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Abstract— This paper proposes a necessary and sufficient
condition for parallel grasps. We extend the use of this
condition to the task of regrasp planning. In particular, we
propose a graph structure called a switching graph which
contains information about primitive grasping operations
such as finger switching and finger sliding. The problem of
regrasp planning is transformed to a graph search problem.
Mainly, this work concentrates on a parallel grasp with
force closure. Assuming frictional point contacts, the proposed
method has been implemented and some preliminary results
are presented.

Index Terms— Regrasp, Parallel Grasp, Switching Graph

I. INTRODUCTION

Grasping is an important task in robotics. Grasping an
object is, however, not the ultimate goal of many problem.
In the case that the current grasping configuration is not
desirable, the contact points need to be repositioned. The
ability to change contact points of a grasp formation while
maintaining stability is clearly beneficial, especially for
dexterous or in-hand manipulation. This work presents
a method that plans the regrasp process of a polygonal
object by a four-fingered hand. With four fingers, the
hand can reposition its three-finger grasp by performing
finger gaiting or switching. Our work concentrates on
parallel grasps which are natural grasps for objects with
parallel or almost parallel edges. We also find that feasible
grasping configuration can be easily determined. The other
benefactor is that we can perform finger sliding without
difficulties.

The proposed method for regrasp planning is based on
a structure called a switching graph. A necessary and
sufficient condition for a parallel grasp is also proposed in
this paper. The idea of a switching graph was originally
presented in [1] for concurrent grasps and extended to
cover 3-D grasps in [2]. A good review of in-hand and
dexterous manipulation can be found in [3] and [4]. Finger
gaiting was first suggested in [5]. A general framework
for planning dexterous manipulation was presented in [6].
Omata and Nakata use branch-and-bound technique for
planning a sequence of regrasps of a 2-D grasp [7].
Interested readers should referred to [3] for a recent review
on robotic grasping.

The organization of this paper is as follows. The next
section describes some background of grasping and pro-
poses a new condition for a parallel grasp. Section III
discusses a switching graph while section IV shows how to
use a switching graph to actually plan a regrasp sequence.
The experiment and its result is shown in section V. Finally,
the paper is concluded in section VI.

II. PARALLEL GRASPS

The scope of this work is limited to a 2-D grasping
with friction by hard fingers. We assume Coulomb friction
which allows a finger at each contact point to exert force
only in a friction cone with half angle θ. An object being
grasped is assumed to be polygonal. The property of grasp-
ing that we are interested in is the Force Closure. Force
closure indicates that a grasp achieves equilibrium and is
able to resist any external force/torque. Its properties are
extensively studied in many literatures. Ponce and Faverjon
[8] found that a stronger condition of equilibrium called
nonmarginal equilibrium implies force closure. There are
many kinds of equilibrium grasp but in this work we are
only interested in a type of grasp, so called parallel grasps.
The following proposition defines the parallel grasp.

Proposition 1: A necessary and sufficient condition for
three points to form an equilibrium grasp with three parallel
and non-zero contact forces is that there exists three parallel
lines in the corresponding double-sided friction cone and
for three vectors parallel to these lines and lying in the
internal friction cone at the contact points, the vector
parallel to the middle line are in the opposite direction
from the other two.

Proof: Obviously, three parallel non-zero contact
forces achieve a force equilibrium only when exactly one
of them lies in the opposite direction of the other two. If
the opposing force does not lie between the other two, the
moment with respect to any points along the other vectors
will not be zero. To achieve force closure, that force must
be in the middle. In that case, it is obvious that a moment
equilibrium can also be achieved.

