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Abstract: In automated assembly, before parts can be put
together, they often have to be appropriately oriented and
positioned. The device performing this task is generally
referred to as a part feeder. A new class of devices for
non-prehensible distributed manipulation, such as MEMS
actuator arrays, vibrating plates, etc., provides an alter-
native to traditional mechanical platforms for part feed-
ing. These devices can be abstracted as programmable
vector fields. Manipulation plans for these devices can
therefore be considered as strategies for applying a se-
quence of fields to bring parts to some desired configu-
rations. Typically, to uniquely orient and position a part,
several fields have to be sequentially employed. In this
paper, we show that this objective can be achieved for
most parts using a single field. The key idea is that, for
almost any part (1) there exists a single field that induces
a unique stable equilibrium for the part, and (2) when the
part is placed under the field, it is essentially driven to-
ward the associated stable equilibrium configuration.

It has been proven recently that there exists a combi-
nation of the unit radial field and a constant field that
induces a unique stable equilibrium for almost any part.
However, the work focuses mainly on an existential proof
and fails to address how to compute the field for a given
part. We propose in this paper a radically different field
with a proof confirming that the field induces a unique sta-
ble equilibrium for almost any part. This proof leads us to
a method for computing a single field for orienting a given
part, together with the corresponding stable equilibrium
configuration of the part.

1 Introduction

In automated assembly, before parts can be put together,
they often have to be appropriately oriented and posi-
tioned. The device performing this task is generally re-
ferred to as a part feeder. The traditional and mostly used
automated part feeder is the vibratory bowl feeder [8]. Vi-
bratory bow! feeders are designed to orient a single part
shape, therefore they have to be re-designed and re-built to

handle different shapes. Some recent research attempts to
develop systematic approaches for designing and analyz-
ing vibratory bowl feeders [2, 13], while the mainstream
research in manufacturing has focused in developing more
flexible and more robust platforms, such as programmable
part feeders. This type of part feeder can be programmed
to handle different parts without the need for hardware
modification [9, 12, 10, 1, 7].

A new direction in programmable part feeding that has
recently gained attention in research is the use of a new
class of devices for non-prehensible distributed manipula-
tion. Examples are, in microscale, the use of MEMS actu-
ators arrays [4], and in macroscale, the use of mechanical
devices [16], vibrating plates [7], or air jets actuators [3].
The analysis of the capabilities of these devices is based
on the abstraction of these devices as programmable vec-
tor fields. This analytical approach is pioneered by [4],
where programmable vector fields are used to represent
MEMS actuator array, and the properties of some certain
force fields have been discussed. The underlying idea is
that a part lying in a force field is driven toward a stable
equilibrium by the resultant force and torque induced by
the field at the planar contact. This basic idea allows a ma-
nipulation task to be considered as a strategy for applying
a sequence of fields to bring a part from one equilibrium
to another until it reaches a desired configuration. In [4], it
has been shown that polygonal parts can be oriented by a
sequence of squeeze fields. The sequence is planned using
an algorithm similar to the one in [12] for orienting polyg-
onal parts with a sensorless parallel jaw gripper. The num-
ber of steps in the sequence depends on the complexity of
the geometry of the convex hull of the oriented part and
the uniqueness of the final orientation is only upto mod-
ulo 180°. Another research direction attempting to apply
force fields to the positioning problem aims at inventing
a single force field that can induce a unique stable equi-
librium for any part. Such a field would be able to orient
any part in one step without any sensor or any sequencing
control. Along this avenue, the elliptical force field that
induces two stable equilibria was introduced in [14]. Fur-
ther progress was presented recently in [6] with a proof



confirming the conjecture in [4], namely, that there exists
a combination of the unit radial field and a small constant
field capable of uniquely orienting and positioning parts.
The proof is based on characterization of local minima of
the lifted potential function induced by the field. Unfor-
tunately, due to the nature of the proof, this work cannot
address how to compute a finite magnitude of the small
constant field that satisfies the proof. Therefore it is im-
possible to explicitly specify the field for a given part. In-
stead, the determination of the value of the constant field
value is done experimentally using a standard search pro-
cedure.

