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Abstract

This paper addresses the problem of grasping and manipulating
three-dimensional objects with a reconfigurable gripper equipped with
two parallel plates whose distance can be adjusted by a computer-
controlled actuator. The bottom plate is a bare plane, and the top
one carries a rectangular grid of actuated pins that can translate in
discrete increments under computer control. We propose to use this
gripper to immobilize objects through frictionless contacts with three
of the pins and the bottom plate, and to manipulate an object within
a grasp by planning the sequence of pin configurations that will bring
this object to a desired position and orientation. A detailed analysis of
the problem geometry in configuration space was used in [44] to devise
simnple and efficient algorithms for grasp and manipulation planning.
We have constructed a prototype of the gripper and this paper presents
our experiments.

1 Introduction

When a hand holds an object at rest, the forces and moments exerted by
the fingers should balance each other so as not to disturb the position of this
object. We say that such a grasp achieves equilibrium. For the hand to hold

the object securely, it should also be capable of preventing any motion due



to external forces and torques. Since screw theory [2; 13, 26] can be used to
represented both displacements (twists) and forces and moments (wrenches),
it is an appropriate tool for analyzing and synthesizing grasps. Indeed, it is
known that six independent contact wrenches are necessary to prevent any
infinitesimal displacement which maintains contact, and that a seventh one
is required to ensure that contact cannot be broken [14, 41]. Such a grasp
prevents any infinitesimal motion of the object, and it is said to achieve form
closure [26, 34, 40]. A system of wrenches is said to achieve force closure when
it can balance any external force and torque. Like wrenches and infinitesimal
twists [39], force and form closure are dual notions and, as noted in [24, 25]
for example, force closure implies form closure and vice versa.

The notions of form and force closure are the traditional theoretical basis
for grasp planning algorithms. Mishra, Schwartz, and Sharir [23] have pro-
posed linear-time algorithms for computing a finger configuration achieving
force closure for frictionless polyhedral objects. Markenscoff and Papadim-
itriou [19] and Mirtich and Canny [21] have proposed algorithms for planning
grasps which are optimal according to various criteria [10]. In each of these
works, the grasp-planning algorithm outputs a single grasp for a given set of
contact faces. Assuming Coulomb friction [25], Nguyen has proposed instead
a geometric method for computing mazimal independent two-finger grasps
of polygons, i.e., segments of the polygonal boundary where the two fingers

can be positioned independently while maintaining force closure, requiring



as little positional accuracy from the robot as possible. This approach has
been generalized to handle various numbers of fingers and different object
geometries in [3, 7, 27, 29, 30, 31]

Recently, Rimon and Burdick have introduced the notion of second-order
immobility [36, 37, 38] and shown that certain equilibrium grasps (or fixtures)
of a part which do not achieve form closure effectively prevent any finite
motion of this part through curvature effects in configuration space. They
have given operational conditions for immobilization and proven the dynamic
stability of immobilizing grasps under various deformation models [38]. An
additional advantage of their theory is that second-order immobilization can
be achieved with fewer fingers (four contacts for convex fingers) than form
closure (seven contacts [14, 41]).

In [45, 42, 44], we introduced a new approach to grasp and manipula-
tion planning based on the notion of second-order immobility and a detailed
analysis of the geometric constraints imposed by object/finger contacts in
configuration space. This approach applies to a new class of reconfigurabe
grippers with mostly discrete degrees of freedom (Figure 1), and it is re-
lated to recent work in modular fixture planning [4, 5, 22, 47, 48, 46] and
to a number of sensorless pushing and squeezing manipulation algorithms
[1, 9, 12, 18, 20, 33, 35]. Indeed, the class of devices we are interested in
can be seen as automatically reconfigurable fixtures, but since they are capa-

ble of both immobilizing a part and manipulating it within a grasp, we will



continue in the rest of this paper to call them grippers.
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Figure 1: A reconfigurable gripper: (a) conceptual design and (b)-(d) actual
prototype.

Figure 1(a) shows the conceptual design of the proposed device: it is
equipped with two parallel plates whose distance can be adjusted by a computer-

controlled actuator. The bottom plate is a bare plane, and the top one carries



a rectangular grid of actuated pins that can translate in discrete increments
under computer control. We have developed efficient algorithms for planning
grasps and in-hand manipulation tasks for this gripper in the companion
papers [45, 42, 44]. Since then, we have completed the construction of a
prototype of the gripper, and this paper, after briefly recalling the principles
of our planning algorithms, focusses on our experiments with this prototype.

