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Abstract

Several tasks cannot be accomplished by a single
robot working in isolation. Obvious examples include
transportation of large objects. Multiple robot coop-
eration is therefore a natural choice for overcoming
limited capabilities of an individual robot. This pa-
per addresses the problem of designing a distributed
control strategy for cooperative transportation of an
object by a team of mobile robots. We investigate a
new approach for which the object is simply placed
on top of the robots and let the robots function as if
they are the driving wheels of the object. We present
a simple distributed algorithm that enables the robots
to carry an object along a straight path without any
explicit communication. The synchronization of the
robots emerges as an outcome of the interaction be-
tween each robot and the transported object. Simu-
lation experiments are presented with results showing
robustness under varying sensory noise condition and
scalability on varying team size of upto 100 robots.

1 Introduction

Moving an object from one place to another was
among a few earliest applications in robotics. A large
number of industrial robots today are involved in
transportation of material in factory setting. How an
object can be transported depends largely on its size
and weight. A common practice is to attach part of
the robot with the object (e.g., by grasping) so that
the object can be moved together with the robot. Ex-
amples include the use of a robot arm equipped with a
gripper or a suction device (Fig. 1 (a).) With this ap-
proach, a given robot can handle objects no larger than
a certain size; objects larger than the limit need to be
handled by a bigger or more complex robot. Building
a large complex monolithic robot is, however, not an
attractive solution due to high cost and level of tech-
nology required. A natural alternative is to deploy a

team of simple robots. A few methods for multi-robot
object transportation have been proposed in the area
of cooperative robotics. In this paper, we propose a
new cooperative approach for an object carrying task.

Our approach is conceptually equivalent to tem-
porarily adding wheels to a stationary object. The
object to be transported is simply placed on top of
a team of homogeneous mobile robots (Fig. 1 (b)).
With friction between the object and the supporting
robots, motion of the robots will cause the object to
move. In principle, desired motion of the object can
be produced by appropriately controlling the robots.
Unlike other works where several robots help grasp
an object while moving, our approach does not need
any grasping device and hence has no need to moni-
tor or control grasping forces. Support for the object
is directly provided by the robots. In this paper, the
power of this cooperative carrying paradigm is not yet
explored in its full generality. More precisely, limiting

(a) (b)

Figure 1: (a) a mobile manipulator is awkwardly pick-
ing up a luggage (b) setup showing mobile robots sup-
porting the plate to be transported

that the robots are not allowed to communicate and
do not have the knowledge of their configurations in
the workspace, we will present a distributed control al-
gorithm that enables the robots to cooperatively carry
a plate along a straight-line trajectory. The proposed
control algorithm decides how each robot should move
based on the information from its local sensor measur-
ing how the object slips relative to the robot’s body.
This is done without requiring any model of the object
or any knowledge of the dynamics. Although the di-
rection of the resulting trajectory cannot be dictated,



translational motion of the object emerges very fast
and robustly. According to simulation results, the ap-
proach exhibits great robustness and scalability. We
present several simulation experiments showing suc-
cessful straight-line transportation under varying sen-
sory noise condition and team size.

Several methods have been proposed in robotics lit-
erature for multi-robot object transportation. The
common reason is usually that it makes more sense
to deploy many existing simple robots than to build
a new powerful one [2]. Several works are based on
the notions of force and form closure [6, 3, 4, 10]. In
these works, a robot is modeled as an agent that in-
duces a contact with the object. Object transportation
can then be thought of as a grasping task, i.e., hav-
ing multiple robots grasp the object and take it from
place to place by maintaining a rigid grasping forma-
tion. These methods usually need to closely sense and
control the grasping forces so that force closure condi-
tion can be satisfied during the entire transportation.
Special force sensing devices are often needed. An in-
teresting alternative is to apply the concept of caging
[5]. With caging, an object is transported by being
trapped (not grasped) in a moving formation of ro-
bots. Some robots simply push the object while the
others guarantee that the object cannot escape from
the formation. This approach relaxes the need for the
robots to constantly keep contact with the object. It
does not require as precise synchronization as grasping
based approaches. An obvious drawback is that, at a
given moment, only few robots can help pushing while
many are left idle only to satisfy the caging condition.
Examples of caging based approaches include [5, 11, 9].
Communication is an important issue in cooperative
object manipulation. Inter-robot communication can
be classified into either explicit or implicit [2]. Explicit
communication refers to explicit act of information ex-
change while implicit communication is a by-product
of the interaction between robots and environment.
The approach presented in this paper is strongly based
on implicit communication. It is shown in [1] that ex-
plicit communication is not necessary when an implicit
form is available. It is also shown theoretically in [8]
that the use of implicit communication can reduce the
amount of explicit communication.

