17] describes several other examples where
compliant motion plans can be used in lieu of sensors to resolve uncertainty. Such approaches
are also known as open-loop [18], sensorless [19], or oblivious [20] manipulation.

2.2 Relation to the Analysis of Mechanical Parts Feeders

Although sensor-based methods such as a binary vision systems can be used to orient parts,
sensors introduce additional cost, sampling noise, and require the sensor to be coordinated with
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a mechanical actuator. Of the methods that do not require sensors, perhaps the most well-known
example is the vibratory bowl feeder, where parts in a bowl are vibrated with a rotary motion
so that they climb a helical track. As they climb, a sequence of pins and cutouts in the track
causes parts in all but one orientation to fall back into the bowl for another attempt at running
the gauntlet [21, 22]. When part geometry changes, a new helical track is required. Although
vibratory bowl feeders are widely used in manufacturing, there are currently no systematic
methods for generating track geometry from a description of part shape. Track design is a
“black art” performed by specialists through trial and error: an untested part configuration may
cause the track to jam during operation. Furthermore, there is no guarantee that an effective
track exists for every part.

Hitakawa [23] described a parts feeder that uses an array of nests (silhouette traps) cut into
a vibrating plate. The nests and the vibratory motion are designed so that the part will remain
in the nest only in a particular orientation. By tilting the plate and letting parts flow across it,
the nests eventually fill up with parts in the desired orientation. Although the vibratory motion
is under software control, trial and error is required to design the nest for each part.

Singer and Seering [24] proposed several designs for parts feeders, one using impact and
another where programmed vibration, based on part geometry, was used to drive parts into a
stable orientation. Grossman and Blasgen [25] used a vibrating box to insure that parts fall into
one of a finite number of stable orientations under the influence of gravity. They then used a
sequence of tactile probes to discriminate among these orientations. All the methods above use
vibration, which can be undesirable for fragile parts.

Mason [26] was the first to analyze the role of pushing in robot manipulation. Building on
results from classical mechanics, he identified a fundamental rule for predicting the direction
that a part will rotate as it is pushed in the presence of Coulomb friction. Although the part’s
exact motion depends on microscopic variations in the support surface, Mason showed that its
direction of rotation depends only on the location of the part’s center of mass. Other geometric
methods for predicting part motion in the presence of frictional contacts were described in
[6, 19, 27, 28, 8]. Mason’s rule provided the basis for Brost’s [29] push diagram, which
represents all possible motions of a part as it is grasped by a parallel-jaw gripper. Brost showed
how to use this diagram to identify single-step grasping actions that are robust to bounded
uncertainty in friction and part orientation.

When there is sufficient uncertainty in the initial orientation of a part, more than one action
may be required. Several researchers have addressed the problem of finding a sequence of
actions (a multi-stage plan) for orienting parts. Given a finite set of actions, an exhaustive
search can be used to consider all possible combinations. One difficulty is that the set of
possible actions, often indexed by angle, is uncountably infinite. In the following four studies,
the authors used a mechanical analysis based on part geometry to divide an uncountable set of
actions into a finite set of equivalence classes. In all cases the objective, as in this paper, is a
multi-stage plan for orienting a polygonal part.
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Mani and Wilson [30] considered pushing actions using a single planar fence. Peshkin
and Sanderson [31] considered an arrangement of fixed fences where a conveyor belt causes
parts to make contact with the fences. Erdmann and Mason [19] considered tilting actions
that cause a part to slide into contact with the edges of a rectangular tray. Goldberg and
Mason [32] considered grasping actions using a parallel-jaw gripper. In each case the authors
developed a mechanical analysis and partitioned the set of possible actions into a finite number
of equivalence classes based on part geometry2. Each applied a breadth-first exhaustive search
to find a sequence of actions guaranteed to produce a unique final orientation of the part. Each
method is complete in the sense that it is guaranteed to find such a plan if one exists. However,
without a bound on plan length, there is no bound on the computational complexity for any of
these search-based planners.

Natarajan [16] was the first to consider the computational complexity of designing parts
feeders; he formalized the problem as follows.

