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Abstract: It was shown in [12] that four-finger force-
closure grasps fall into three categories: concurrent,
pencil, and regulus grasps. We propose new tech-
niques for computing these three types of grasps. We
have implemented them and present examples.

1 Introduction

We address the problem of computing stable four-
finger grasps of three-dimensional polyhedral objects.
More precisely, we consider force-closure grasps, such
that arbitrary forces and torques exerted on the
grasped object can be balanced by the contact forces
exerted by the fingers, and assume hard-finger point
contact with Coulomb friction.

There 1s an abundant literature on force-closure
grasp planning: Kerr and Roth [4] give a numerical
search algorithm for optimizing the equilibrium forces
applied by the fingers, while Ji and Roth present an
analytical method for computing these forces in the
three-finger case [3]. Mishra, Schwartz, and Sharir
[7] and Markenscoff, Ni, and Papadimitriou [5] pro-
pose linear-time algorithms for computing at least one
force-closure grasp of a polyhedral object. Nguyen
gives a geometric method for finding maximal inde-
pendent two-finger grasps of polygons [8]. Omata
uses fractional programming methods for manipulat-
ing polygonal objects with two fingers in the plane
[9]. Ponce and Faverjon use linear programming to
compute maximal independent three-finger grasps of
polygonal objects [10]. Ferrari and Canny [2] and Mir-
tich and Canny [6] compute optimal grasps of polygo-
nal objects by maximizing the set of external wrenches
that can be balanced by the contact wrenches.

In [12], Ponce, Sullivan, Boissonnat and Merlet
show that four-finger force-closure grasps fall into
three categories: concurrent, pencil, and regulus
grasps. In the case of concurrent grasps, they also
give a sufficient condition for equilibrium which is lin-

ear in the position of the fingertips and of the point
where the contact forces intersect. This allows them
to compute all regions satisfying these constraints in
the eight-dimensional configuration space of the grasp
through projection and linear programming.

In this paper we give a new characterization of equi-
librium which is valid for any four-finger grasp (Propo-
sitions 3 and 4). Tt is the basis for new methods for
computing all three types of four-finger force-closure
grasps. Like the approach proposed in [12], these tech-
niques rely on linear programming, but by using a
completely different grasp parameterization (in terms
of focus points instead of fingertip positions), they
avoid the projection step which is the most costly part
of their predecessor.

We have implemented the proposed approach and
present several examples (Figure 8). Mathematical
details have been omitted for the sake of conciseness
and can be found in [12, 13, 15].

2 Equilibrium and Force-Closure

We begin by recalling classical definitions and facts
about force closure and equilibrium. We then give,
without proof, two new propositions that characterize
four-finger equilibrium (Propositions 3 and 4).

A hard finger in contact with some object at a point
x exerts a force f with moment x x f with respect to
the origin, but it cannot exert a pure torque. Force
and moment are combined into a six-dimensional zero-
pitch wrench w = (f,x x ). Under Coulomb friction,
the set of wrenches that can be applied by the finger
is:

W={{f,xxf):feC},

where ' denotes the friction cone at x.

A d-finger grasp is defined geometrically by the po-
sition x; (i = 1, .., d) of the fingers on the boundary of
the grasped object. We can associate with each grasp
the set of wrenches W C IR® that can be exerted by



the fingers. If we denote by W; the wrench set associ-
ated with the i*? finger, we have

d
W:{Zwi:WZ'EVVZ'forizl,...,d}.

=1

Definition 1 A grasp is said to achieve force closure
when the corresponding wrench sel W is equal to IR°.

In other words, a grasp achieves force closure when
any external wrench can be balanced by wrenches at
the fingertips. A somewhat weaker condition is equi-
librium, defined below.

Definition 2 A grasp is said to achieve equilibrium
when there exist forces (not all of them being zero) in
the friction cones at the fingertips such that the sum
of the corresponding wrenches is zero.

Formally, it is shown in [7, 8] for example that
force closure implies equilibrium. More interestingly,
the converse is also true for non-marginal equilibrium
grasps, 1.e., grasps such that the forces achieving equi-
librium lie strictly inside the friction cones at the fin-
gertips.

Proposition 1 [12] A sufficient condition for four-
finger force closure is non-marginal equilibrium.

Thus, grasps achieving equilibrium with non-zero
forces for some friction coefficient achieve force closure
for any strictly greater friction coefficient.