Figure 1(b)-(d) shows some pictures of our prototype: it is equipped
with a grid of twenty five fingers, each one of them being mounted on the
lead screw of a separate linear actuator. The top and lower plate assemblies
can be moved relative to each other using a large linear actuator. To avoid
friction as much as possible, the bottom plate is covered with a series of
strings of metal beads, which lets the manipulated part roll with minimal
resistance. We should stress that designs that are simpler, more reliable
and more accurate, are of course possible: for example, we only need three
pins to move at any time, which does not require one actuator per pin.
Our main goal here is to demonstrate that manipulation tasks can actually
be performed using our approach, and the current gripper design is only for
proof-of-concept experiments such as the ones described in the latter sections
of this paper. We plan to refine this design and construct a second prototype

in the months to come.



2 Grasp Planning

In this section, we address the problem of grasping a three-dimensional poly-
hedral object with the reconfigurable gripper shown in Figure 1. We derive
geometric conditions for contact, equilibrium, and immobility. We then use
these conditions in a simple and efficient algorithm for enumerating all im-
mobilizing grasps of a polyhedral object. Here as in the rest of this paper,
we assume hard-finger frictionless contact, so each pin exerts a pure force on
the grasped object at the point of contact. The force f exerted at the point

p and its moment can be represented by the zero-pitch wrench [2, 13, 26]

w:<p>]:f>’

where “x” denotes the operator that associates to two vectors their cross-
product.

The validity of the frictionless assumption in real robotics systems is
discussed in [44], and it is investigated in the experiments described later in

the paper.

2.1 Geometry of the Problem

Our gripper can be used to hold a polyhedral object through contacts with
three of the top plate pins, and either a face, an edge-and-vertex, or a three-
vertex contact with the bottom plate. Let us assume for the sake of simplicity

that the faces of the polyhedron are triangular (as shown in [45, 44], our
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approach can in fact handle arbitrary convex polygons). Any wrench exerted
at a contact point between a face and the bottom plate can be written as
a positive combination of wrenches at the vertices. Likewise, the wrenches
corresponding to an edge-and-vertex contact are positive combinations of
wrenches exerted at the end-points of the line segment and at the vertex.
We detail the case of a contact between the bottom plate and a triangular
face f with inward normal n and vertices v; (i = 1,2,3) and denote by f;

(1 =1,2,3) the remaining faces, with inward normals n; (Figure 2).

Figure 2: The four faces involved in a grasp.

We also assume without loss of generality that the four vectors m and
n; (i = 1,2,3) positively span R?, i.e., that a strictly positive linear com-
bination of these vectors is equal to zero (this is a necessary condition for
essential equilibrium). Finally, given the physical layout of our gripper, con-

tact between the upper-jaw pins and faces such that n - n; > 0 is of course



impossible, and we further assume without loss of generality that n - n; <0
fori=1,2,3.

Under these assumptions, we can choose a coordinate system (u,v,w)
attached to the object with w axis parallel to n, and write in this coordinate
system n = (0,0,1)T and n; = (a;,b;, —1)T (note that m; is not a unit
vector).

Likewise, since the vectors n and n; (i = 1,2,3) positively span R?, we
can write n = — Y2, p;n;, where p; > 0 for i = 1,2,3. To complete the
specification of the faces f; (i = 1,2,3), we will denote by ¢; the height of
fi at the origin, so the plane of this face can be parameterized by w; =
a;u; + b;v; + ¢;. Finally, since the faces f; are convex, the fact that the point
associated with the parameters u;, v; actually belongs to f; can be expressed
by three linear inequalities on wu;, v; (these will be referred to as face bounds

inequalities in the sequel).
2.1.1 Contact

We reduce the problem of achieving contact between a spherical pin and a
plane to the problem of achieving point contact with a plane. This is done
without loss of generality by growing the object to be fixtured by the pin
radius and shrinking the spherical end of the pin into its center (see [6, 47, 48]
for a similar approach in the two-dimensional case). We attach a coordinate

system (g, r,w) to the gripper, and denote by R and t the rotation of angle



0 about n and the translation (z,y) in the plane orthogonal to m that map

the (g, 7, w) coordinate system onto the (u,v,w) coordinate system.
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Figure 3: Contact between a pin and a face: (a) in the workspace; (b) in
configuration space.

If p; and g; denote respectively the positions of the tip of pin number ¢ in
the object’s and gripper’s coordinate frames, we can write p, = (u;, v;, a;u; +
bivi + )T, q; = (¢i, 7,6 — h;) and q; = Rp; + t, where ¢;, r; and h; denote
respectively the integer pin position on the bottom plate grid and its height,
and ¢ is the jaw separation.