Let Cnp
be a friction cone centered around a normal

vector np of a contact point p. Proposition 1 indicates that
two parallel forces must have the same direction while the
other force must head to the opposite direction. For two



contact points p and q, whose normals are np and nq , it
is obvious that two parallel forces from these two contact
points will exist only when the intersection of Cnp

and
Cnq

, both of them originated at the same point, is not
empty. The existence of the third parallel force from contact
point r which is in the opposite direction also indicates
that the inverted cone C−nr

intersects with the previous
intersection. This condition is a necessary condition for a
parallel grasp. Formally, there exists three parallel forces
from three contact points p1, p2 and p3 whose normals
respectively are n1, n2 and n3 (Fig. 1(a)) when there exists
i, j, k ∈ {1, 2, 3} and i 6= j 6= k such that the intersection
of cones Cni

, Cnj
and C−nk

, all of them originated at
the same point, is not empty (Fig. 1(b)). This condition is
equivalent to the condition that the angle between ni, nj

and −nk are pairwisely less than 2θ. If we limit θ to
be less than π/4 (i.e., friction coefficient < 1), only one
triple of (i, j, k) will satisfy the previous condition. In this
work, we assume that θ is less than π/4. We call the
contact point that has opposite direction force as a center
point. We define a structure called a common cone that
aids in existence checking of a parallel grasp as follows. A
common cone exists only when three contact points p1, p2

and p3 have three parallel forces, one of them lies in the
opposite direction from the other two. From Fig.1(a), p1 is
the center point, a common cone C∩

n1,n2,n3
is the double-

sided cone of the intersection of three cones C−n1
, Cn2

and Cn3
(Fig. 1(c)).
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Fig. 1. Construction of a common cone : (a) A parallel grasp. (b) Three
friction cones of (a) drawn at the same point. The dashed cone is inverted.
(c) A common cone.

It is not straightforward to check the condition in Propo-
sition 1 directly. We present a new condition for three
contact points to form a parallel grasp as follows. If we
draw a common cone on the center point, part of the plane
that is not occupied by the cone will be divided into two
regions. These regions are called the outer regions. The
next proposition uses the notion of outer regions to define
a necessary and sufficient condition for an existence of a
parallel grasp when θ is less than π/4.

Proposition 2: A necessary and sufficient condition for
three grasping points pa, pb and pc, whose normals re-
spectively are na, nb and nc, to form a parallel grasp is
that two following conditions hold. (Pa) a common cone
C∩

na,nb,nc
is not empty. (Pb) Let us assume that the center

point of these three points be pa. The points pb and pc do
not lie in the same outer region separated by the common
cone C∩

na,nb,nc
originated at pa.

Proof: For the sufficient side, let us draw a segment
connecting pb and pc. If both of them do not lie in the same
side of the common cone, the segment pbpc will definitely
intersect the common cone. Let px be any point in the
intersection of pbpc and the common cone, we can draw a
line from pa to px. That line definitely lies in the friction
cone of pa (see Fig. 2). A line parallel to papx that passes
pb also lies in the friction cone of pb, and so is the case
of pc. From a construction of a common cone, we can find
three forces parallel along these lines that form a parallel
grasp.

cx

a

b
pp

p

p

Fig. 2. When pbpc intersect with a common cone, we can find three
parallel lines and vectors that satisfy 2

For the necessary side, if there exists a parallel grasp,
a common cone will also exist. Now, if pb and pc lie in
the same side, pbpc does not intersect the common cone.
A line lying in the middle of pb and pc, which is necessary
for a parallel grasp, must intersect with the segment pbpc.
However, since pb and pc lie completely in one outer
region, every point in pbpc also lies in that outer region. It
follows that if we pick some points on pbpc and use it to
define a middle line, the other two lines passing through pb

and pc that are parallel to the first line will also lie outside
their respective common cone. Thus, at least one of them
must lie outside its friction cone. This completes the proof
as a contrapositive.

Since we are dealing with a polygonal object, we need
a condition that can check the existence of a parallel grasp
on polygonal edges. Proposition 2 can be extended to cover
an existence of a parallel grasp on three polygonal edges.
We define a union volume Ua

a,b,c of polygonal edges a, b
and c on edge a as the union of all common cones C∩

a,b,c

originated on every points of edge a. A union volume also
divides the plane into two outer regions. We can uniquely
identify the edge that contains a center point in the same
way as the case of point. This edge will be called the center
edge. Fig. 3 illustrates a union volume.