Given k transfer functions f1; f2; :::; fk on a finite set S, find a function f0 that is a
composite of the fi’s such that f0 is a constant on S, that is:

jf0(S)j = jff0(s)js 2 Sgj = 1:

Although he did not address the problem of finding a physically realistic set of transfer functions
based on part geometry, he showed that given k functions, a constant function can be found,
if one exists, in time O(kn4), where n is the size of S. He also identified the restricted
class of monotonic transfer functions. Say that a sequence s1; s2; :::; sn is ordered if each
element is encountered exactly once, in that order, when a simple cycle is traced starting
with s1. A function f is monotonic if for any ordered sequence s1; s2; :::; sn, the sequence
f(s1); f(s2); :::; f(sn) is ordered. Recently, Eppstein [34] reported an O(kn2) algorithm for
finding such a composite of monotonic functions and showed that finding the shortest composite
of non-monotonic functions is NP-Complete.

Erdmann, Mason and Vanecek [35] reported a computational approach to orienting three-
dimensional parts. Given an n-sided polyhedral part resting on a planar table, the objective is
to find a sequence of tilting angles for the table that will bring a particular part face into contact
with the table (thereby eliminating all but one degree of rotational freedom). Assuming that
friction is infinite and that the part never rolls off the edge of the table, the authors showed how
to construct such a plan, if one exists, in time O(n4).

In this paper we consider a class of parallel-jaw gripper actions. As described in [32], this
uncountable set of gripper actions can be partitioned into O(n2) equivalence classes based on
the geometry of the givenn-sided part. However, since every action corresponds to a monotonic

2Christiansen [33] describes how automated experiments, in lieu of mechanical analysis, can be used for this
purpose.

7



transfer function, we could use Eppstein’s algorithm to decide if a guaranteed plan exists in time
O(n4). However, since part geometry adds additional structure to our set of transfer functions,
we are able to show that a guaranteed plan always exists using a geometric algorithm that
finds the shortest guaranteed plan in time O(n2 logn). Preliminary descriptions of this work
appeared in [18, 36].

3 Assumptions and Mechanical Analysis

We assume that:

1. All motion occurs in the plane and is slow enough that inertial forces are negligible. The
scope of this quasi-static model is discussed in [37] and [38].

2. The gripper consists of two linear jaws arranged parallel to each other.

3. The direction of gripper motion is orthogonal to the jaws.

4. The convex hull of the part can be treated as a rigid planar polygon.

5. The part is presented to the feeder in isolation; we do not address the related problem of
isolating parts from a bin (commonly known as singulating).

6. The part’s initial position is unconstrained as long as it lies somewhere between the jaws.
The part remains between the jaws throughout grasping.

7. Both jaws make contact simultaneously (pure squeezing).

8. Once contact is made between a jaw and the part, the two surfaces remain in contact
throughout the grasping motion. The action continues until further motion would deform
the part.

9. There is zero friction between the part and the jaws.

These assumptions are similar to those made by Brost [29] and by Taylor, Mason and
Goldberg [39, 40], with the exception of assumptions 3, 7, and 9. By restricting gripper
motion to be orthogonal to the jaws (assumption 3), we obtain a one-dimensional action space
rather than the two-dimensional space considered previously. Assuming simultaneous contact
(assumption 7) simplifies the mechanical analysis but is almost never perfectly satisfied; that
is, one jaw inevitably makes contact first and pushes for some distance. In Section 8, we show
how this assumption can be relaxed by considering the class of push-grasp actions.
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Friction between the part and the jaws can produce wedged configurations where the part
is cocked between two vertices [29]. By assuming zero friction (assumption 9), we avoid such
configurations. A frictionless gripper can be closely approximated by mounting a linear bearing
on one jaw as described in [41].

3.1 Mechanical Analysis

When a polygonal part is grasped with the frictionless gripper, it assumes one of a finite number
of “stable” configurations where at least one edge of the part’s convex hull is in contact with
a jaw. Such configurations correspond to local minima in the following function. For a fixed
orientation of the part, define the part’s diameter at direction � to be the maximum distance
between two parallel supporting lines at angle �. Let S1 be the set of planar orientations3. The
diameter function, d : S1 ! < describes how the diameter varies as the parallel lines are
rotated around the part (see Figure 16). Note that the diameter is simply the distance separating
the jaws of the gripper when both jaws are just touching the polygon. See Appendix A for an
O(n) time algorithm for computing the diameter function.

The outcome of a squeeze action can be predicted using the diameter function. We define
a transfer function, the squeeze function,s : S1 ! S1, such that if � is the initial orientation
of the part with respect to the gripper, s(�) is the orientation of the part with respect to the
gripper after the squeeze action is completed. For a polygonal part, the piecewise-constant
squeeze function is derived as follows. All orientations that lie between a pair of adjacent local
maxima in the diameter function will map to the orientation corresponding to the enclosed local
minimum, i. e. the squeeze function is constant over this interval of orientations. The result is
a step function as shown in the bottom of figure 4.