In this paper, we will introduce a force field that induces
a unique stable equilibrium for almost any part with uni-
form support. This proposed field is a combination of a
linear radial force field and a constant force field. A linear
radial force field is simply a radial force field for which
the magnitude of the force at a point is a linear function
of the distance from the point to the center of the field.
The proposed field is therefore defined by the parame-
ters consisting of the magnitude of the constant force field
and the coefficients defining the linear function associated
with the linear radial force field. The main goal of this pa-
per is to prove that, for a given part, we can specify the
parameters of the proposed field such that the part has a
unique stable equilibrium when it is placed under this pa-
rameterized field. The proof relies on geometric relation-
ship between the proposed field and the inducing force
and torque. This relationship will be presented in Sec-
tion 4 and the main proof will be presented in Section 5.
The proof begins by specifying the parameters of the field
according to the geometry of a given part. For this param-
eterized field, the proof then continues with the following
two steps. The first step applies some geometric proper-
ties of constant fields and linear radial fields, which will
be presented in Section 4, to show that there are at most
two possible equilibrium configurations. Then, based on
the potential function concept which will be discussed in
Section 3, the second step determines that only one of the
two equilibria is stable. Unlike [6], the values of all pa-
rameters of the field for orienting a given part can be de-
termined. The determination requires the computation of
a unique point of the part which we will call a pivot point.
This computation is presented in [19].

The rest of the paper is organized as follows. We will
begin by giving some background and necessary nota-
tions in Section 2. Then, the concept of potential func-
tion which will be used for determining stability will be
presented in Section 3. In Section 4, some properties of
constant fields and linear radial force fields which are the
foundation of the proof of the main result will be pre-
sented. Then, in Section 5, we will present Lemma 5
which constitutes the main result describing the proposed

field with a proof verifying that it induces a unique stable
equilibrium for almost any given part. Throughoutthis pa-
per, when we mention the main result, we refer to Lemma
5 and likewise when we mention the main proof, we refer
to the proof of Lemma 5. We will then conclude the paper
with some discussion in Section 6.

2 Background

We consider a two dimensional part with a uniform mass
and area A that is placed in the plane of a force field. We
attach the world frame (&, 1) to this plane.

The part is in equilibrium under the field g(&,n) when
the resultant force F' and torque M vanish. More pre-
cisely, an equilibrium is achieved if and only if

F= [ [glenden=0 and
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where both integrations are performed over the plane re-
gion occupied by the part. Note that the lateral force mod-
eling used here results in first order dynamics of the mo-
tion of parts under force fields. It is a commonly used
hypothesis in part orientation with force fields [5, 4, 14].

In this paper, we deal with only two types of force
fields: constant fields and radial fields. A constant field
is a force field with the same force at every point and a
radial field is a force field for which all forces point to-
ward a single center and the magnitude of the force at a
point depends only on the distance between the point and
the center. It is clear from the definition above that the
resultant force induced by a radial field must pass through
the center of the field (this simple property will become
useful later on). We denote by a tuple (¢, f(A)) a radial
field with center ¢ and the force at any point p be the unit
force in the direction from p to ¢, scaled by f(\) where A
is the distance between p and c. Note that a linear radial
field is a radial field for which the function f is linear in A.
We also use a pictorial representation to illustrate a radial
field. Figure 1 shows an example.

f(\)
™
Figure 1: Pictorial representation of the radial field {c, f(\)),
with f(A) > 0. The arrows on the rays depict the direction of

the forces.

We define the pivot point® of a part under a radial field

T We borrow this term from [4] where it is defi ned only for the unit
redial fi eld.



to be a fixed point in the part’s coordinate frame situated
at the center of the field when an equilibrium is achieved
(see Lemma 4 for the uniqueness of the pivot point under
some radial fields).

3 Potential Function

Consider a two dimensional part with a uniform mass that
is placed in the plane of a force field. Under this force
field, let w : R? — R be a potential function of a par-
ticle in the plane (&£,7). From mechanics [15, 18], the
force exerted on the particle under this potential function
is (— ‘g—g, — g—;‘)T. Because a rigid part is essentially a sys-
tem of particles, its potential energy is thus the summation

of the potential energies of all the particles. Given that
< ch > is the position in the world frame (&, ) of a refer-

ence point in the part frame and 6 is the orientation of the
part frame with respect to the world frame, the potential
energy of the part at a configuration ¢ = (z,y, ) can be
written as

U@ = [ [ utendsan,

where the integration is performed over the plane region
occupied by the part at the configuration g. To distinguish
from the potential function of a particle, we call U : R? x
S!' — R the lifted potential function (after [6]). It can
be shown [6] (using continuity of » and the compactness
of the part) that U is a continuous function of class C!
and (using commutativity of the integral and differential
operators) that the wrench (F, F,,, M)" exerted on the
part can be written as:

F.(q) = -0U/dx,
F,(q) = —0U/dy and
M(q) = —-0U/ 6.