This change of coordinates yields a condition for contact between pin
number ¢ and the corresponding face. It can be rewritten as an equation
Ci(z,y,6,0) = 0 which, for given values of 6 and 6, defines a straight line
L;(0,0) in the (z,y) plane (Figure 3(b)). As € changes, this line rotates
around the point (g;, 7;), the angle between the z axis and its normal being

0 + «;, where «; is simply the angle between the u axis and the projection



of m; onto the u,v plane (Figure 3(a)). The distance between the point
(gi, ;) and the line varies as a linear function of 6 and the height h; of the
corresponding pin.

For a given jaw separation §, the set S;(d) of object configurations (z, y, 6)
for which C;(x,y,0,9) = 0 forms a ruled surface, which is one of the surfaces
bounding the corresponding configuration space obstacle [17].

The three pins will be in contact with the corresponding faces when the
corresponding contact equations are satisfied. Eliminating the variables x

and y among these equations yields
£(0,0) € 6 — Acos(§ — ) — B=0, (1)

where A and B are linear functions of the pin positions and height, but «
depends only on the pins’ position but not their heights [44]. It follows that a
necessary condition for the existence of an object position achieving contact
with the three pins is that the point (6, ) lies on the contact sinusoid defined
by £(6,60) = 0. This condition is also sufficient: for given values of # and ¢
on this sinusoid, the three linear equations C;(x,y,60,0) = 0 (i = 1,2,3) in
the two unknowns x and y are linearly dependent, and thus admit a common

solution.

2.1.2 Equilibrium

In general, given d frictionless contacts between points p, and faces f; with

internal normals n; (i = 1,..,d), equilibrium is achieved when the contact
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wrenches balance each other, i.e., Y% \i(n;, p;, x n;) = 0 for some A\; > 0
(i = 1,..,d) with X%, A\; = 1 (note that the value of a wrench depends
on the choice of origin, but that the condition for equilibrium does not).
Equilibrium is a necessary, but not sufficient, condition for immobility.

The equilibrium equation expresses both force and moment equilibrium.
In our setting, force equilibrium is a simple condition on the surface nor-
mals. Combining it with the moment equilibrium equation and the change
of coordinates used earlier yields, after some simple algebraic manipulation,
sin(f —«) = 0. It follows that a necessary condition for three pins in contact
with the corresponding faces of the object to achieve equilibrium is that § = «
or § = a+m. Note that these values of f are independent of the heights of the
pins, which will prove extremely important in the grasp planning algorithm
presented in Section 2.2. Note that this condition is just necessary. To check
that a given grasp configuration actually achieves equilibrium, we compute
the values of the coefficients \; for ¢« = 1,2, 3. If they are all positive, then

equilibrium is achieved.

2.1.3 Immobility

Rimon and Burdick have formalized the notion of immobilizing grasps in
terms of isolated points of the free configuration space [36, 37, 38| (see also
related work by Czyzowicz, Stojmenovic and Urrutia [8] and Mirtich and

Canny [21]). They have shown that equilibrium grasps that do not achieve
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form closure may still immobilize an object through second-order (curvature)
effects in configuration space: a sufficient condition for immobility is that
the relative curvature form associated with an essential equilibrium grasp
or fixture be negative definite (essential equilibrium is achieved when the
coefficients \; in the equilibrium equation are uniquely defined and strictly
positive [37]). The relative curvature form can be computed in terms of the
contact positions as well as the surface normals and curvatures of the body
and pins at the contacts.

In the case of equilibrium contacts between pins with a spherical tip and
polyhedra, it is easily shown [28] that the symmetric matrix associated with
the relative curvature form is

d
K= ZE Ai([nix]" [pi]))” = rilmax]" [nax]}, (2)

=
where 7; denotes the pin’s radius, the weights \; are the weights used in the
equilibrium equation, and, by definition, A% = (A + A”"). (Note that this
formula assumes unit normals: this it must be adjusted for our formulation.)

In the case of our gripper, the radii corresponding to the planar contacts
are effectively infinite, and it is obvious that w’ Kw is negative for any vector
w which is not parallel to n. Thus we must determine the sign of n’Kn,
whose value is easily shown to be AM cos(f — «), where M is a normalizing
positive constant balancing the fact that we are not using unit normals. It

follows that K is negative definite if and only if § = o + 7.
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2.1.4 Main Result

We can now summarize the results obtained in this section with the following

lemma.