The zero-pitch wrench w = (f,x x f) associated
with the force f can also be thought of as a coordinate
vector for the line of action of this force. In this case,
the six coordinates of w are called the Plucker coor-
dinates of the line, and equilibrium trivially implies
that the lines (or the Pliicker vectors) associated with
the contact forces are linearly dependent. Grassmann
geometry [1] characterizes the varieties of various di-
mensions formed by sets of dependent lines, and it
can be used to characterize four-finger equilibrium as
follows (Figure 1).

Proposition 2 [1] Four linearly-dependent lines ei-
ther lie in a single plane, intersect in a single point,
form two flat pencils having a line in common but lying
mn different planes, or form a regulus.

The lines in a regulus lie on a doubly-ruled hyper-
boloid of one sheet (Figure 1(d)). A regulus can also
be defined as the set of lines intersecting a fixed set of
three skew lines (Figure 1(e)).

From now on we restrict our attention to non-
planar grasps, i.e., to sets of contact forces whose lines
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Figure 1. Configurations of linearly-dependent lines: (a)
coplanar lines, (b) concurrent lines, (c) two flat pencils
having a line in common, (d)-(e) a regulus.

of action do not all lie in the same plane. As noted
in [12], Proposition 2 trivially implies that a necessary
condition for non-planar equilibrium is that the con-
tact forces all intersect in a point (concurrent grasps),
lie in two flat pencils having a line in common (pencil
grasps), or form a regulus (regulus grasps).

Figure 2 shows examples of each type of equilib-
rium grasp. In each case, the four forces have been
grouped into pairs whose directions lie in two planes.
In Figure 2(a), the four lines intersect in a point that
lies in both planes, while in Figure 2(b) the two pairs
of lines have been pulled apart, each pair of lines in-
tersecting on the line formed by the intersection of the
two planes. Finally, in the regulus case, the lines in
each pair do not intersect anymore; they lie parallel
to the original plane at a common distance from it
(Figure 2(c)). Tt is intuitively obvious that the three
grasps shown in Figure 2 achieve equilibrium, and this
is easily confirmed by a simple calculation.
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Figure 2. FExamples of force configurations achieving
equilibrium: (a) concurrent grasp, (b) pencil grasp, (c)
regulus grasp. The contact faces are not shown.

(@) (b) (c

Four-finger equilibrium grasps are completely char-
acterized by the following proposition, which general-
izes the condition given in [12].



Proposition 3 [13] A necessary and sufficient con-
dition for four non-coplanar points to form an equilib-
rium grasp with four non-zero contact forces is that:
(P1) there ezist four lines in the corresponding double-
stded friction comes that either intersect in a single
point, form two flat pencils having a line in common
but lying in different planes, or form a regulus, and
(P2) the vectors parallel to these lines and lying in the
internal friction cones at the contact points positively
span IR®.

We now give a sufficient (but not necessary) condi-
tion for equilibrium. We first need a definition.

Definition 3 We say that four wvectors 6-positively
span IR® when, for any triple uy,us,us of these vec-
tors, the cones C1,C5,C5 of half-angle 8 centered on
ui, us, and ug lie in the interior of the same half-
space and the cone —Cy of half-angle 8 centered on
the direction opposite to the fourth vector uy lies in
the interior of the intersection of the trihedra formed
by all triples of vectors belonging to C, Cs, and Cs
(Figure 3).

"
Figure 3. Four vectors #-positively spanning R?. Tias
is the intersection of the trihedra formed by all triples of
vectors belonging to C1, Cs, and Cs.

Clearly, any vector in —C/y lies in the interior of the
trihedron formed by any vectors in C, (5, and Cs.
If # denotes the friction cone half-angle, the following
proposition is a simple corollary of Proposition 3.

Proposition 4 [13] A sufficient condition for four
non-coplanar points to form an equilibrium grasp with
four non-zero contact forces is that: (P1) there exist
four lines in the corresponding double-sided friction
cones that either intersect in a single point, form two
flat pencils having a line in common but lying in dif-
ferent planes, or form a regulus, and (P3) the surface
normals at the four contact points O-positively span

R

The main advantage of Proposition 4 over Propo-
sition 3 is that it replaces the condition (P2) — which
depends on the actual contact forces’ directions— by
condition (P3) —which only depends on the normals
to the grasped faces. This will allow us to use linear
programming as a basis for the grasp planning ap-
proach presented in the next section: in each case, we
will first select faces whose normals satisfy (P3), then
compute the grasp configurations satisfying (P1).

3 Grasp Planning

We now present algorithms for computing concur-
rent, pencil, and regulus grasps. In each case, we pa-
rameterize the grasp by a set of focus points, from
which we then compute the corresponding finger po-
sitions.