1)

In other words, we may consider the part as a parti-
cle rolling on the hyper-surface U under the influence
of the force derived from the surface’s negative gradi-
ent. Clearly, when this particle is at a critical point of
the surface, the surface’s gradient becomes zero and as a
result the part is in an equilibrium because the force van-
ishes. From the type of the associated critical point (i.e.,
local minima, local maxima, saddle points [17]), we can
also determine the stability of the equilibrium . It is well
known that only local minima correspond to stable equi-
librium configurations.

It is important to keep in mind that every smooth
force field has an associated potential function counter-
part. This allows us to apply the concept mentioned above
to investigate the stability of an equilibrium configuration
in the second step of the main proof.

4 Geometry of Force Fields

As mentioned earlier, the proposed force field is a com-
bination of a linear radial field and a constant field. This
section studies some properties of these two types of fields
that are helpful for deriving the main proof. Instead of
purely analyzing the fields algebraically, we seek geomet-
ric explanations. As we will see soon, this approach nicely
yields intuitive insight about the fields.

We will begin with the following lemma which is a cru-
cial part of the work in this paper. It demonstrates how
to decompose a constant field into two radial fields. Its
significance is that the resulting two radial fields can be
freely translated and the distance between their centers
can be varied. This freedom allows geometric manipula-
tion of the fields as we can choose to place the two fields
in such a way that our analysis can be simplified. This
benefit will become clearer in the next section where this
strategy is thoroughly used.

Lemmal The constant field < 0

) is equivalent to

the combination of two radial fields 7, def << ; ) L kA)

e+d
f

and 7, &' << ) , —k)), where kd = ¢ (Figure 2).

Figure 2: Decomposing a constant field into two radial fields.

ProoF: Clearly, at an arbitrary point ( '; ) the force
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Figure 3: An arbitrary point j

radial fields’ centers.



The following two lemmas express the relationship be-
tween the resultant forces induced by the fields and the
vectors from the pivot points to the centers of the fields.
This geometric relationship is very helpful as we can use
it to visualize the effect of the fields on a part at different
configurations. In the main result, these two lemmas pro-
vide important constraints for identifying possible loca-
tions of two pivot points at an equilibrium configuration.

Lemma 2 For the resultant force F' induced by the radial
field 7 %' (0, h + k)) on a part, it is true that F - 56 >
0 and |F| > k|po|A, where constants h,k > 0 and p
denote the position of the pivot point of the part under the
field 7 (Figure 4).

Figure 4: The resultant force F' induced by the radial field
{0, h + k).

The proof of this lemma can be found in Appendix of the
paper.

Lemma 3 The resultant force induced by the radial field
(0, kM) on a part is kp6A, where p denotes the position
of the centroid of the part (Figure 5).

Figure 5: The resultant force F' induced by the radial field
{0, k).

The proof of this lemma is similar to that of Lemma 2
and is omitted here . The key idea is that the pivot point
under the field (o, k) is the centroid of the part. This fact
follows immediately from the definition of the centroid
[18].

Lemma4 A part under the non-zero radial field 7 def
(o, h + kX), h, k > 0 has a unique pivot point.

The proof of this lemma can be found in Appendix of the
paper. In the main result, this lemma is used together with
Lemmas 2 and 3 to identify all possible equilibrium con-
figurations.

5 TheProposed Field

The following lemma presents the main result. In the
proof of the lemma, we put together the material we have
discussed so far to show that a combination of the radial
field 7* and the constant field C* induces a unique stable
equilibrium for almost any part. The proof consists of two
steps. The objective of the first step is to identify all possi-
ble equilibrium configurations. We transform the constant
field C* into two radial fields (Lemma 1), one of which
is placed to coincide and combine with the radial field
J*. The analysis is then performed on the arrangement
of the pivot points under the two resulting radial fields
with respect to the centers of the fields. Based mainly on
Lemmas 2 and 3, there are two such arrangements possi-
ble at equilibrium. In the second step of the proof, using
the potential function concept, we show that one of the
two arrangements corresponds to an unstable configura-
tion, while the other corresponds to a stable equilibrium
configuration.