The rest of the paper is organized as follows. Sec.
2 presents the basic concept of the approach together
with the proposed distributed robot control algorithm.
In Sec. 3, the approach is verified and its performance
is analyzed using several simulation experiments. Dis-
cussion about remaining issues of interest is given in
Sec. 4 and a conclusion is provided in Sec. 5.

2 Methodology

As mentioned earlier, the key idea of the approach
is to place the object to be transported on top of the
robots and let the robots function as if they are the
driving wheels of the object. In this paper, the ap-
proach is not yet investigated in its full generality: we
assume that the object is simply a plate with some
thickness and consider only the robots with the fol-
lowing specification: (1) every robot is in the same
cylindrical shape with a flat top surface at the same
height. (2) the drive system is omnidirectional, i.e.,
capable of translating in any direction. The motion
command is in the form of the intended velocity (in
the robot’s frame). (3) Neither compass nor commu-
nication is available. (4) The top surface of each robot
is equipped with a sensor for detecting how the object
slips with respect to the robot.

Our objective is to develop a distributed algorithm
that enables the robots to carry the object along a
straight line trajectory. It is obvious that the object
will be translated along a straight path when every
robot moves in the same direction at the same speed.
These conditions may be easily satisfied if the robots
could explicitly communicate the common velocity.
This is however not the case in our setting where com-
munication and directional reference is not available.
It is then natural to ask what can be accomplished
without communication. Answers to this question is
important since explicit communication is sometimes
unreliable or even unavailable. Depending critically on
communication often leads to problems in robustness
and scalability.

Before presenting the proposed control algorithm,
let us describe how everything works together. The
idea is to program each robot with the control algo-
rithm to be presented next. The robots are then ran-
domly positioned such that the object being placed on
top of them does not tip over (i.e., the center of mass of
the object lies inside the convex hull of all the robots).
Each robot is then allowed to move according to an
initial random velocity. The object will be moved by
the friction forces between the robots and the object.
After this point, the control algorithm will take over;
velocity of each robot will be updated repeatedly by
the control algorithm in order to reduce the object’s
slippage. Once the object stops slipping, straight-line
motion will emerge. It will be shown in Sec. 3 that the
object’s trajectory usually converges to a straight line
very fast. The desired direction, however, cannot be
dictated since no global reference is provided. We are
currently investigating a setting for which some of the
robots have the knowledge about the desired direction.



This idea will be discussed in Sec. 4.
We are now ready to present the proposed distrib-

uted control algorithm. It is described in the following
updateMotion routine. Every robot runs the routine
updateMotion once per tick cycle. In each run, the
robot updates its intended velocity based on the cur-
rently commanded velocity and how the object slips.
Variable currentVel represents the robot’s currently
commanded velocity vector and variable slipVel repre-
sents the vector of the object’s slipping velocity (with
respect to the robot). Both velocities are expressed in
the robot’s body frame. The velocity command to be
executed next is obtained from a linear combination of
currentVel and slipVel with constant coefficients C and
D (line 3). Constants MIN SPEED and MAX SPEED
are the minimum and maximum speed of every robot.
Lines 4 and 5 ensures that the speed of the robot is
within the specified range. Line 6 commands the ro-
bot to follow the newly computed velocity. Note that
describing the object’s slippage by linear velocity fol-
lows how the slippage sensor is modeled. In practice, a
slippage sensor can be constructed by modifying a PC
optical mouse [7]. This device essentially takes hun-
dreds of pictures (of the sensed surface) per second
and calculates the velocity of the mouse with respect
to the surface based on the concept of optical flow.