Lemma 1: For given integer pin positions and heights ¢;, r; and h; (i =
1,2,3), a sufficient condition for an object at configuration (zg, yo, 0y) to be

immobilized by a grasp with jaw separation dy is that:
(1) 6y = a+m,
(2) Ci(xo, Yo, 00,00) =0 for i =1,2,3,
(3) if Ry denotes the rotation of angle 6y about n, and ¢, denotes the trans-

lation (g, yo), the points Ro(gq;—to) satisfy the face bounds inequalities

fort=1,2,3, and

(4) the equilibrium constraints on the coefficients \; (i = 1,2,3) admit a

positive solution.

This lemma is an obvious corollary of the results obtained in the previous
sections, the third condition simply expressing the fact that the contacts

must occur within the faces.

2.2 Algorithm

According to Lemma 1, all continuous degrees of freedom of a grasp (object

orientation, jaw separation and object position) can be computed once the
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grasp’s discrete degrees of freedom (pin positions and heights) have been
set. This yields the following naive algorithm for grasp planning: for each
quadruple of faces, enumerate all grid positions and heights of the three pins,
then compute the remaining grasp parameters and check whether they sat-
isfy conditions (3) and (4) of Lemma 1. The complexity of this algorithm is
obviously O(N*D%), where N is the number of faces of the grasped polyhe-
dron, and D is its diameter measured in units equal to the distance between
successive grid points.

A better approach is the following algorithm, which has the same over-
all structure as the naive one, but limits the number of faces and gripper
configurations under consideration by exploiting a number of geometric con-
straints, most notably the fact that the orientation of an object held in an
immobilizing grasp depends only on the pins’ positions and not on their
heights:

For each quadruple of faces do
(1) Test whether they can be held in equilibrium.

(2) Enumerate all pin positions that may hold the object in equilibrium

and compute the corresponding object orientation.

(3) For each such position, enumerate the pin lengths that immobilize the

object and compute the remaining grasp parameters.
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(4) Compute the corresponding coefficients ); and check that they are pos-
itive.

In the first step of the algorithm, we only consider quadruples of faces
whose normals positively span IR®. For these faces, the equilibrium con-
straints provide four linear equations in the the nine unknowns \;, u;, v;
(1 =1,2,3), and the existence of equilibrium configurations can be tested by
using linear programming to determine whether the five-dimensional poly-
tope defined by these constraints and the face bounds inequalities and A; > 0
is empty. When this polytope is not empty, the subset of each face that may
participate in an equilibrium configuration is efficiently determined using
polytope projection techniques [11, 16, 15, 31] (see [45, 44] for details).

The second step of our algorithm uses distance constraints to reduce the
enumeration of the pin positions that may yield equilibrium grasps to the
scan-line conversion of circular shells (see [4, 5, 47, 48] for related approaches
to fixture planning for two-dimensional objects): clearly each pin must lie
within the horizontal projection of each face. Thus, if we position the first pin
at the origin, the integer point corresponding to the second pin is constrained
to lie within the circular shell centered at the origin with inner radius equal
to the minimum distance between the projections of the two corresponding
faces and outer radius equal to the maximum distance. Given the position
of the second pin, the third pin is now constrained to lie within the region

formed by the intersection of the two shells associated with the first and
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second pin. Enumerating the pin locations thus amounts to determining the
integer positions falling in planar regions defined by a circular shell or the
intersection of two such shells. This is done in optimal time proportional to
the number of these points by using a scan-line conversion algorithm (Figure
4).

vertex

N

- scan line

circular
arc

Figure 4: Scan-line conversion: spans between consecutive boundary ele-
ments are filled one scan-line at a time.

The third step of the algorithm uses condition (3) of Lemma 1 to reduce
the enumeration of pin heights that yield immobilizing grasps to polygon
scan conversion. Once the position of the pins has been chosen and the
corresponding rotation has been computed, we can align the gripper’s and
object’s coordinate systems so they are only separated by the horizontal
translation (z,y). This allows us to rewrite the contact equations as linear
equations in x, y, 0 and the heights h; (i = 1,2, 3) of the pins.

In turn, writing that the pins actually lie within the bounds of the as-

sociated faces constrains the possible values of # and y: in particular, if
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f1 the convex polygon constructed by projecting f; onto the (u;,v;) plane,
then applying to the projection a symmetry with respect to the origin and a
translation by (g;, 7)), it is easy to show using the contact equations that the
point (z,y) is restricted to lie within the polygon F' = f| N fi N f} (Figure
5(a)). Using this constraint, the contact equation, and the fact that we can
position the first pin at the origin with zero length, it follows that (ho, hs) is
restricted to lie in a second convex polygon, obtained from F' via an affine
transformation [42, 44]. These points can once again be determined in op-
timal time proportional to their actual number using a polygon scan-line
conversion algorithm.

yA h3

X h2
(a) (b)

Figure 5: Enumerating pin lengths: (a) the polygon F’ defined in the x,y
plane by the intersection of the faces f/, and (b) the corresponding convex
polygon in the hy, hs plane, along with the integer points inside it.