Lemmab Let h, k and ¢ be arbitrary positive constants,
and let d be the distance between the centroid and the
pivot point of a part under the radial field X def (o,h +
(k+ c)A). If d > 0, then the part has a unique stable

equilibrium configuration under the combination of the

radial field 7* {0, h+(2k-+c)\) and the constant field

. def [ —kd
¢ = 0
the part is in the configuration such that its pivot point
under K is positioned at o and its centroid is positioned

ao- (1)

Before proceeding to the proof, note that determining
the distance d for a given part requires the computation
of the part’s centroid and the part’s pivot point under the
radial field C. Because the centroid of a part is essen-
tially the center of the distribution of the part’s area, it can
therefore be computed, in general, using a numerical in-
tegration method. The pivot point can be computed using
a numerical optimization of the corresponding potential
function. We present in detail in [19] a variation of this
optimization approach for computing the pivot point un-
der a linear radial field that is of the same type as that of
K.

PROOF:

. This stable equilibrium occurs when

STEP 1: Identifying Possible Equilibria

0
0
From Lemma 1, the constant field C* is equivalent to the

() w

Without loss of generality, let us assume that o =

combination of two radial fields (o' =



and (o, —kA). Combining these two radial fields with

J* yields two radial fields £’ def (o', kX)y and K def
(o,h + 2k + )X — kA) = (0,h + (k + ¢)\). Now let
us consider the fields X’ and X and denote respectively
by F' and F their inducing forces. At an equilibrium, it
is necessary that the line of action of the force F' coin-
cides with the x-axis (otherwise, a non-zero moment will
result). For the line of action of the force F’ to coincide
with the x-axis, following Lemma 3, the centroid must be
on the x-axis.

At an equilibrium configuration, let us denote by p' =

e

0
K"), and by p the position of the pivot point under . We
consider two cases:

the position of the centroid (the pivot point under

ecasee <0

Since the distance between p and p' is defined to be d,
cos¢ \ [ e+dcose

sin ¢ ) a < dsin ¢ )’
where ¢ is the angle between pT]; and the x-axis. Straight-
forwardly, we obtain |po|? — |p'0'|? = 2de(cos ¢ — 1),
which implies that |po| > |p'o’| (when e < 0). From
Lemma 3, we can write |F'| = k|p'o’|A and from
Lemma 2, we can write |F| > (k + ¢)|po|A. We then
obtain

we canwrite p = p’' +d <

|F| = |F'| > {k(lpo| — |p'0'|) + c|po| } A.

Clearly, at an equilibrium, it is necessary that | F|— | F'| =
0. This condition implies that the right side of the above
inequality must be zero. Because |po| > |p'd’|, as es-
tablished earlier, this can occur only at a configuration for
which |po| = |p'o’| = 0. From the fact that the centroid
and the pivot point under K are unique (Lemma 4), when
d> 0 (i.e., p # p'), itis obvious that this configuration is
unique. In fact, it is an equilibrium configuration because
both pivot points are situated at their centers and therefore
F' = F = 0 (Figure 6).

Figure 6: The equilibrium configuration with the two pivot
points at the corresponding centers (p’ = o’ and p = o).

ecasee > 0

Let us assume that the part is in equilibrium when e¢ =
e’ > 0. From Lemma 1, we can write the constant field C*

as a combination of the radial fields (o = (

0 &
0)76_/)\>

!
¢ ) ,—24)\). Combining these two fields

and (e’ = < 0

with 7* yields two radial fields £ < (0, b+ (2k + ¢) A +
EdX) and £’ f e, —k4\). When the centroid is po-
sitioned at €’, the resultant force induced by £’ is zero.
An equilibrium can be achieved only when the resultant
force induced by £ is also zero. This occurs when the
pivot point under £ is positioned at o. By Lemma 4, this
configuration is unique. That is, we have shown that for
a given €', the associated equilibrium is unique. It is also
easy to see that e’ is unique as we can reduce the proof
of the uniqueness of ¢’ to the proof of the previous case
(e < 0) by replacing K with £ and K’ with £'. As a re-
sult, we can conclude that if an equilibrium exists in this
case, it is unique.

STEP 2: Analyzing Stability

In the previous step, we have shown that there are at most
two equilibrium configurations. Here, we will first show
that the possible equilibrium found in the case e > 0 is
unstable. Then we will prove the existence of a local min-
imum of the lifted potential function of the proposed field
(the combination of the field 7* and the field C*). This
will deduce that the equilibrium configuration found in the
case e < 0 is the unique stable equilibrium.