Proposition 3: A necessary and sufficient condition for
the existence of a parallel grasp on three polygonal edges
e1, e2 and e3, whose normals are n1, n2 and n3, is that
the two following conditions hold. (Pa) a common cone
C∩

n1,n2,n3
is not empty. (Pc) Let us assume that the edges
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Fig. 3. (a) Three edges and a common cone drawn on some points on
center edge. (b) A union volume.

that contain a center point is e1. The edges e2 and e3 do
not entirely lie in the same outer region separated by the
union volume U e1

e1,e2,e3
.

Proof: Let p2 be a point on e2 and p3 be a point on
e3. If two edges e2 and e3 do not entirely lie in the same
outer region, then there exists p2 and p3 such that the line
p2p3 intersects with the union volume. According to the
definition of the union volume, the point on the intersection
of p2p3 and the union volume must lie in a common cone
of some point on e1. Let us assume that the origin of that
common cone is p1. Three points p1, p2 and p3 must form
a parallel grasp according to Proposition 2. This complete
the proof for the sufficient condition.

For the necessary side, since e2 and e3 entirely lie on the
same outer region, every pair of point p2 on e2 and p3 on
e3 also lies outside the union volume. From the definition
of the union volume, we know that for every point p1 on
e1, any pair of p2 and p3 will lie outside the common cone
originated at p1. From Proposition 2, we know that there
can not be a parallel grasp. Thus, the proof is completed.

Now, we’ve already discussed the parallel grasp. The
next section describes a regrasp process and proposes a
structure that is used in the regrasp planning.

III. SWITCHING GRAPH

Regrasp is a process of repositioning contact points of
robot fingers. Two primitive forms of repositioning are
Finger Switching and Finger Sliding. To determine an
appropriate sequence of these two processes, we introduce
a structure called a switching graph. A node in a switching
graph represents a set of parallel grasps on three particular
polygonal edges. An edge connecting two nodes indicates
that there exists a grasp associated with one node that can
be switched to a grasp associated with the other by finger
switching. By using a switching graph, the regrasp problem
can be formulated into a graph search problem. A path
from the graph search determines a sequence of actions –
switching and sliding to be executed in order to traverse
from the initial to the final grasp. The following sections
will describe the finger switching and sliding primitives
and the switching graph in detail. The use of a switching
graph is presented in section IV.

(a) (b) (c)

Fig. 4. (a) Initial grasping configuration (b) A result of finger Switching.
(c) a result of a finger sliding

A. Finger Switching and Finger Sliding

Regrasp process which changes grasping configuration
by placing an additional finger on desired contact point
and then releasing one finger of the initial grasp is called
finger switching. For example, let us assume that a starting
grasp holds a polygonal object on points a, b and c and
we want to switch to a grasp holding points b, c and d.
A finger switching process starts by placing an additional
finger on d and then releasing the finger at a. If both
grasps satisfy the force-closure property, the entire process
still holds the force-closure property. For the case of four-
fingered hand grasping a polygonal object, finger switching
requires that two grasping configurations must have two
contact points in common and both of them achieve force
closure. We call the two common points as non-switching
contact points. Finger switching corresponds to an edge
of switching graph. We will focus on this topic in section
III-C.

Finger sliding is a process for repositioning fingers by
sliding them along edges of a polygon while maintaining
a force closure grasp during the sliding process. Using this
process, we can change grasping configuration with in the
same set of parallel grasps. This means the relation between
finger sliding and a node of switching graph which will be
explained in section III-B. However, finger sliding may be
hard to implement mechanically since it is required that
fingers must always touch the edge during sliding. Finger
switching can imitate finger sliding by switching fingers
from the initial to the final position of the sliding. Examples
of finger switching and sliding are shown in Fig. 4.