Now, for a given configuration (location plus height) of the pins, the con-
tact equations forms a system of three linear equations in the three variables

x, y, and . This system is readily solved to yield the pose of the object and
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the separation of the plates. The values of the coefficients \; are easily com-
puted at this point, and step (4) of the algorithm checks that these values
are positive and indeed define an equilibrium grasp.

As shown in [45, 44], the overall time complexity of the algorithm is
O(N*D?d*) where d is the maximum diameter of the object’s faces (note
that d < D, and that for polyhedra with many faces having roughly the

same area, d is in general much smaller than D).

3 In-Hand Manipulation

We now present an approach to in-hand manipulation based on the concept of
inescapable configuration space (ICS) region , i.e., on the idea of characteriz-
ing the regions of configuration space for which the object is not immobilized
but is constrained to lie within a bounded region of the free configuration
space (see [35] for related work in the two-dimensional, two-finger case).
ICS regions allow us to plan in-hand object motions as sequences of grip-
per configurations (see [1, 9, 12, 18, 20, 33, 35] for related work): starting
from some immobilizing configuration, we can open the gripper jaws and
retract the immobilizing pins, then choose another triple of pins whose ICS
region contains the initial gripper configuration, lower these pins, and as
the jaws close, move the object to the corresponding immobilized configura-
tion. Note that this approach does not require modeling what happens when

contact occurs, but it indeed requires frictionless contacts to avoid wedging.
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We will assume in the rest of this section that the quadruple of faces under

consideration is fixed.

3.1 Geometry of the Problem
3.1.1 Free Configuration Space Regions

Let us consider an immobilizing configuration of the gripper, defined by the
position ¢;, r; and height h; of the pins (i = 1,2, 3), by the position zg, yo and
orientation #, of the object in the gripper’s coordinate system, and by the jaw
separation dg. We assume that the values of ¢;, r; and h; are held constant
and examine what happens when the separation of the jaws changes.

The ruled surface S;(9) defined earlier splits the three-dimensional space
R? x S' of configurations x,y, 6 into a “free” half-space V;(§) and a “for-
bidden” half-space W;(4) where pin number i penetrates the plane of f;.
Furthermore, V;(J) (resp. W;(d)) is characterized by C;(z,v,6,0) > 0 (resp.
<0).

Now let us consider the volume V(§) = Vi(d) N Va(d) N V3(6). Given
the form of C;(z,y,60,0), it is obvious that if a configuration lies in free
space for some value ¢; of ¢, it also lies in free space for any other value
dy > 01. In other words, V(d;) C V(d2) when d > §; (this is also intuitively
obvious since increasing d corresponds to opening the jaws). In particular,
the immobilizing configuration (zo, yo, 0y) is always in free space for 6 > J.

The intersection of V'(4) with a plane # = constant forms a triangular
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region 7'(d,0). Note that the triangles corresponding to various values of
are all homothetic since their edges make constant angles with each other.
However, their size, position, and orientation varies with 6. It is easy to show
that these triangles, although possibly empty, are not degenerate [42, 44].
As shown in Figure 6, the region 7'(d,0) may contain an open subset

(Figure 6(a)), be reduced to a single point (Figure 6(b)), or be empty (Figure

{ (g1,r1)

Figure 6: Possible configurations of the intersection 7'(6,6) of V(6) with a
plane 6 = constant: (a) 7(9,6) contains an open neighborhood; (b) it is
reduced to an isolated point of the x,y plane; (c) it is empty.

In the second case (Figure 6(b)), the three pins simultaneously touch
the corresponding faces, and £(d,0) = 0. In fact, it is easy to show that a
necessary and sufficient condition for 7'(d, ) to contain at least one point
is that £(6,60) > 0 [42, 44]. This allows us to characterize qualitatively the
range of orientations @ for which 7'(6, 0) is not empty (Figure 7): for a given

J, the condition £(6,0) = 0 is an equation in # that may have zero, one,
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or two real solutions: a double root occurs at the minimum é = Jy or at
the maximum 6 = 0. of the sinusoid. In the former case, £ is strictly
positive everywhere except at § = « where it is equal to zero, and the range
of orientations is S!. In the latter case, the range of orientations reduces to
a single point 6, = o + 7. For any value §; in the open interval |6y, dpax/,
there are two distinct roots #',60”, and the range of orientations is the arc
bounded by these roots and containing . Finally, for values of § outside
the [0g, Omax) interval, there is no solution: either ¢ is strictly smaller than dy
and the range of orientations is empty (at least one of the pins penetrates
the plane of the corresponding face), or ¢ is strictly larger than dp,.x, and the

range of orientations is S?.