Consider the part under the field £’ alone. Let us de-
note by U, the associated lifted potential function. Be-
cause L' is rotational symmetric about the center, it is suf-
ficient to consider the part at a fixed orientation. For con-
venience, let the centroid be the reference point of the part
frame. For the fixed orientation, this setup deduces that
the configuration of the part is the position of the centroid
and the equilibrium configuration under £’ is the position
of the center of the field £’ (because the part is in equi-
librium when the position of the centroid is at the center
of £'). From Lemma 3, the resultant force always points
in the direction from the center of £’ to the centroid. Fol-
lowing Equation 1, this means that the gradient of U,
always points toward the equilibrium configuration, and
therefore, the lifted potential function U, is maximized
there.

Now let us consider the part under both fields £ and
L' and denote by U the associated lifted potential func-
tion. Let 7 be the set of all configurations for which the
pivot point under £ is positioned at the center of £ (this
set is homeomorphic? to S'). Obviously, £ exerts a zero
force on the part at any configuration in the set 7. There-
fore, the gradient of U at any configuration in the set 7 is
essentially the gradient of U, at the same configuration

2topologically equivalent



and the lifted potential function U on the set 7 is simply a
copy of the lifted potential function U, (with a constant
shift). Clearly, the set 7 contains the possible equilibrium
configuration found in the case e > 0. At this configu-
ration, the centroid is positioned at the center of the field
L', which maximizes the lifted potential function U, as
established in the previous paragraph. This means that the
lifted potential function U of this configuration is greater
than that of other configurations in the set 7. Since 7 is
connected, we can conclude that this configuration is not
a local minimum, and therefore is unstable.

We have shown that if there exists an equilibrium ac-
cording to the case e > 0 (existence is not proven), it is
unstable. To ensure that the equilibrium according to the
case e < 0 is stable, in the following paragraph, we will
prove the existence of a local minimum of the lifted po-
tential function associated with the proposed field.

Let us denote by U the lifted potential function of the
proposed field (the combination of the field 7* and the
field C*). Straightforwardly, the function U is induced
from the potential function w(¢,n) = kdé+hA/€2 + n2+

Zhte (€2 +9?), where g

the proposed field (coordinates of the world frame). When
the part is at an arbitrarily fixed orientation 6, it is obvi-
ous that as the configuration of the part diverges (in any
direction), the potential energy increases toward infinity.
Together with the fact that the function U is smooth, this
implies that for the given fixed orientation 6, the function
U has a local minimum. Let us denote by U*(6) the po-
tential energy of the local minimum at the orientation ¢
and consider the curve y of U*(6) for 6 € S'. The curve
~ corresponds to all the configurations for which the force
components F, and F, are zero. At a critical point of v,
we also have zero moment because OU/00 = 0. This
means that a critical point of ~ corresponds to an equi-
librium configuration. Because the lifted potential func-
tion U is smooth, § € S* and the number of equilibria is
at most two, the curve v has a local minimum (this also
means that -y has a local maxima and in turn implies the
existence of the unstable equilibrium). This is clearly also
a local minimum of U and completes the proof. m

Now, let us discuss about the set of parts proven to have
a unique stable equilibrium under the proposed field. As
mentioned explicitly in Lemma 5, these are the parts hav-
ing the pivot point under the radial field K apart from the
centroid. Note that they are the same as the set of parts
proven to have a unique stable equilibrium in [6] which
are the parts whose the centroid does not coincide with the
pivot point under the unit radial field (see [11] for some
analysis about this case). The equivalence can be shown
using Lemma 4). Clearly, most parts assuming arbitrarily
general shapes are included in this set. Some particular

is a position in the plane of

classes of parts, however, do not, e.g., parts with at least
two axes of symmetry.