We assume that all steps in the squeeze function are closed on the left and open on the right.
Strictly speaking, the squeeze function has value s(�) = � at its discontinuities, corresponding
to an unstable equilibrium where the part is wedged between two exactly-aligned vertices. We
could define a squeeze action at angle � to include closing and opening the gripper at angle �
followed by closing the gripper at angle � + �, rotating the gripper by ��, and then opening
the gripper. In [42], we show how to find an appropriate � for any polygonal part such that the
combined action has a piecewise constant transfer function where each step is closed on the left
and open on the right. In practice however, mechanical vibration in the gripping mechanism is
sufficient to dislodge such wedged configurations, and after the first squeeze action causes the
part to rotate into a stable configuration, the plan’s margin for error (specified below) allows us
to avoid actions that could produce a wedged configuration. For more on this issue, see [20].

Recall that the domain and range for the squeeze function are specified with respect to the
gripper. Rotating the gripper corresponds to a shift in the relative orientation of the part. If the

3Functions representing angles in S1 are evaluated modulo 2�.
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Figure 4: The diameter function (top) and squeeze function (bottom) for the
rectangular part.
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part is at angle � and the action is applied at angle �, the resulting orientation of the part with
respect to the gripper will be s(� � �).

In what follows, we use the term interval to refer to a connected subset of S1. For an
interval Θ, let jΘj denote its Lebesgue measure. We define an s-interval to be a semiclosed
interval of the form [a; b) such that a; b are points of discontinuity in the domain of squeeze
function s. For an s-interval ΘX , let �X refer to its included bounding point. Since there
are O(n) discontinuities in the squeeze function, there are O(n2) unique s-intervals , each of
which has non-zero measure. We define the s-image of a set, s(Θ), to be the smallest interval
containing the following set: fs(�)j� 2 Θg. Note that the s-image of any set will be a closed
interval.

3.2 Orienting a Part up to Symmetry

Note that the diameter function has period � due to symmetry in the gripper; rotating the gripper
by 180 degrees produces a symmetric arrangement that preserves the diameter. Rotational
symmetry in the part also introduces periodicity into the diameter function. This periodicity
introduces structure into the squeeze function. We say that a squeeze function has period T if
for all �,

s(� + T ) = s(�) + T: (1)

For polygons with r-fold rotational symmetry, the squeeze function will have period Tr =
2�=r(1 + r mod 2). For example, a part with no rotational symmetry (r = 1) has a squeeze
function with period �. An equilateral triangle has 3-fold rotational symmetry; its squeeze
function has period �=3. A square has 4-fold rotational symmetry; its squeeze function has
period �=2.

Periodicity in the squeeze function gives rise to aliasing: any sequence of actions that maps
� to �0 will map � + T to �0 + T . This implies that there is no sequence of squeeze actions
that can map orientations � and � + T into a single final orientation. For a given part, let T
be the smallest period in its squeeze function. We say that a plan orients the convex hull of a
part up to symmetry if the set of possible final orientations includes exactly 2�=T orientations
that are equally spaced on S1. For example, for a part with no rotational symmetry, a squeeze
plan orients the part up to symmetry if the plan yields exactly two final orientations that are �
radians apart. A part with 3-fold rotational symmetry can be oriented up to symmetry with a
squeeze plan that yields six possible final orientations each �=3 radians apart.

We define the parts feeding problem as follows:

Given a list of n vertices describing the convex hull of a polygonal part, find the
shortest sequence of squeeze actions guaranteed to orient the part up to symmetry.

11



4 The Algorithm

The algorithm begins with an s-interval whose image is a point. It continues, finding larger and
larger s-intervals . When the algorithm terminates, the resulting sequence of s-intervals can
be transformed into a sequence of squeeze actions that, in effect, “funnel” the largest s-interval
into a unique final orientation. The algorithm is given below.

1. Compute the squeeze function.

2. Find the widest single step in the squeeze function and set Θ1 equal to
the corresponding s-interval . Let i = 1.

3. While there exists an s-interval Θ such that js(Θ)j < jΘij,

� Set Θi+1 equal to the widest such s-interval .

� Increment i.

4. Return the list (Θ1;Θ2; :::;Θi).

We illustrate the algorithm using the squeeze function for the rectangular part as reproduced
in Figure 5. Since this part has aspect ratio 1:5, let a = atan2(3; 2).