In both the concurrent and pencil cases, we actu-
ally compute mazimal independent regions where the
fingers can be positioned independently while main-
taining force closure (a concept introduced by Nguyen
in the two-dimensional two-finger case [8] and since
then used in [10, 12, 13] for example). The results of
our implementation are presented at the end of this
section.

3.1 Concurrent Grasps

In this case the focus point is naturally the inter-
section xg of the contact forces.

When the normals to the contact faces satisfy (P3),
it follows immediately from Proposition 4 that a suf-
ficient condition for equilibrium is that there exists a
point in the intersection of the friction cones at the
contact points. Equivalently, we obtain the following
proposition.

Proposition 5 A sufficient condition for four fingers
to form an equilibrium grasp is that the four surface
normals B-positively span IR® and there exists a point
Xg such that the inverted friction cones at this point
intersect the four contact faces.

A necessary and sufficient condition for the inverted
cone at xg to intersect a face F' is that the projection
yo of x¢ onto the plane P of the face F' lies within
the face grown by dtané, where d is the Euclidean
distance between xg and P (Figure 4).

As shown in Figure 4, the grown face is bounded
by straight and circular edges. We can approximate
each circular arc by a polygonal arc (this is equivalent
to approximating a friction cone by a pyramid [12]),
and, for convex faces, the condition 1s now linear in
the coordinates of xq.



grasped face

grown face

Figure 4. Writing that the inverted friction cone in xq
intersects the face is equivalent to writing that xo projects
inside the grown face

For a set of four faces whose normals #-positively
span IR?, the set of equilibrium grasps is thus given by
the set of points x¢ satisfying the linear conditions as-
sociated with each face. Note that each valid point xq
yields four independent contact regions where fingers
can be placed independently while ensuring force clo-
sure: these regions are simply the intersection of the
inverted cones in xg with the contact faces (Figure 5).
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Figure 5. A contact region on face F.

We compute grasps which maximize the size of
these regions. Unfortunately, the area of the contact
region cannot be expressed linearly as a function of
Xg. A reasonable alternative is to use the largest disc
contained in the region as a representative of the area.
Finding the maximal contact regions reduces to find-
ing a configuration maximizing the radius of the small-
est of the four discs. This is indeed a linear program.

The main advantage of this method over the pro-
jection method presented in [12] is that all compu-
tations are performed in a three-dimensional config-
uration space instead of an eleven-dimensional one.
Hence the new method is much more efficient. On the
other hand, the maximal independent regions that it
finds are usually smaller than the regions found by the
projection algorithm.

3.2 Pencil Grasps

The idea of the construction is as follows: we con-
struct two focus points ¢; and co and project these
points onto the contact faces. We then construct grasp
discs centered at the projections such that for any

quadruple of points in these discs we can construct a
quadruple of forces achieving equilibrium (Figure 6).

(b)

Figure 6. Notation for pencil grasps.

In the following, the subscript 7 is used to index ob-
jects associated with pencil number ¢ (i = 1,2), while
the subscript j is used to index objects associated with
face number j (j = 1,2) of a given pencil.

We denote by P; the vector plane perpendicular to
both faces F;; and F; 2, and define the vector u as
the intersection of P; and P>. Let xg denote some
reference point, and k& be some parameter, we define
¢1 = Xg + ku, ¢ = x¢ — ku. The points ¢; and cs are
the two focus points of our grasp.

We denote by q;; the projection of the point ¢;
onto the face F;; (Figure 6(a)). From Proposition
4, if the normals to the faces Fj;; 6-positively span
IR?, there exist forces along the lines (i, ¢;) which
achieve equilibrium.

Let D; ; denote the disc of radius r centered in q; ;.
The four discs D; ; (4, j = 1,2) will be our four grasp
discs (Figure 6(b)). Clearly, any line joining a point
of D; 1 to a point of D; - lies in the cylinder C; with
radius r whose axis is the line joining q; 1 to q; 2.

We denote by V; ; the intersection of the pyramidal
friction cones associated with pointsin D; ;, and by V;
the intersection of V; 1 and V; ». Clearly, V; 1, V; 2, and
Vi are convex and non-empty (the point ¢; belongs to
all three convexes). If B; denotes a ball of radius R
centered in ¢; and enclosed in V;, any point in B; lies
in the friction cone of any point in the disc D; ;.

Let us denote by C the cylinder of radius R tan-
gent to the two balls By and By. If R > r, and, for
1,7 = 1,2, x; ; denotes a point in D, ;, we can con-
struct equilibrium forces as follows. The line L; join-
ing x; 1 to x; 2 lies within Cj, and since both the axes
of cylinders C; and C' lie in the plane P;, L; necessarily
intersects C'.