1: updateMotion(currentV el, slipV el)
2: currentV el := C ∗ currentV el + D ∗ slipV el
3: if currentV el > MAX SPEED

then currentV el := MAX SPEED* currentV el
|currentV el|

4: if currentV el < MIN SPEED
then currentV el := MIN SPEED* currentV el

|currentV el|
5: moveRobot(currentV el)

An explicit function of the above simple algorithm
is to align the robot’s velocity with the object’s slip-
ping one. Collective effect of the specified reactive be-
havior results in the reduction of the object’s slippage.
This interaction between the robots and the object
translates into the synchronization of the robots that
allows the object to be carried along a straight path.
The proposed algorithm does not need any model of
the object and it does not make any assumption about
the physics such as friction coefficients. The indepen-
dence from modeling and communication makes the
algorithm robust.

3 Simulation Experiments

The power of the control algorithm presented in
the previous section can be best demonstrated by
experiments. In this section, we present simulation
experiments intended to examine various aspects of

the approach under varying conditions. The simu-
lator used in all experiments is written in C++ us-
ing the open source library Open Dynamics Engine
(http://ode.org) for simulating dynamics. The sim-
ulation time step is set to 1 ms. Each robot is in
a cylindrical shape with 0.2 m in diameter, 0.1 m in
height and 2 kg in weight. Every robot is programmed
with the control algorithm presented previously with
C = 1.6 and D = 1.4. The maximum and minimum
speed of each robot is set to 0.5 m/s and 0.2 m/s (resp.)
The test object is a square plate with dimension 5 m
× 5 m × 0.1 m and 30 kg in weight. Test objects in
different plate shapes may be used as well but only the
square plate is presented here since the scope of the
paper does not cover varying geometry of the trans-
ported object. Unless specified otherwise, the static
and kinetic friction coefficients between the robots and
the object are set to 0.3. The velocity update rate
(tick rate) is set to 10 Hz. Due to computing perfor-
mance limitation, the driving system is not simulated
from its working mechanism, e.g., motor components.
To allow many robots to be simulated simultaneously,
only approximate behavior of the driving system can
be considered. Specifically, at the start of every sim-
ulation time step, the simulator’s state containing the
robot’s velocity is set to the robot’s currently com-
manded velocity. This allows the robot’s configura-
tion to be calculated based on external forces such as
friction. Behaviors such as slip of wheels can be ex-
pressed with this technique. Despite its simplicity, the
technique appears to be more realistic than assuming
perfect control and actuation where the robot’s veloc-
ity precisely follows the commanded velocity.

3.1 A Typical Successful Trial

Fig. 2(b) shows the trajectory of the test object
from an experiment. The random initial position and
direction of each robot are shown in Fig. 2(a). The po-
sition and direction of the robots when a straight-line
trajectory is achieved is shown in Fig. 2(c). Observe
that the relative position of each robot with respect
to the object changes only slightly during the motion.
The object is classified to move along a straight path
when it maintains angular velocity smaller than 0.001
rad/s for longer than 1 seconds and during this pe-
riod the linear speed is greater than 0.05 m/s. In
this experiment, the object seems to gradually rotate
counterclockwise during the first 4 seconds and then
it constantly translates along a straight path. Detail
of the motion is given in the plot of the object’s ori-
entation and speed in Fig. 3. This sample trajectory
depicts a typical behavior of the object in successful



cases. There are, however, situations for which the
object seems to rotate indefinitely around a moving
center. Such cases occur at a low rate. They will be
discussed further in Sec. 4. Since the result from an

(a) (b) (c)

Figure 2: The trajectory of the object (see text)
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Figure 3: Velocity profile of the sample trajectory,
from left to right: linear speed as a function of time,
and orientation as a function of time

experiment depends on the initial random position and
velocity of the robots, each experiment is performed
several times (with different initial position and veloc-
ity) to collect average statistics: (1) convergence ratio,
i.e., the frequency of trials the object ends up moving
along a straight path within the first 2 minutes, and
(2) convergence time, i.e., the average time required to
achieve a straight path (averaging only over those tri-
als achieving a straight path below 2 minutes). These
two quantities is used throughout the rest of the paper
to measure the performance of a certain experiment.