In step 2 of the algorithm, the widest single step is found and Θ1 is set to be the corresponding
s-interval on the horizontal axis: [� � a; � + a). Note that s(Θ1) is the unique orientation at
angle �.

In step 3 of the algorithm, we seek the widest s-interval whose s-image has smaller measure
than Θ1. As illustrated in Figure 6, this can be visualized by left-aligning a box of dimension
jΘ1j with each step in the squeeze function. If the squeeze function emerges from the right
edge of the box, then the s-image of the corresponding s-interval has smaller measure than Θ1.
The largest such s-interval in this case is Θ2 = [� � a; 2� � a). Note that s(Θ2) = [�; 3�=2],
js(Θ2)j = �=2 < jΘij = 2a,

Continuing in this manner, wider and wider s-intervals are found until the loop terminates.
This will occur when jΘij = T , a period of symmetry in the squeeze function as defined in
section 3.2. For the rectangular part, the algorithm terminates with i = 2 since jΘ2j = �.

4.1 Recovering the Plan

In this section we show how to recover a plan from a list of s-intervals . Given the list
(Θ1;Θ2; :::;Θi), we can generate i plans. For j between 1 and i, a plan, �j , is a sequence of j

12



θ

(θ)s

0 π

π

0

Θ1

s (Θ  )1

Figure 5: In step 2, the widest single step in the squeeze function is identified.
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squeeze actions, (�j; �j�1; :::; �1), that collapses all orientations in Θj to the unique orientation
s(Θ1). Thus we can generate a plan to collapse any s-interval in the list. Since jΘij is the largest
s-interval (corresponding to a period of symmetry in the squeeze function), �i will orient the
part up to symmetry.

Again, we illustrate using the rectangular part as shown in Figure 6. At the start of the plan,
the rectangular part will be in some orientation in Θ2 (i. e. there is 180� uncertainty in the
part’s initial orientation). After performing a squeeze action at angle 0, the part’s orientation is
guaranteed to lie in the s-image s(Θ2).

Since js(Θ2)j < jΘ1j, we could collapse the interval s(Θ2) to a point with a single squeeze
action at angle 0 if s(Θ2) could be aligned with Θ1. Fortunately, this can be accomplished by
rotating the gripper by angle s(�2)� �1 = a in the fixed coordinate frame, which has the effect
of rotating the part with respect to the gripper by the negative of this angle. Since the orientation
of the part in the new gripper frame is guaranteed to lie inside Θ1, a second squeeze action at
angle 0 in the new gripper frame will insure that the part’s final orientation is the unique angle
s(Θ1) = � in the new gripper frame.

Two additional points:

� Since each rotation is expressed relative to the previous gripper frame, each squeeze
action must be transformed into the fixed coordinate frame.

� Note that js(Θ2)j < jΘ1j. Thus we can allow an additional margin of error in part
orientation. For the rectangular part, let �1 = 1

2(jΘ1j� js(Θ2)j) = a��=4. By adding an
additional increment of �1 to the commanded gripper rotation before the second squeeze
action, we insure that the rectangle’s orientation with respect to the gripper will lie inside
Θ1 even if the part is perturbed by ��1.

In general, the i-step plan, �i = (�i; �i�1; :::; �1), is defined as follows. Set �i = 0. For
j = i� 1 downto 1,

�j = s(�j+1)� �j � �j + �j+1; (2)

where �j =
1
2(jΘjj � js(Θj+1)j).

If the part’s initial orientation is contained in the s-interval Θi, its final orientation will be
the unique angle, s(Θ1)+�1. Consider the case where the part’s initial orientation is completely
unknown. Since Θi is a period of symmetry in the squeeze function, it partitions S1 into 2�=T
disjoint s-intervals of equal size.

Thus for the rectangular part, the plan comprised of a squeeze action at angle 0 followed
by a squeeze action at angle �=4 is guaranteed to orient the part to angle �=4 if it started out in
the range [�a; �� a), and to angle 3�=4 if it started out in the range [�� a;�a). Note that in
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Figure 3, orientations �=4 and 3�=4 are indistinguishable for the rectangle which has rotational
symmetry: r = 2.

Another example is illustrated in Figures 7 and 8, for the 4gon described by vertices:
(�42;�41); (48;�41); (39; 25); (�34; 59).

