Displacement
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Coordinate Transformation

F,

0 p i coordinates F, Af x

aNyF9 coordinates 184wl £, @euldify

X =[A]x +d
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The constraint [A"J[A] =[1] ensures that
X =[A]Xx+d isarigid transformation.

Premultiply and postmultiply both sides of the
constraint by [A] and [A-1], we obtain:

[AILA"ITAIATT=[AI[N[AT]

Thatis, [A][A"]=[1]
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Matrix [A] such that: [A"][A]=[1]
or  [AI[A"]=[I]

is called orthogonal matrix.

Let [A]l=[a, a,..a,]

1i=]j
Thismeans @;-a; = .
0 1#]
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Using determinant identity det(A)=det(AT), we
obtain:

det([A"][A]) = det([A])* = det([1]) =1
This implies:  det([A]) =+1

[A] corresponds to a rotation only when

det(JA])=1. When det([A])= -1, the matrix
corresponds to a reflection.
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Coordinate transformation can also be viewed as a
displacement.

As we can see that the translation of the sum of two
vectors is not the sum of the translation of each vector
separately, displacement is not a direct linear
transformation. For example, let T(v) be the translation
v+d, it is clear that T(v+w) 1= T(v) + T(w)

So displacement in n dimensional space cannot be
represented by n x n matrix transformation.

To write the transformation in a matrix form, we use
homogeneous transformation.
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Homogeneous Transformation

Key: R" isembeded as a hyperplane in R"*

Displacement can then be represented by a matrix

X| |A d|[x
11 [0 11]|1
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Homogeneous transforms form a matrix group.

Let [T,] and [T,] be matrix of homogeneous
transforms, we can show that [T,][T,] is also a
matrix of homogeneous transform.

Likewise, inverse transform can be obtained from
the inverse of the matrix of the transform.
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Planar Displacements

X =[A]x+d  where

[A] = Cf)se —sind 4= d,
sind cosd d,

Introduction to Robotics essaing qauas wndi 4 wih 10




We can see [A][AT] =
cosgd -—sin@ || cos@ sin@ B
sind cos@ || —sin@ cos@|

cos’ @ +sin* @ cos@sing —singcosd |
sin@cosé — cosdsin @ cos’ @ +sin @

1 0]_,
HMES
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That is [A] is an orthogonal matrix and because
det([A])=1, we know that [A] is a rotation.

Now consider an orthogonal 2 x 2 matrix
which is not a rotation:

07
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What does [X] do?

-5 2

It reflects coordinates of points in the plane through
the line x = 0. For example,

1) ~{e)
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A reflection through a line at an angle « about the
origin is given by:

[S]=[A][X][AT]={

—C0S2a —Sin2a
—sin2a  coS2«a
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What if several reflections are applied?

The determinant of a product of n reflections is
(-1)", therefore if n is an even number, the
product is a rotation, not a reflection.

For example, let [S] and [T] be reflections through
lines at the angles « and £ about the origin
respectively, then the product [S][T] is the rotation:

[cos2(a—-p) -sin2(a-p)
[S]F]_LinZ(a—ﬂ) cosZ(a—ﬁ)}
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Pole of a Planar Displacement

For a general planar displacement, there is a point
that does not move. This point is called the pole of

the displacement.

Let D=(A,d) be the displacement, the its pole p
satisfies the equation Dp=p, or

p=[Alp+d
Solving for p yields
p=-[A-1]"d , or
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_d;sin(@/2)—-d,cos(6/2)
2sin(@/2)

1

_d,cos(8/2)-d,sin(6/2)
2sin(8/2)

2

The only case for which this does not have a solution is
when 0=0 (pure translation). In this case the
coordinates of the pole move to infinity along the line
perpendicular to d.
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Any general planar displacement can be
written in the form of a rotation around a pole.