B. Nodes in a Switching Graph

A node in a switching graph represents a set of parallel
grasps on three particular edges. We denote va,b,c as a
node that applies on polygonal edges a, b and c. There
will be a node va,b,c in the graph if and only if there
exists a set of parallels grasp on three edges a, b and
c. In other words, each combination of three edges of
a polygon will be associated with exactly one node. We
use Proposition 3 to directly determine whether a node
corresponding to a particular combination of edges exists
in the graph or not. One grasping configuration can be
changed to another by finger sliding when two of them are
in the same node of the graph. We define a grasping set
Ga,b,c as a set of all grasping configurations represented as
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Fig. 5. (a) Unswitchable grasp (b) Switchable grasp

a triple of points (pa, pb, pc) on polygonal edges a, b and
c that form a parallel grasp. Each node in the switching
graph corresponds to exactly one grasping set. Every grasp
in each node can be repositioned to another grasp of the
same node by finger sliding because of continuity in a set
of parallel grasps for each triple of polygon’s edges.

C. Edges in a Switching Graph

An edge linking two nodes, va and vb, indicates that
a finger switching can be performed between a grasping
configuration in va and the other in vb. Finger switching
requires that two non-switching contact points must remain
the same during the process. It follows that there will
be an edge connecting two nodes when there are two
grasping configurations, each of which belongs to each
node, that use the same grasping points on the non-
switching polygonal edges. Fig. 5 shows some examples
of valid and invalid finger switchings. In Fig. 5(a), a grasp
on edges a, b, c, where a is the center edge, can not switch
to a grasp on edge b, c, d where d is the center edge. Edge
c restricts graspable part of b to be inside the union volume
of a for a grasp on (a, b, c). The same goes for a grasp on
(b, c, d) which also restricts graspable part of b to be inside
the union volume of d. These two areas are disjoint which
mean that we cannot switch. In a contrary, Fig. 5(b) where
a grasp on (a, b, c) (b as a center edge) can switch to a grasp
on (b, c, d) (c as a center edge) because each pair of points
on b and c is common for both grasps. Formally, there
will be an edge connecting a node va,b,c and a node vb,c,d

when there exists a triple of points (pa, pb, pc) ∈ Ga,b,c

and a triple (p′b, p
′

c, p
′

d) ∈ Gb,c,d such that pb = p′b and
p′c = p′c.

To check that we can switch between a grasping edge
set {a, b, c} and an edge set {b, c, d}, we compute two
polytopes representing each grasping set. Let a be an edge
with an end point a0 and a unit direction ta. The length
of a is la. A point pa on an edge a can be represented
by pa = a0 + uata where ua ∈ [0, la]. By using this
representation, we can represent a set of all grasping con-
figurations Ga,b,c by a polytope in three dimensions, each
dimension represents a value of ua, ub and uc, respectively.
Let P1 be the polytope for edges {a, b, c} and P2 be
the polytope for edges {b, c, d}. The space of P1 and P2
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Fig. 6. (a) A polytope representing possible grasping points (in term of
ua, ub and uc (b), (c) two polytopes and their projections. (d) Intersection
of the projected polygon representing a set of common points for a finger
switching.

have two components (axes) in common, namely the axes
of ub and uc. These components correspond to the non-
switching edges, i.e., the common edges of both grasps.
The projection of P1 on the space of these two components
represent the set of points on edges b and c that a parallel
grasp on a, b and c is possible. Similarly, the projection of
P2 represents a set of points for a parallel grasp on b, c
and d. If the intersection between these two projections is
not empty, then there exists points on b and c that form a
parallel grasp on both a, b, c and b, c, d. The reverse is also
definitely true. Fig. 6 depicts the projection process.