5 Correctness

To show that the algorithm correctly solves the parts feeding problem, we first show that the
resulting plan will orient the part up to symmetry and then show that there is no shorter plan
that does so.

The algorithm finds a plan that collapses an s-interval of length T , where T is the smallest
period in the part’s squeeze function. This implies that the plan orients the part up to symmetry.
To see this, note that since s(�+T ) = s(�)+T , it follows that for any plan �,�(�+T ) = �(�)+T .
Consider a 2-stage plan, �2 = (�1; �2).

�2(� + T ) = s(s(� + T � �1)� �2)

= s(s(� � �1) + T � �2)

= s(s(� � �1)� �2) + T

= �2(�) + T:

If a plan collapses all orientations in an s-interval to orientation �, then it will also collapse all
orientations in an s-interval of the same size offset by kT to orientation � + kT . If the part’s
initial orientation is unknown, its final orientation will be one of 2�=T final orientations equally
spaced on S1. Thus the plan will orient the part up to symmetry as defined earlier. We now
prove that the algorithm finds the shortest plan4 for orienting the part up to symmetry. First we
show that it is sufficient to consider only connected subsets of S1.

Lemma 1 Any plan that collapses a set Θ � S1 will also collapse the smallest (connected)
interval containing Θ.

Proof: Let Θ0 be the smallest (connected) interval containing Θ. Due to monotonicity of the
squeeze function, s(Θ0) = s(Θ). Thus the first squeeze action will produce the same s-image
in either case, and we can use the remainder of the plan to collapse Θ0 to a point. �

Theorem 1 No plan containing fewer steps can orient the part up to symmetry.

4There may be more than one shortest plan due to ties. We will refer to “the” shortest plan although it may not
be unique.
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indicate the corresponding s-images .
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Proof: Let �i be the i-stage plan found by the algorithm. Suppose there is a shorter plan, �0j ,
j < i, that orients the part up to symmetry. Let (Θ1;Θ2; :::;Θi) be the list of s-intervals found
by the algorithm and (Θ0

1;Θ0

2; :::;Θ0

j) be the corresponding sequence of bounding intervals for
plan �0j as constructed in Lemma 1. By definition of the algorithm, jΘ1j � jΘ0

1j. Since �0j
terminates in j steps but �i does not, it must be the case that jΘjj < jΘ0

jj. This means that there
exists a point in the sequences of intervals such that: jΘkj � jΘ0

kj and jΘk+1j < jΘ0

k+1j. But
this cannot occur by definition of the algorithm. Thus there is no shorter plan that can orient
the part up to symmetry. �

6 Completeness

Theorem 2 For any polygonal part, we can always find a plan to orient the part up to symmetry.

Proof: As described earlier, any polygonal part will generate a piecewise-constant squeeze
function, s : S1 ! S1, where all s-intervals have non-zero measure and s(� + T ) = s(�) + T ,
where T is a period of symmetry. To simplify the problem of wraparound at 0, in this section
we extend s to a function on the real line, s : < ! <, that has exactly the same value as before
on [0; 2�). Elsewhere, it is specified as s(� + T ) = s(�) + T .

We prove the claim by showing that for any such squeeze function, we can always find a
sequence of s-intervals , (Θ1;Θ2; :::;Θi), of increasing measure with the condition that Θj has
larger measure than the s-image of Θj+1. The trick is to show that for any piecewise-constant
monotonic squeeze function and any s-interval , we can always find a larger s-interval unless
it corresponds to a period of symmetry in the squeeze function.

Let h be the measure of some s-interval . Either we can find a larger s-interval whose
s-image is smaller than h,

9�; s(� + h)� s(�) < h; (3)

Or h is a period of symmetry in the squeeze function:

8�; s(�+ h) = s(�) + h; (4)

where the quantifiers range over the interval [0; T ).

To understand formula 3, consider that we’ve reached a point in the algorithm where the
current s-interval is Θj = [�j; �j + h). Formula 3 says that there is some closed interval,
Θ = [�; � + h], whose s-image is smaller than Θj . We can expand Θ (without increasing its
s-image ) by extending it to the right until we reach a discontinuity in the squeeze function. This
yields an s-interval whose s-image is smaller that Θj . The difference between this s-interval
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and Θ is an open interval and hence has nonzero measure. Thus this s-interval will have larger
measure than Θj .

We can also interpret formula 3 with reference to figure 6. The formula states that we can
always find a position for the lower left hand corner of the box such that the squeeze function
enters on the left edge of the box and exits on the right edge.