Pole = Center of Rotation
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Poles using Homogeneous Transform

X cos@ —sinf d, T
¥ = | sin@ cosf dg L
1 0 0 1 1
{ P | A d P
Li L0 ¥ ¥ |
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Poles using Homogeneous
Transform

Recall the Eigen form: Ax = AX

cosf—\  —sinf d;
det sin @ cosf— A dy =0,
0 0 1-A

(L-2) (A -24c0s0+1) =0
In homogeneous coordinates, X is the same as Ax
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Poles using Homogeneous Transform

The 3 x 3 matrix [4, d] obviously has A = 1 as an eigenvalue. The re-
maining two are A = exp(if) and \* = exp(—i@) which are also the eigen-
values of the rotation matrix [4]. Let x = (z1, 29, 0) and x* = (z7,z3,0)
be the eigenvectors associated with this latter pair of eigenvalues. A pair

of real orthogonal vectors, c; and ¢;, can be constructed from x and x*
by the formulae

c,=(X+x)/2
c, =i(x—x")/2

Remember x is homogeneous!
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Poles using Homogeneous Transform

Starting from a taylor series expansion of the exponential function

2 3
e =1+ X+—+—+...
21 3
HAYA =N\ 3
, ) iX iX
e'X:1+|x+( ) +( ) +...
2! 3
2 4 3 5
X° X . X° X
=l-——+—-)+iXx—+—-..)
21 4 3 5
=COS X +1iSin X
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Poles using Homogeneous Transform

The fixed frame coordinates C, and C; of these points are obtained by
the computation

Ci=[4le; = (exp(if)x+ exp(—if)x*)/2,
Co=[Alez = i(exp(if)x — exp(—if)x*)/2,
or
C; = cosfe,; +sinfc,,
Cs = =—sinfc; + cosfe,.
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Poles using Homogeneous Transform

The eigenvector associated with A = 1 satisfies the equation
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Spherical Displacement
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Spherical Displacement

XTX = xT[AT][4]x = xTx,

[AT][A] = [1],

which means [A] is an orthogonal matrix. Rotations are orthogonal
matrices with determinant equal to 1. They form the matrix group

denoted
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Spherical Displacement

Orthogonal matrices with determinant equal to —1 are called reflee-
tions. A typical example is

-1 0 0
pq:[u 10]
g 0 1

Reflection about the plane x = 0

Introduction to Robotics esinind qauas wnfi 4 wih 27

Fundamental Rotation (Euler Angles)

Yaw: counterclockwise rotation « about z axis
cosa -sina 0
R,(@)=|sina cosa O
| 0 0 1

Pitch: counterclockwise rotation g about y axis
[cosp 0 sing
R(B)=| 0 1 0

|-sing 0 cosp

Roll: counterclockwise rotation y about x axis

1 0 0
R,(»)=|0 cosy -siny
|0 siny cosy
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Rotation around an arbitrary axis

1. Rotate v to make it
coincide with z

2. Rotate about z

3. Inverse step 1

[R,(€,)R,(6)] "R, (O)[R,(6,)R,(6))]
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Euler Angles
Drawback

It is possible that R,(«)R,(B)R,(y) =1
when «a, B,y #0

A single rotation can be represented by
many combinations of &, 3,7
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Euler Angles

==
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Euler Angles

Examples
Consider R=R,(2)R,(B)R,(»)
where a=p=y=nx

We thus have:

R =

o O -
o +— O
O O
o O -
o - O
= O O
o O -
o - O
O O
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Euler Angles

Drawback

It is possible that R,(2)R,(B)R,(r) =1
when a, B,y #0

A single rotation can be represented by
many combinations of ¢, 3,7
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Gimbal Lock

Problem with Euler angle

Consider Y-P-R with 90 degree pitch

Two parameters from yaw and roll can
only give one degree of freedom to the
rotation.

Demo with the hand!
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Gimbal Lock

A solution: quaternion!
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Eigenvector of an Orthogonal Matrix
[Alx = Ax
[Alx =X
X is now in ordinary cartesian coordinates
det(A-Al)=0
— 2+ 2 (a, +ay, +a,)—A(My, + M, + M) +det(A) =0

M; ; denotes minor obtained from eliminating row i and column j.
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Eigenvector of an Orthogonal Matrix

~ 2+ 2% (ay, +ay, +a,) - A(M, +M,, + M ;) +det(A) =0

When A is an orthogonal matrix, M;; = a;

Why?
&

|Al= Dlarg Cip
=1

C:.!'j = [_ l]Hj Mz'j'-
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Eigenvector of an Orthogonal Matrix

2 2 2
For a 3x3 orthogonal matrix A, |Al=1 and &1+, +&3=1 fori=120r3.