Region where T is never empty

max
5 \ Range of orientations f
1

l where T is not empty 9”
%,

Immobilizing
configuration

Region where T is always empty

| S/

(-4 CX+TT CX+27TT

Figure 7: Regions of 0, d space delimited by the sinusoid £(6,0) = 0.

In particular, since the volume V'(0) is a stack of contiguous triangles

T(6,0), it is clear at this point that, for 6 > &y, V(9) is a non-empty, con-
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nected, compact region of IR* x S!. The analysis conducted in this section
also gives some geometric insight on the immobility conditions derived earlier.
In particular, it confirms that the minimum point (a + 7, dy) of the contact
sinusoid corresponds to an isolated point of configuration space or equiva-
lently to an immobilizing configuration: indeed, the triangle T'(d, o + 7) is
reduced to a point, and T'(6,0) is empty for any 6 # 6. Likewise, although
the maximum («, dyay) of the sinusoid corresponds to an equilibrium grasp,
it does not yield an immobilizing grasp since the object is free to undergo

arbitrary rotations.
3.1.2 Inescapable Configuration Space Regions

The discussion so far has characterized the contacts between the pins and the
planes of the corresponding faces, ignoring the fact that each face is in fact a
convex polygon in its plane. Let us consider the set E;(d, #) of configurations
(x,y) for which the tip of pin number i belongs to the corresponding face.
Obviously, F;(0,0) is a subset of L;(4,0). It is easy to show by combining the
contact equation with the corresponding face bounds equations that E;(6, 0)
is a line segment, and that the location of its endpoints along the line L;(4, )
is a piecewise-linear function of .

Now let us consider the three segments FE;(d,0) (i = 1,2,3) together
(Figure 8): if E;(0,6) and F;(6,0) intersect for all i # j, then the three

segments completely enclose the triangle T'(0,6) (Figure 8(a)). We say that
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the corresponding configuration satisfies the enclosure condition since there
is no escape path for the object in the x,y plane with the corresponding
orientation 6. More generally, when all triples of segments in the range of
orientations associated with a given jaw separation ¢ satisfy the enclosure
condition, V(9) itself is an inescapable configuration space (ICS) region: in

other words, the object is free to move within the region V'(¢), but remains

imprisoned by the grasp and cannot escape to infinity.

Figure 8: Triangle configurations: (a) three segments enclosing a triangle;
(b) a critical configuration; (c¢) an opened triangle and an escape path.

3.1.3 Maximum ICS Regions

Here we address the problem of characterizing the maximum value 6* for
which V(§) forms an ICS region for any ¢ in the [0y, 0*] interval. We know
that at 6 = &y the three segments intersect at the immobilizing configuration,
forming an ICS region reduced to a single point. Thus the enclosure condition

holds at 6 = dy. On the other hand, as 6 — +oc, the whole configuration
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space becomes free of obstacles, thus there must exist a critical point for
some minimal value of 0 greater than dy. This guarantees that 0* has a finite
value.

As shown by Figure 8(b), a critical event occurs when one of the endpoints
of a segment lies on the line supporting another segment. After this event,
the line segments fail to enclose the triangle 7'(9, §) and the object can escape
the grasp (Figure 8(c)).

A critical event occurs when the endpoint under consideration is on the

line L;(6,6) for some j # i. Algebraically, this is easily written as

where A;;, B;; and C;; are appropriate constants given in [42, 44].

In other words, critical configurations form a second sinusoid in 6, § space,
called the critical sinusoid in the rest of this presentation.

We seek the minimum value of §* > dy for which the range of orientations
includes one of the critical orientations. As discussed above, we know that
0* exists. Let us suppose first that a critical value lies in the interior of the
range of orientations associated with some d; > dy, and denote by 6., the
minimum value of § on the critical sinusoid. By definition, we have d; > .
Suppose that d0; > 0. Then by continuity, there exists some d, such that
Omin < 02 < 07 and the corresponding range of orientations also contains a

critical orientation (Figure 9). The argument holds for any value of § > 0.
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In other words, either the range of orientations of d,,;, contains a critical
orientation, in which case 6* = 0, (Figure 9(a)), or it does not, in which
case the critical value associated with 6* must be one of its range’s endpoints
(Figure 9(b)). This is checked by intersecting the contact sinusoid and the
critical one. Note that this process must be repeated six times (once per

each segment /vertex pair) to select the minimum value of ¢*.