To show that for any such squeeze function and any h, either formula 3 or formula 4 must
hold, consider the integral of the function s(� + h)� s(�)� h over the interval [0; T ).

Z T

0
[s(� + h)� s(�)� h]d�

=
Z T+h

h
s(�)d� �

Z T

0
s(�)d� � hT (5)

= �
Z h

0
s(�)d� +

Z T+h

T
s(�)d� � hT (6)

= �
Z h

0
s(�)d� +

Z h

0
[s(�) + T ]d�� hT (7)

= �
Z h

0
s(�)d� +

Z h

0
s(�)d� + hT � hT (8)

= 0: (9)

Since this integral is zero, either there is some point where the function is less than zero (formula
3 is true), or the function is uniformly zero (formula 4 is true, i.e. h = T ).

Hence we can always continue to find larger s-intervals until we reach a period of symmetry
in the squeeze function. We have shown earlier that we can transform this sequence of s-
intervals into a plan to orient the part up to symmetry. �

7 Complexity

We assume that the following operations take time O(1): finding the distance between two
points in the plane, finding the angle between two lines in the plane, comparing two rational
numbers, adding or subtracting two rational numbers, and random access of any particular
memory location.

Theorem 3 For a polygon of n sides, the algorithm runs in time O(n2 logn) and finds plans
of length O(n2).

Proof: Step 1, computing the squeeze function, can be performed in time O(n) as shown in
Appendix A. Since there are O(n) steps in the squeeze function, Step 2 takes time O(n). For
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the loop, recall that a squeeze function defines O(n2) s-intervals . Suppose we sort these by
js(Θ)j. As we proceed through the loop, we only need to traverse this list once, so that i is
O(n2). Recovering the plan requires O(i) time. Sorting dominates the running time, so the
algorithm runs in time O(n2 logn). �

8 Push-Grasp Actions

In this section we relax the assumption that both jaws make contact simultaneously by consid-
ering the class of push-grasp actions first identified by Brost [29]. Let a push-grasp action,
�, be the combination of orienting the gripper at angle � with respect a fixed world frame,
translating the gripper in direction � + �=2 for a fixed distance, closing the jaws as far as
possible, translating the gripper in direction��� �=2 for the same distance, and then opening
the jaws.

During the pushing phase, where the gripper translates, the part rotates so that one of its
edges is aligned with the pushing jaw before the second jaw makes contact. For this class of
actions, we substitute two assumptions for assumption 7 in Section 3:

� The part’s center-of-mass (c.o.m.) is given and the coefficient of friction with the support
surface is independent of position and velocity [26].

� The pushing distance is sufficient to align a stable part edge with the pushing jaw before
the second jaw makes contact.

An lower bound on the required pushing distance can be computed by considering the smallest
disk that covers the part [38]. Although this bound can approach infinity if the part is pushed
along a vector from the contact vertex through the part’s center-of-mass, we can avoid such
actions after the first push-grasp action causes the part to rotate into one of its stable orientations.

The mechanics of pushing can be captured with an analog to the diameter function as
constructed by Mason [26]. Consider a single line of support, aligned with the x-axis, below
the part. Let the part’s radius at direction 0� be the perpendicular distance from the support
line to the part’s center of mass. The radius function, r : S1 ! <, describes how the radius
varies as the support line is rotated around the part. See top of Figure 9. By checking each
vertex, the radius function for an n-sided polygonal part can be computed in time O(n). When
pushed, the part will rotate so as to reduce its radius.

The push function, p : S1 ! S1, maps an initial orientation of the part to a final orientation
after the pushing phase. See bottom of Figure 9. It is a step function derived from the radius
function in the same way that the squeeze function is derived from the diameter function, i.e.
discontinuities occur at local maxima in the radius function. Since the radius function has
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Figure 9: The radius and push functions for the 4gon.
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period 2� unless the part has rotational symmetry, pushing allows us to eliminate the 180�

ambiguity in the part’s final orientation that is inherent with squeeze actions.

To analyze the mechanics of a push-grasp action, we compose the push function with the
squeeze function to get a transfer function, g : S1 ! S1, that we call the push-grasp function
as illustrated in figure 10. We assume that steps are closed on the left and open on the right. As
with the squeeze function, this assumption can be formally justified with a minor modification
to the definition of the push-grasp action, or we can make a similar argument that meta-stable
orientations can be avoided after the first action. Note that the push-grasp function is also
piecewise constant and monotonic, and can be computed in time O(n).