3.2 The Number of Robots

An important advantage of distributed approaches
is the ability to easily add more agents into the tasks
being performed. In our transportation task, a heavier
object implies larger friction forces between the object
and the robots; when the number of robots is fixed, the
weight of the object can only be smaller than a certain
limit or the friction will become too large for a robot to
move. This is clearly confirmed by the plot in Fig. 4.
Thirty robots are used in this experiment. The test ob-
ject remains a square plate but varies its weight from
10 to 140 kg (step size of 10 kg). At each weight value,
50 trials are performed and statistics are collected. As
shown in the plot, the convergence ratio drops drasti-
cally when the weight is increased from 80 to 110 kg.
In this same range the convergence time jumps from 27
to 65 seconds. The task never succeed with the weight

over 130 kg. Besides increasing the maximum payload
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Figure 4: Convergence ratio and time as a function of
the object’s weight (with 30 robots)

capacity, it is interesting to ask whether the number of
robots affect other qualities. Experiments are set up
to investigate this issue. Varying number of robots are
deployed in the experiments. For a given number of
robots, 50 trials are performed. The convergence ratio
and the convergence time from the experiments with
varying number of robots are shown in Fig. 5. Note
that when the number of robots is smaller than 10, the
robots can rarely move; the object is simply too heavy
and never achieves a straight path. Marginally, with
10 robots, straight path is achieved with convergence
ratio 0.96 (48 out of 50 trials) and convergence time
of 26.5 seconds. Increasing the number of robots to 15
sharply drops the convergence time to 10 seconds while
still maintains the convergence ratio at 1.0. Increas-
ing the number of robots further gradually reduces the
convergence time and slightly reduce the convergence
ratio. With 140 robots, 45 out of 50 trials still suc-
cessfully achieve a straight path with average required
time of 9 seconds. Besides demonstrating that the ap-
proach performs well with varying number of robots,
data from the experiments interestingly suggest that
when the number of robots exceed a certain number,
the performance will not continue to be significantly
improved. This number is clearly helpful in deciding
how many robots should be deployed in a specific task.
More research effort is needed to investigate this issue
in greater depth.
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Figure 5: Convegence ratio and time as a function of
the number of robots

3.3 Noisy Sensors

Up to this point, the slippage sensors are assumed
to be perfect. This ideal condition rarely occurs in



practice. It is therefore necessary that our approach is
tested under the effect of noisy sensors. Since a slip-
page sensor returns the direction and speed of the slip-
ping object, we model a noisy sensor by contaminating
the sensed direction and speed with gaussian noise at
varying standard deviations. Experiments with 50 ro-
bots are conducted. Fig. 6 plots the convergence ratio
with respect to the standard deviation of the direction
noise and the speed noise. As expected, the plot shows
that the task always fails when the noise is larger than
a certain level. What is surprising is that there exists
a large zone where noise improves the convergence ra-
tio. This zone is the flat region where the convergence
ratio reaches 1.0 (the convergence ratio is 0.9 with per-
fect sensors). Although appropriate noise level may
improve the convergence ratio, experiments show that
the convergence time with noisy sensors is in general
significantly longer than that of perfect sensors.
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Figure 6: Results from experiments with noisy sen-
sors plotting convergence ratio as a function of the
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3.4 Malfunction of Robots

It is unavoidable that robots sometimes fail to oper-
ate. It is therefore helpful to find out how the perfor-
mance suffers when some robots malfunction. Experi-
ments with 30 robots are conducted to investigate this
issue. In this study, we consider that the robots com-
pletely stop moving when they malfunction. Varying
number of robots are randomly chosen to become mal-
functioned. The plots in Fig. 7 present the results of
the experiments. We can see that the system sustains
the inoperability of robots very well and only degrades
gracefully when the number of malfunctioned robots
is not larger than 5 (16% of team size).