6 Conclusion

Although a fully programmable continuous force field de-
vice does not currently exist, the research aiming at de-
veloping this technology has advanced so rapidly that it
would be at no surprise if such a device appeared in the
near future. While waiting for an arrival of the new tech-
nology, we find it interesting and useful to investigate
properties of some force fields. The main contribution
of this paper is a force field with a unique stable equilib-
rium configuration for most parts. The field is proposed
to be used for orienting and positioning parts in the plane.
The use of force fields as a modeling tool for physical
force field devices is a common practice because it usually
leads to tractable analytical results. Although this model-
ing scheme is considered reasonable, it does not capture
the discretization nature of a force filed implementation
and some real-world effects such as friction and surface
tension. This limitation exposes the scheme to some le-
gitimate questions, for example: Will the part stop at the
computed equilibrium if friction is considered?, What is
the convergence rate of a part under the field?, and so
on. Without considering a specific implementation and
the corresponding dynamics, it is generally impossible to
answer these questions. This may lead to future work tar-
geting at filling the gap between available theories and
new technologies as they arrive. Our specific research
plans include identifying other interesting fields and their
properties, and investigating discretized force fields.
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Appendix
Proof of Lemma 2
Without loss of generality, let us assume that o = 8 ,

and rewrite the field 7 as the combination of two radial
fields 7, ' (o0, k) and Jo def (o, h). Let us denote by
f1, f» : R? = R? the functions that map point positions
in the world frame to the forces at the positions induced
by J1 and 7> correspondingly. Also, let us denote by P

the pivot point under 7 and by M an arbitrary point of



£

P and M in the world frame when the part is at a config-
uration q.

By setting g;(m) = f;(m) — fi(m — p), fori =
1,2, we can write the resultant force at m as f(m) =
Fim)+ fy(m) = fi(m—p)+ fo(m—p)+g,(m)+
g,(m) and we can write the resultant force F' exerted on
the part at the configuration g as

J [ Fi(m) + fo(m)dédn =
ff.f1m p) + fa(m — p) dédn+
I [ g1(m) dédn+
I [ g2(m) dédn,

with all the integrations performed over the plane region
occupied by the part at the configuration q. It is easy to see
that the first term of the right side of Equation 2 vanishes.
This is because f,(m — p) + f,(m — p) is essentially
the force at the point M when the part is at the configura-
tion such that the pivot point P is positioned at the field’s
center o and the orientation of the part is the same as that
of the configuration g. We therefore need to consider only
the second and the third terms.

Consider the second term of the right side of Equation
2. ¢From the definition, we have g,(m) = f,(m) —
film—p) = (—km) — (- k(m p) = —kp = kpo.
As aresult, we obtain [ [ g, (m) dédn = kpoA.

Now consider the third term of the right side of Equa-
tion 2. Leta = |pm|, b = |om|, a = /pmo, and ¢ be
the angle between mp and the x-axis (Figure 7) . We can
write

the part. Let p and m = denote the positions of

)

pmy = (T )
fam=p) = n( G0 ).

p = ma( 0 and
o e,

We thus obtain after some simplification
go(m) - po = h(a +b)(1 — cosa),

which implies

([ [ g2m)dcan)-po >0

As a result, we have

#1> | [ [ gi(m)dedn] = HpolA, and

o= fom

) + g,(m) dédn) -p6 > 0. m

/s

Figure 7: Arrangement of point M with respect to the pivot
point and the center.

Proof of Lemma 4

For h > 0,k = 0, this is reduced to the case of the unit
radial field for which a proof is given in [5, 6]. For h, k >
0, let us assume that P, # P» are two pivot points of 7.
By definition, when P; is positioned at the center o, the
partis in an equilibrium. Now let us translate the part such
that P, is positioned at o. By Lemma 2, the magnitude of
the resultant force induced by 7 is | F'| > k|p,0|4 > 0,
where p, is the position of P;. Therefore the part cannot
be in an equilibrium and the assumption is contradicted.
The uniqueness of the pivot point is thus guaranteed.

To prove the existence of the pivot point, consider the
part at a fixed orientation 6 and the lifted potential energy
Uy (z,y) of the field J at the fixed orientation as a func-
tion of the position (x,y)” of the part. Since the func-
tion Uy is induced from the potential function u(&,7n) =

€ +n2 + £(&2 + »?), it is obvious that as the po-
smon (z,9) d|verges Uy(z,y) increases toward infinity.
Because Uy is continuous, this implies that there exists a
critical point where F, = 52 = O.and F,, = ¢ = 0.
This also implies an equilibrium because zero force re-
sults in zero moment for every radial field (the line of ac-
tion of the resultant force induced by a radial field always
passes through the center of the field). m

Note that the proof of Lemma 2 only relies only on the
definition of the pivot point, not on the uniqueness prop-
erty, therefore the reference to Lemma 2 in the proof of
Lemma 4 does not create an invalid reasoning loop.
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