Thus we can use the planning algorithm from Section 4, modifying only step 1 to use
the the push-grasp function instead of the squeeze function. The correctness, complexity and
completeness of the algorithm can be proved as before. The s-intervals and resulting plan for
the 4gon are shown in Figures 11 and 12. Another example, for a house-shaped part described
by the vertices:
(�25;�33); (25;�33); (25; 20); (0; 45); (�25; 20), is shown in Figures 13 through 15.
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Figure 10: Push-grasp analysis for the four-sided part. In the upper left is
the radius function. Directly below it is the push function. In the upper
right is the diameter function. Directly below it is the squeeze function. The
push-grasp function is shown at the bottom.
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Figure 11: The push-grasp function for the 4gon (unwrapped to show two pe-
riods). The bars under the horizontal axis indicate the sequence of s-intervals
found by the algorithm, the bars to the left of the vertical axis indicate the
corresponding s-images .
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Figure 12: Four traces of push-grasp plan for 4gon, where darkened line
indicates pushing jaw. Push-grasp actions are at 0�;�44�;�96�;�146�.

26



(θ)g
2π

3π/2

π

π/2

0 θ
2π3π/2ππ/20

(θ)s
2π

3π/2

π

π/2

0 θ
2π3π/2ππ/20

d

θ
2π3π/2ππ/20

(θ)p
2π

3π/2

π

π/2

0 θ
2π3π/2ππ/20

r

θ
2π3π/2ππ/20

Figure 13: Push-grasp analysis for the house-shaped part. In the upper left
is the radius function. Directly below it is the push function. In the upper
right is the diameter function. Directly below it is the squeeze function. The
push-grasp function is shown at the bottom.
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Figure 14: The push-grasp function for the house-shaped part (unwrapped to
show two periods). The bars under the horizontal axis indicate the sequence
of s-intervals found by the algorithm, the bars to the left of the vertical axis
indicate the corresponding s-images .
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Figure 15: Four traces of push-grasp plan for house-shaped part, where
darkened line indicates pushing jaw. Push-grasp actions are at 0�; 72�; 135�.
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9 Discussion

We have described an algorithm for generating parts-feeding plans from part geometry. The
algorithm can generate either squeeze plans or push-grasp plans for the class of polygonal
parts. This planning algorithm has been implemented in Common Lisp using exact arithmetic
to represent angles [43] and has been tested on hundreds of polygonal shapes with running
times of well under one second on a Sun Sparcstation IPC.

The plans generated by this algorithm have been verified experimentally both at Carnegie
Mellon University using a PUMA robot with an electric LORD Co. gripper and at the University
of Southern California using an IBM robot with a pneumatic Robotics and Automation Corp.
gripper. Using a pushing distance of two part diameters, the push-grasp plans for the house and
4gon (shown in figures) performed as predicted in almost all trials. Occasionally, the part failed
to rotate into a stable configuration during the pushing phase. This may be due to insufficient
pushing distance or error in our calculation of the part’s center of mass arising fromm errors in
estimating part geometry and/or non-uniform part density. Thus two important issues for future
research are improved estimates for the minimum distance required to align a stable edge of
the part with the pushing jaw and planning algorithms that are robust to variations in part shape
and center of mass.

For this algorithm to be practical in an industrial environment, we must also consider the
issue of feedrate. One idea is to pipeline the plans; rather than perform i actions with one
gripper, use i fixed grippers so that parts flow out of the pipeline at the rate of one per action.
Of course we must still be concerned with the length of the pipeline. We can make a tradeoff
between plan length and the probability of success by optimizing expected feedrate, where the
distribution of inputs is assured by randomizing the first gripper angle and a binary filter is used
to reject parts that are not in the most probable orientation [18].

Furthermore, although we have shown that the plan length is bounded by O(n2), we
conjectured based on empirical evidence that plan length is linear in the number of part edges.
Recently, Chen and Ierardi [20] proved that plan length is indeed linear which means that our
algorithm will run in time O(n2) and produce plans of length O(n). Also, Prasanna and Rao
[44] reported a parallel version of this algorithm that runs in linear time on an n � n mesh
connected computer.

Although we assume that the part remains between the jaws throughout the plan, one degree
of translational freedom is not constrained by the parts feeder. To resolve this after the part is
oriented, we might allow the part to slide down a track until it falls through a silhouette trap,
although it could be difficult to insure that the part does not rotate during this phase. We are
currently investigating an alternate approach based on open-loop pushing.