4 Discussion

In this paper, all experiments are conducted in com-
puter simulation. This allows experiments to be eas-
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Figure 7: Convergence ratio and time as a function of
the number of malfunctioned robots

ily performed with various settings. In particular, we
are able to investigate issues regarding a large num-
ber of robots which is impossible to study with real
robots. Of course, the validity of the approach should
also be confirmed with physical experiments. We are
currently constructing an experiment platform using
a team of 10 RoboCup style robots. Results from the
experiments will be reported in our future papers.

As mentioned in Sec. 3, there are cases for which
the object fail to achieve a straight path. The state of
rotation when the object is being spun in a directions
by the robots appears to be stable except that the po-
sition of each robot relative to the object gradually
changes (it almost does not change when a straight
path is achieved). This means that some robots may
move out of the boundary of the object if the object
is left in rotation for sufficiently long time. With sim-
ple sensors that can detect this out-of-bound situation,
the control algorithm can be easily modified to always
keep the robots under the object. Nevertheless, we
does not only want to keep robots under the object,
but also to take the object out of its rotation. An
easy solution is to equip each robot with a compass.
With a compass, the robot can track its heading and
recognize whether it is stuck in a rotation state. To
escape from such state, a simple method is to perform
a reset: a new velocity is chosen at random and main-
tained for a short duration before giving the control
back to the control algorithm. Our preliminary exper-
iments show that this technique significantly increases
the convergence ratio.

Interestingly, recognizing whether the object is
stuck in a rotation state can also be done without using
compasses. By observing a robot in a rotation state, it
appears that most of the time the commanded veloc-
ity lies on one side of the slipping velocity (this does
not apply when the object achieve a straight path).
This means that the accumulated sum of the signed
angle between the commanded velocity and slipping
velocity will have its magnitude grow larger over time
as the object rotates. Recognizing a rotation state can
therefore be performed by comparing this sum with an



appropriate threshold.
The control algorithm proposed in Sec. 2 achieves

the robots’ synchronization through implicit commu-
nication. This implicit communication is in the form
of the interaction between the robots and the object.
Besides facilitating implicit communication, the object
may also be used as a medium for explicitly broadcast-
ing simple messages. When the object is moved along
a straight path, every robot tends to move in approx-
imately the same direction (Fig. 2(c)). If one robot
changes its heading abruptly, the object’s trajectory
will be affected which, in turn, results in the object’s
slippage that can be sensed by the other robots. This
is an example of how a message can be broadcasted via
the object. Now, let us assume that the object is being
carried along a straight path and one robot is able to
recognize which direction is heading to the target. The
idea is that if the current direction is not acceptable, it
is then possible for the robot to use the broadcasting
technique described above to signal the other robots
to change their directions. Provided that a direction
changing algorithm (e.g., 10 degrees counterclockwise
from the current velocity) is pre-programmed in every
robot, the object will then be moved along a new
straight path. This procedure can then be repeated
until the object reaches its destination. We are study-
ing this simple procedure in more detail and currently
interested in deriving a technique that allows a more
complex message to be broadcasted.

5 Conclusion

We have presented a distributed control algorithm
that enables a team of robots to carry a plate along a
straight path without explicit communication. The al-
gorithm has been verified in several simulation experi-
ments with results showing robustness and scalability .
The beauty of the algorithm is its simplicity. The syn-
chronization of the robots is collectively derived from
the interaction between the robots and the object. In-
dependence from modeling and communication avoids
the inherent vulnerability to communication and mod-
eling problems which results in a robust and scalable
multi-robot object transportation method.
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