The polytope P is defined by a set of linear constraints.
For a polytope of a, b and c, a point is constrained to be
on a polygonal edge. We define length constraints

0 ≤ ux ≤ lx for x = a, b, c (1)

Next, a set of constraints that bounds the contact point
to satisfy Proposition 2 is presented. Let us assume that
the center edge is a and the others are b and c. Intuitively,
if one point pb on b lies in an outer region (separated by a
common cone of some point pa on a), the second point
pc on c must be in a common cone of the third point
or in the other outer region. However, the feasible area
may not be convex so we construct it from a union of six
convex polytopes. We define constraints for each of them
as follows.

K0 ≡

{
n0 ·

−−→papb ≥ 0
n1 ·

−−→papb ≥ 0
n0 ·

−−→papc ≤ 0
n1 ·

−−→papc ≤ 0

(2)
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K1 ≡

{
n0 ·

−−→papb ≤ 0
n1 ·

−−→papb ≤ 0
n0 ·

−−→papc ≥ 0
n1 ·

−−→papc ≥ 0

(3)

K2 ≡
{ n0 ·

−−→papb ≥ 0
n1 ·

−−→papb ≤ 0
(4)

K3 ≡
{ n0 ·

−−→papc ≥ 0
n1 ·

−−→papc ≤ 0
(5)

K4 ≡
{ n0 ·

−−→papb ≤ 0
n1 ·

−−→papb ≥ 0
(6)

K5 ≡
{ n0 ·

−−→papc ≤ 0
n1 ·

−−→papc ≥ 0
(7)

Where n0 and n1 are the normal vector of left margin
and right margin of the common cone respectively (see
Fig. 7). The first two constraints, K0 and K1, are cases
that ub and uc are on two distinct outer regions separated
by a common cone at ua while the others are for the others
when ub or uc are the common cone. Each sub-polytope
P′

i
are defined as a convex hull constrained by Eqs. (1) and

Ki.
When six sub-polytopes P′

0
. . . P′

5
are constructed, we

find its projection on a non-switching plane by examining
its extreme points. For each sub-polytope, we project
every extreme point of it on the non-switching plane and
construct a convex hull from these points. The union of all
projected convex hulls is a projection of the entire polytope.

At this point, a node and an edge in a switching grasp is
described in detail. The next section describes the overall
process of constructing a switching graph.

D. Computing a Switching Graph

To construct a switching graph, we start by building
all nodes. Once all nodes are computed, every pair of
nodes having two edges in common is checked for an
edge by using a method described in section III-C. To save
time, when a node is computed in the first step, we do a
preprocessing of computing a projection of its polytope on
all three pairs of planes (plane (ua, ub), plane (ub, uc) and
plane (ua, uc)).

We compute all nodes by using a condition (Pa) in
Proposition 3 for pruning. First, we sort every polygonal
edge according to an angle between its normal and the x-
axis. After that, we generate a triple of three edges that

satisfies (Pa) and is checked against (Pc) to see whether it
constitutes a node. The algorithm is shown in the following
pseudo code. Let ei represent ith edge in the sorted list and
mi is an angle between the normal of ei and the x-axis.
1: FOR i = 1 to n DO
2: α = mi

3: j = (i + 1) mod n
4: WHILE mj < α + 2θ DO
5: β = mj

6: FOR each k such that
β + π − 2θ < mk < α + π + 2θ DO

7: IF ei, ej , ek satisfy Pb THEN
8: create a node for edges ei, ej , ek

9: j = (j + 1) mod n

First, we iteratively select an edge. The first edge limits
that the angle of a normal vector between itself and a
second edge must be less than 2θ. Once a second edge
is selected, the angle of a third edge is also limited. Let α
be the angle of a first edge and β be the angle of a second
edge. The angle of a third edge must be in the open range
of (β + π − 2θ, α + π + 2θ).