Compare with the determinant formula from the last page, we obtain:

Cij=a,
or
_ i+]
M, =a;/(-
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Eigenvector of an Orthogonal Matrix

When A is an orthogonal matrix, M;; = a; resulting in
23— )\2(311 + dagz +<133:l + Alay; + @z +a3z) — 1 =0.

We see immediately that A = 1 is a root, so the characteristic polynomial
can be factored to obtain

(A—=1)(A% = Aayy +ags +azz +1)+1)=0

The remaining roots are: A = e“” and 1 = e‘”’

where  COS¢ = (8, +a,, + 85, —1)/2
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Eigenvector of an Orthogonal Matrix

Let b be the Eigenvector associated with Eigenvalue A=1
We have A b =b. Thatis, t b is fixed under the rotation given by A

The other two Eigenvectors (say x and x* ) span the plane orthogonal to b

We can construct real orthogonal vectors in this plane by

c,=(X+Xx)/2
c, =i(x-x")/2
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Eigenvector of an Orthogonal Matrix

Cy=[4]e;, = (exp(ig)x + exp(—ig)x*) /2,
Co=[Alea = i(exp(i¢)x — exp(—ig)x*))/2,
or

Ci = cosge; + sindea,

C; = — sin ¢y + cos ge;.

Still in the plane spanned by ¢, and c,
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Cayley’s Formula

X-x)T(X+x)=0.

X-x=[A-]x,

bq Rotation axis

X+x=[A+1]x

XK-x=[A-IA+1]"Y(X +x)

[Bl=[A-1][A+1)!

{b‘]y- is nrthogon;-.] to y
Y 1By = ¥ (b + byadyey; = 0.

Introduction to Robotics essaing qauas wndi 4 wih 42

21



Cayley’s Formula

For ¥"IBly =1 (b +by)ua, = 0. to be true:

[Bl = —IB7, which is termed skew-symmetry

We solve [B] = [A—TI|[A+1]7? for [A] to obtain Cayley’s formula for
an orthogonal matrix

[A]=[I - B[/ + B].

[1-B] cannot be singular because it is skew-symmetric, which means it only has
imaginary Eigenvalues (if a matrix is singular, it has 1 as an eigenvalue). Detail
in the next few slides.
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Cayley’s Formula

The mairices [I + B] and [I — B] commute, since

[I+B]|[I-B)=[-B|I+B]=[I-B.

Pre-multiplying and post-multiplying this equation by [T — B] ! results
in the fact that [I + B] and (I — B] " also commute. Thus Cayley’s
formula has the equivalent form

[4] = [T+ BJr - B]™*
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Skew-Symmetric Matrices

0 =bs b
[B] = ba 0 -b
by b 0

b = (b1, b2,b3)

[Bly=bxy

Vector b here is the eigenvector of an orthogonal matrix A associated with eigenvalue 1

With =1, [A-1]x = 0.

Replace [4] by Cayley’s formula, multiply by [I — B], and simplify the
result to obtain

[Blx=0. Since [B]x =b X x, the solution isx=b
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Skew-Symmetric Matrices

The eigenvalues A of a general 3 x3 skew-symmetric matrix [W] satisfy
the equation:
—-A —ws Wy
det wy —A  —uy =,
—we Wy —A

which simplifies to the characteristic equation

A3 4 (w¥+w§+w§))\ﬁ-{)_

This means that A can either be zero or imaginary.
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Rodrigue’s Equation

X - x = [B](X +x)

bi} Rotation axis

Xx (X—x)=bx(X4+x)