The method described here is limited to the class of planar polygonal parts: essentially flat
parts with a constant polygonal cross section. Many parts used in industry have curved edges
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and spatially-varying cross-sections. For example, many Computer Aided Design systems and
Numerical Control machines allow a cross-section to be defined with a combination of linear
and piecewise-circular edges. We are currently extending the algorithm to cope with such
shapes. For 3D polyhedral parts, the planar algorithm might be preceded by a preliminary
stage that causes a most stable face of the part to be aligned with the worktable. This might
be accomplished using either vibration [24] or by tilting the worktable [35]. For some parts,
we may be able to determine the remaining degree of rotational freedom using the algorithm
described here to orient the polyhedron’s 2D projection.

In summary, we have described a planning algorithm that can rapidly analyze part geometry.
The resulting plans require no sensors and can be pipelined to achieve rapid feedrate. The
required hardware is widely available at low cost. Thus the resulting parts feeder is fully
programmable and can be automatically programmed as part geometry changes.

By establishing that an algorithm is complete in the sense that it works for all parts in
some class, the algorithm can be used as a dependable component in a modular automation
system [45]. However, as discussed in section 2, such algorithms are rare for compliant motion
planning since one can usually construct cases for which a guaranteed plan does not exist.
Making an analogy with the theory of compilers, which has defined classes of languages that
can be automatically compiled, Natarajan [16] noted that “It would be useful to identify [a]
class of parts for which feeder design can be easily automated ”. In this paper we have given a
parts orienting algorithm and shown that it is complete in the sense that it will find a plan for
any polygonal part.
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A The Diameter Function

In Section 3.1 we showed that a diameter function could be used to analyze the mechanics
of squeeze-grasp actions. In this appendix we describe an O(n) algorithm for computing the
diameter function.
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Figure 16: The diameter function for the four-sided part shown at the right
in its zero orientation. During a squeeze, the part rotates so as to reduce the
diameter, terminating when the diameter reaches a local minimum.

Let a two-dimensional part be described as a closed, compact region of E2 which is also
the closure of its interior [46]. For a fixed orientation of the part, define the part’s diameter at
direction � to be the maximum distance between two parallel supporting lines at angle �. Thus
the diameter function, d : S1 ! < describes how this distance varies as the parallel lines are
rotated around the part (see Figure 16). Note that the diameter is simply the distance separating
two jaws of the gripper when both jaws are just touching the part.

Jameson [47] used this function to show that any two-dimensional convex body must have
at least two stable equilibria where it can be grasped between parallel jaws. In clustering
applications, the maximum of the diameter function is known as the diameter of the set covered
by the part [48]. The diameter function is also known as the width function in geometry5, but
we use the former term to make an analogy with the radius function. We state the following
without proof:

� The diameter function is continuous: ∆d! 0 as ∆� ! 0.

� The diameter function for a part is equal to the diameter function for the convex hull of
the part.

� The diameter function has period � (due to symmetry of the gripper) and may also have
smaller period if the part’s convex hull has rotational symmetry.

For a polygonal part whose convex hull is described by a list of n rational vertices, one
period of the diameter function can be described by an ordered list of sinusoidal functions
(phase and amplitude) and the associated transition angles. Transitions between sinusoids can
only occur when an edge is aligned with the gripper, so there are at most 2n sinusoidal pieces.

5For example, see the discussion of curves of constant width in [49].
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Since each sinusoid arises from contact between two opposing vertices in the object, we can
trivially compute the diameter function by enumerating all n2 pairs of vertices.

However, we can compute the diameter function in time O(n) if we assume that the
following operations require time O(1): finding the distance between two points in the plane,
finding the angle between two lines in the plane, comparing two rational numbers, adding
or subtracting two rational numbers, and random access of any particular memory location.
Preparata and Shamos [48] describe a linear-time algorithm for finding the maximum diameter
of a convex polygon with n sides. Their algorithm enumerates all pairs of vertices that admit
parallel supporting lines in order of increasing �. Each pair defines a chord of length li and
there are at most 3n=2 such pairs. Thus to compute the diameter function, we make one pass
over this list of chords as follows. Between every adjacent pair of part edges, d(�) follows
the sinusoid lij sin(�i � �)j, where li and �i are taken from the longest chord in the interval
orthogonal to the interval between edges. A single sweep through the list of edges and chords
allows us to compute the diameter function in linear time.
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