Let y; denote a point in the intersection of L; and
C', and denote by L the line joining the points y; and



y2. Clearly L intersects both By and B-, and if z; 1s
a point in the intersection of B; and L, then the four
lines (x1,1,21), (X1,2,21), (X2,1, 22), (X2,2,22) form the
desired pencils of lines.

It is easy to see that all of the constraints that must
be satisfied by the variables involved in the construc-
tion of the pencils are linear, and maximal indepen-
dent regions are found by maximizing r under these
constraints.

3.3 Regulus Grasps

In this section we give a simple method for con-
structing regulus grasps that achieve equilibrium (Fig-

ure 7).

Figure 7. Notation for regulus grasps.

We use the following construction. Given four faces
whose normals 6-positively span IR? and a reference
point xg we define the focus points ¢; and ¢5 as before.
We also define, for + = 1,2, the points d; ; = ¢; + ;n;
and d; » = ¢; — I;n;, where n; is the unit normal to
P;.

Let v; denote the unit vector such that (u,v;,n;)
is a right-handed orthonormal basis, we define the di-
rections

{fm = xiu+ Y vi + 40,
fi2 = xyu — y;vy — zimy,

and the corresponding contact points

xi1=dj1 — 1,
Xio =djo— £ o

Clearly, the four lines passing through the points
x;,; with directions f; ; are linearly dependent. We can
therefore construct equilibrium regulus grasps through
linear programming: we minimize the maximum of
the L°° distances between the contact points and the
centers of the contact faces under the constraints that
the points x;; belong to the contact faces and the
directions f; ; belong to the corresponding pyramidal
friction cones. These constraints are indeed linear in
all the parameters.

It should be noted that this method allows us to
construct grasps that would not achieve equilibrium
in the frictionless case (the directions f; ; are not nec-
essarily parallel to the faces’ normals), but that, so far,
we have not been able to come up with a method for
constructing independent grasp regions in the regulus
case.

3.4 Implementation and Results

We have implemented the three algorithmsin C, us-
ing the simplex routine from Numerical Recipes in C
[14] for linear programming. Figure 8 shows some ex-
amples of results. In all cases, we have used a value of
ten degrees for the angle 8, and the fingers are shown
as long dark lines. In the concurrent and pencil cases,
the fingers have been positioned at the center of the
corresponding independent grasp regions. Our pro-
grams took less than ten seconds of CPU time on a
SUN SPARCstation 10 to compute all of the force-
closure grasps of each object.

4 Discussion

We have presented a geometric characterization of
four-finger equilibrium and force closure, given algo-
rithms for computing concurrent, pencil, and regulus
grasps of polyhedral objects, and demonstrated effi-
cient implementations of these algorithms. Let us
conclude by discussing some of the issues raised by
our work and by sketching some future research direc-
tions.

We believe that pencil and regulus grasps will prove
useful in practice: for example pencil grasps may be
used to manipulate elongated objects for which con-
current grasps do not exist, maybe using two cooperat-
ing robots equipped with simple two-finger grippers.
One can also imagine manipulation tasks where two
pairs of fingers twist a screw and the mating nut in
opposite directions until a regulus grasp is obtained.

It is clear that our approach to pencil and regu-
lus grasp computation is limited to a subset of these
grasps: 1n both cases, we have chosen an arbitrary
direction for the line joining the focus points. This
choice was motivated by our use of linear program-
ming as a basis for grasp planning. Likewise, we have
not been able to compute maximal independent re-
gions in the regulus case using linear programming.
An alternative would be to use non-linear cell decom-
position techniques to characterize all regions of the
grasp configuration space that yield stable pencil and
regulus grasps (see [11] for a similar approach in the
two-dimensional, two-finger case).
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Figure 8. Examples of grasps computed by our imple-
mentation: two concurrent grasps (top), a pencil grasp
(middle), two regulus grasps (bottom).

It would also be interesting to compute four-finger
grasps that are optimal according to some functional
consideration: for example, given a fixed set of contact
points and some bound on the magnitude of the con-
tact forces, Ferarri and Canny [2] propose to compute
a maximal ball centered at the origin and contained
in the convex formed by the contact wrenches; clearly,
the contact forces can generate any wrench contained
in this ball, and its radius provides a measure of the
grasp’s efficiency. Computing a four-finger grasp con-
figuration which is optimal according to this criterion
is a much more challenging non-linear problem that
we plan to address in the future.
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