O S

| S | S/

X X+TT CX+27TT (b) (4 X +TT X+2TT

Figure 9: Critical configurations: (a) the critical configuration is the min-
imum of the critical sinusoid (shown as the thicker curve); (b) the critical
configuration is the minimum intersection of the critical sinusoid and the
contact sinusoid.

3.1.4 Main Result

The following lemma follows immediately from the results established in

Sections 3.1.1, 3.1.2 and 3.1.3 and summarizes the findings of these sections.

Lemma 2: For given integer pin positions and heights ¢;, r; and h; (i =

1,2, 3) and an immobilizing configuration (zo, o, 0, do), there exists a critical
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jaw separation ¢* such that:

(1) for any § > §*, there exists a path allowing the object to escape the

grasp,

(2) for any ¢ in the interval [0y, *], the volume V'(J) is an inescapable region

of configuration space that contains the configuration (zg, yo, 60, do),
(3) for any ¢ < ¢” in the interval [dg, 6*], V' (8") C V(¢"), and

(4) 0* can be computed in closed form as the minimum of a sinusoid or the

intersection of two sinusoids.

3.2 Algorithm

Lemma 2 can be used as a basis for in-hand manipulation by remarking that
an object anywhere in the ICS region associated with some gripper configura-
tion can be moved to the corresponding immobilized position and orientation
by closing the gripper jaws (this follows immediately from properties (2) and
(3) in Lemma 2). Thus we can plan manipulation sequences from one immo-

bilized configuration to another by using the following algorithm.

Off-line:

(1) Compute the set S of all immobilizing configurations of the object.
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(2) Construct a directed graph G whose vertices are the elements of .S and
whose edges are the pairs (s, s') of elements of S such that s belongs

to the maximum ICS region ICS(s') associated with s'.

On-line:

(3) Given two configurations ¢ and g in S, search the graph G for the short-

est path going from the initial configuration ¢ to the goal configuration
g.

Once a path has been found, the corresponding manipulation sequence
can be executed: starting from the configuration i, each edge (s,s’) in the
path allows us to move the object from s to s’ by opening the jaws and
retracting the pins associated with s, then lowering the pins associated with
s" and closing the jaws.

The grasp planning algorithm of Section 2 can of course be used to im-
plement Step (1) of the algorithm. Finding “all” immobilizing configurations
has, however, slightly different meanings in manipulation and grasping tasks:
during grasp planning, one can always assume that the first pin is at the ori-
gin with zero height. Of course, when a grasp is actually executed, the pin
positions and heights, along with the jaw separation, all have to be shifted so
that the corresponding variables are all positive and the pin positions remain
within the extent of the top plate. Nonetheless, gripper configurations that

only differ by a shift of the three pin positions are equivalent for grasping
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purposes. This is not the case for in-hand manipulation, where the goal is
to move the object held by the gripper across the bottom plate: this forces
us to take into account all shifted configurations of a grasp.

We will say that a triple of pin positions with the first pin located at the
origin is a prototype, and that all positions of the triple within the bottom
plate are the shifts of this prototype. For each prototype, we can define the
minimum rectangle aligned with the (p, ¢) coordinate axes and enclosing the
pins. If W and H denote the width and height of this rectangle, and K2 is
the total number of grid elements, the prototype admits (K — W)(K — H)
different shifts, which can trivially be computed in time proportional to their
number. As shown in [42, 44], there are O(D*d*) immobilizing prototypes,
to which correspond O(D?d*K?) shifted object/gripper configurations. If we
assume that the manipulated object fits completely on the gripper’s bottom
plate, note that we will have d < D < K.

Deciding whether an immobilizing configuration s belongs to the max-
imum ICS region of another configuration s’ does not require an explicit
boundary representation of ICS(s'): it is sufficient to test whether s belongs
to the triangle associated with s" at the corresponding immobilizing orien-
tation. In addition, as shown in [42, 44], the construction of G' in Step (3)
of our algorithm can be implemented efficiently by mapping it onto a three-
dimensional dominance problem [32]. Finally, Step (4) can be implemented

as a breadth-first search of the graph GG. The overall time complexity of the
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algorithm is dominated by the cost of the graph construction, which is eas-
ily shown to be O(P?d?K*log K +V + E), where V denotes the number of
immobilizing gripper configurations (or equivalently the number of vertices
of G), P denotes the number of prototypes associated with these configura-
tions, and E is the number of edges of G [42, 44]. Note that P = O(D?*d?),
V = O(Pd*K?), and E = O(V?).