IV. USING SWITCHING GRAPH

A switching graph provides a tool for planning a regrasp
sequence. A path connecting the node containing the initial
grasping position and the node containing the required
grasping position indicates a sequence of edges that a
finger switching should be performed. However, a path in
a switching graph does not directly indicate which contact
points on grasping edges are to be used in each step. For a
pair of nodes having an edge connecting them, a switching
graph tells us that we can switch between two grasps on
these four edges but it does not tell which grasping points
that we can do a finger switching. This section describe a
method of transforming a path in a switching graph to an
actual regrapsing sequence.

First, let us consider a finger switching. Finger switching
takes place when we move from one node to another
node in a graph. An edge in the graph tells us that a
finger switching is viable. We have to find two grasps
on each node that have two non-switching contact points
in common. We randomly pick a point from the same
intersection of the projections described in section III-C.
That point indicates two actual points on non-switching
edges. The next step is to find a point forming a grasp of
the first node and a point forming a grasp of the second
node. Let us consider a polytope defined in section III-C.
Once a value of (ub, uc) in the intersection of projected P1

and P2 is chosen, we can construct a set of feasible contact
points for the other two fingers by substituting ub, uc in (2)
to (7) with the chosen values.

Next, let us consider a finger sliding. Finger sliding may
be required in-between two finger switching, i.e., when we
just traversed from node va,b,c to node vb,c,d and about
to move to the next node vb,c,f . Let us assume that the
first finger switching is just performed and we currently
are in a grasp represented in vb,c,d. In order to perform
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Fig. 9. Example polygons used in the experiment.

the next finger switching, i.e., to move to the node vb,c,f ,
the grasping position must have two contact points in
common with the final grasp. However, it might not be the
current grasp. When an appropriate grasping configuration
is computed as described earlier in this section, we have
to change from the finishing grasp of the first switching to
the a next switching. Since these two grasps lie on same
polygon’s edges, we can change the current grasp to an
appropriate grasp for the next switching by a finger sliding.
Fig. 8 shows the corresponding between a switching graph
and the actual action performed on a regrasp.

V. EXPERIMENT AND RESULT

A program for planning a regrasp is implemented. The
program uses the algorithm proposed in the section III-
D for construction of a switching graph. Fig. 9 shows the
testing polygons used in the experiment. The method in the
section IV computes the actual sequence of regrasp actions.
The time used for a computation of a switching graph and
a regrasp action is measured. Table I shows details of each
polygon and the time used by the implementation with
half friction cone angle of 10 degrees. The column “build
time” is the time used to construct a switching graph. The
program was implemented in C++ and tested on Pentium
IV 1.8GHz running Windows. Fig. 10 shows an actual
sequence of regrasp process.

VI. DISCUSSION, CONCLUSION AND FUTURE WORK

We proposed a method for planning a regrasp of a
polygon by extending the idea of the switching graph
to cover a three-fingered parallel grasp. A necessary and
sufficient condition for the existence of a parallel grasp

(c)

(e)(d) (f)

(a) (b)

Fig. 10. (a)–(f) Actual regrasp sequence. A contact point with dashed
cone is the new grasping point of a finger switching.

TABLE I
RESULT OF THE IMPLEMENTATION

Fig. #Polygonal
edge

Switching Graph
#node #edge build time(s)

9(a) 15 11 14 0.42
9(b) 20 31 74 0.72
9(c) 25 81 399 2.06
9(d) 30 62 202 1.88
9(e) 35 122 552 3.52
9(f) 40 249 1779 6.41

is presented and used in the computation of a node in a
switching graph. A method based on linear constraints is
used to check a feasibility of a finger switching between
two nodes. The work restricts that the friction coefficient
is less than 1 which is quite general for most robot hands.
By restricting the friction cone, we can eliminate what is
usually not required for most robot hands.

We would like to extend our work to unite the switching
graph for concurrent grasps, parallel grasps and 2-fingered
grasps. The extension of the condition for a parallel grasp
and a feasiblility of a parallel grasp finger switching to 3-D
case are also interesting topics.
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