Let x* and X* be the normal projection of x and X on the
plane orthogonal to the rotation axis b

|X* —x*| = |b||X"* +x"|
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Rodrigue’s Equation

|X* — x*| = [b]|X* +x7|

b Rotation axis um{?) _ ix. _ x..I
2 1X* + x|
X4x
|b| = tan(g/2)

by = tan(¢/2)s;, by = tan(¢/2)s,, by = tan(p/2)s.

where s = (sg, 5y, 5:) is the unit vector along b

These constants are the Rodrigue’s parameters.
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Euler Parameters

[B]=tan(¢/2)[S]
Plug this into cayley formula [A]=[1 - B] ™[I + B]

] = {cos(%)[ - sin(%)S]' Heos( 57 + sin(2)S]

The constants in [C'] = [cos(@/2)] +sin(¢/2)S] are the Euler parameters
of [4], given by

co = cos(d/2),c1 = sin($/2) sz, ¢ = sin(¢/2)s,, ca = sin(¢/2)s.
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Euler Parameters

Plugging this

sinz(q:/?)u +57

@ e R Qi ol
[cos( )1 - sin(3)S] 1 cos(a)[ﬂ +sm(-2-}[.5] - cos(#/2)

into

4] = lms(g)f . sin(g)S]' . [cos(g)f 3 sin(g)S]
and multiply by [C], we obtain:
(4] =1+ 25in(§)cos{g)[3] + 251112(§)[52]

(this uses identity from unit skew symmetry: [S®]+[S]=0)
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Euler Parameters

[A]=1+2 sn-l(gyms(q—;)[sq +20in%($)157)

[A] = [I]+ sin p[S] + (1 — cos $)[S?]

Using skew symmetry of [S] and symmetry of [I], we obtain:

2sing[S]=[A—-A"]
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Rodrigue’s Formula

A4(t) = wxq(t) = oq(t)
q(t) =e™q(0)
(at)® | (at)®

et = + it + + F...
2! 3
R(w,0) =e®

where @ is askew -symmetric matrix representing w x
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Rodrigue’s Formula

For a skew -symmetric 4, the following hold :
a’=aa’ -l

a*=-lal’a

With this relation, we can simplify

e =1 +m0+

(@0)° , (@0)°

2! 3
into
- 0° 6° .~ 0% 6" 0° .
e’ =1+(0-= += —.)o+(= —— +— -.)o°
3 58 20 4 6l
=1 +@sin@+@*(-cosH)
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Spatial Displacements

X = [Ax +d

If c was a fixed point ¢ =[A]c+d

or U-Ale=d

But [I-A] is singular because a rotation matrix [A] has 1 as an eigenvalue

No such real ¢
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Spatial Displacements

Though a spatial displacement has no fixed pcints, there is a fixed
line, called the screw azis, that has the same position in space before
and after the displacement. Any point on the fixed line is constrained
to move along the line. The direction of this line is the axis of rotation
of [A] given by Rodrigues’ vector b. To determine the position of this
line, let d* be the projection of the translation vector d onto a plane
perpendicular to b, and we seek the solution to the equation

[Alc+d*=c

This defines the pole ¢ of the planar displacement which rotates
around b and translate in the plane perpendicular to b

The lineis L=c+tb
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Spatial Displacements

The displacement is reduced to a pure rotation around the lineL=c+tb

and translation along it with the amount ds = d - d* where s=bl/|b|

To solve for c, replace [A] by Caylay’s formula, and multiply by [I-B],

then simplify: [1-Alc = d*
[B]c = -(1/2)[1-B]d*
or

bxc=—(1/2)(d" —bxd")

This equation is simplified by operating on both sides with bx and
requiring that b - ¢ = 0, the result is

b xd®

e = (1/2(p

+d°)
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Rodrigue’s Equation

b

For spatial displacement, we use x-c and X-ds-c instead of x and X
resulting in

X—(ds+c)—(x—c)=bx(X—(ds+c)+x-c),

which simplifies to

X—-x=bx(X+x-2¢c)+ds.
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Eigenvectors of 4x4 transforms

ERTISSEEY

(1= X)?(A = 2Acosgp+1) = 0.
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