4 Implementation and Results

We have implemented the grasp and manipulation planning algorithms in C,
and used our gripper prototype to test their performance in actual robotic
tasks. The program runs on Sun SparcStation 10. For the experiment given
here, it takes 3 seconds to compute all grasps, and 147 seconds to construct
the graph for manipulation planning. This section describes our experiments.

Extensive simulation results can be found in the companion paper [44].

4.1 Friction

All contacts must be kept as close to frictionless as possible. Strands of metal
beads are used to lessen the frictional resistance between the bottom plate
and the object. The friction between the pin tips and the object also need to
be considered, and we smoothed the surface of the pin tips. This is important
because jamming may cause the pins to bend instead of letting the object

reach the desired configuration.
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4.2 Gripper Calibration

To correctly operate, the gripper requires calibration. The calibration has
two parts. First, we need to calibrate the large actuator that controls the
height of the plate. This is currently performed by manually measuring the
actual height of the plate, and passing this parameter to the computer that
will command the actuator to a prespecified home position. Once the plate
is at the correct home position, we continue with the second part of the
calibration. We place a level metal board under the top plate, and keep
actuating all the small motors that control the pins until the tips hit the
board. Clearly, the height of all pins are now equal at a known value, so
we can then send a command to actuate all pins to a desired home position.
Note that the actuating power for the calibration of the small actuators must
be sufficiently low so that the actuators are not damaged when the pins are

stopped when they hit the metal plate while the actuators are still active.

4.3 Grasping

In our experiments, a regular tetrahedron is used as a test object. Figure
10 and 11 show two grasps of this object. The desired configuration viewed
from the top is shown in Figure 10(a) and 11(a). This target configuration
is also marked on the lower plate to help verify the successful execution
of the task. In Figure 10(b) and 11(b), the tetrahedron is placed in some

arbitrary configuration in the vicinity of the target. When the corresponding
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grasping operation is executed, we can see that the tetrahedron is moved to
and immobilized at the target configuration (Figure 10(c) and 11(c)). Now
we command the gripper to lift the top plate to the height associated with the
maximum ICS of the grasp. We can verify that the tetrahedron is inescapable
by trying to move it out of the capture. In this two example, we cannot take
the tetrahedron out of the capture without bending the pins. Figure 10(d)
and 11(d) show the most clockwise orientation in the capture, and Figure
10(e) and 11(e) show the most counterclockwise orientation in the capture.
Trying to lower the top plate to the immobilizing height again from these
extreme configurations, the tetrahedron again is immobilized exactly at the

target configuration (Figure 10(f) and 11(f)).

4.4 In-Hand Manipulation

The first demonstration is a short manipulation sequence. See Figure 12.
This manipulation has three steps and basically rotates the tetrahedron
clockwise about 30 degrees. The targets for the three steps are marked
on the board as shown in Figure 12(a). First, we place the tetrahedron in
some configuration close to the target mark of the first step (Figure 12(b))
and execute the manipulation sequence. We can see that for each step in the
sequence, the tetrahedron is successfully moved to the desired configuration
(Figure 12(c)-(e)).

The second demonstration shows a longer manipulation sequence. This
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Figure 10: A grasp.
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Figure 11: Another grasp.
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sequence contains 39 manipulation steps. All steps are shown in Figure
13(a). In the illustration shown in Figure 14, the lower plate are marked with
initial, final, and three intermediate configurations (Figure 13(b)). Again,
as shown in Figure 14(c)-(e), the tetrahedron successfully reaches the final

configuration when the manipulation sequence is executed.
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(e)

Figure 12: A short manipulation sequence.
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Figure 14: Another manipulation sequence.
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5 Discussion

We have presented preliminary grasping and manipulation experiments with
a prototype of a reconfigurable gripper. As mentioned earlier, our current
prototype was only intended for these proof-of-concepts experiments. We
now plan to construct a better-designed second-generation prototype, with
much fewer actuators and higher accuracy and reliability.

We are investigating various extensions of our in-hand manipulation ap-
proach: for example, the stepper motors used to actuate the pins of our
reconfigurable gripper allow essentially continuous vertical motions of the
pins. We plan to address the problem of constructing manipulation plans
that exploit these continuous degrees of freedom. We have recently extended
our approach to the problem of manipulating a polygonal object with three
disc-shaped robots in the plane [43] and hope to report actual experiments

with Khepera miniature mobile robots soon.
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