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Abstract: This paper addresses the problem of grasp-
ing and manipulating a polygonal object with three
disc-shaped robots capable of translating in arbitrary
directions in the plane. The main novelty of the pro-
posed approach is that it does not assume that con-
tact is maintained during the execution of the grasp-
ing/manipulation task. Nor does it rely on detailed
(and a priori unverifiable) models of friction or contact
dynamics. Instead, the range of possible object mo-
tions for a given position of the robots is characterized
in configuration space. This allows the construction of
manipulation plans guaranteed to succeed under the
weaker assumption that jamming does not occur dur-
ing the task execution.

1 Introduction

This paper addresses the problem of manipulating a
planar polygonal object with three disc-shaped robots
capable of translating in arbitrary directions in the
plane. In practice, the discs may be the fingertips of
a robot hand or independently-moving mobile plat-
forms.

We propose an algorithm for grasping the object
and bringing it to a desired position and orientation
through sequences of individual straight-line robot
motions. This algorithm guarantees that the object
will never escape from the robots’ grasp, even when
contact is broken during the initial grasping phase or
the subsequent manipulation stage. It does not re-
quire synchronizing the motion of the discs, and only
assumes that each one of them can be moved in turn
along a given straight line trajectory.

The proposed approach is based on a detailed anal-
ysis of the geometry of the joint object/robot config-
uration space. Instead of trying to predict the ex-
act motion of the object, we characterize the range
of possible motions associated with each position of
the robots and identify the “minimal” robot configu-
rations for which the object is totally immobilized as
well as the “maximal” ones for which there is a non-

empty open set of object motions within the grasp,
but no escape path to infinity.

2 Background and Approach

When a hand holds an object at rest, the forces
and moments exerted by the fingers should balance
each other so as not to disturb the position of this
object. We say that such a grasp achieves equilib-
rium. For the hand to hold the object securely, it
should also be capable of preventing any motion due
to external forces and torques. This is captured by
the dual notions of form and force closure from screw
theory [6, 13, 18], that constitute the traditional the-
oretical basis for grasp planning (see, for example,
[8, 10, 11, 12, 17]). Recently, Rimon and Burdick have
introduced the notion of second-order immobility [20]
and shown that certain equilibrium grasps of a part
which do not achieve form closure effectively prevent
any finite motion of this part through curvature effects
in configuration space. Algorithms for computing im-
mobilizing grasps of planar and three-dimensional ob-
jects can be found in [15, 16, 23].

We introduced in [22, 23] the notion of inescapable
configuration space (ICS) region for a grasp. This no-
tion generalizes the concept of immobility: an object
is immobilized when it rests at an isolated point of its
free configuration space. By moving the fingers in an
appropriate way, this isolated point transforms into a
compact region of free space (the ICS) that cannot be
escaped by the object. ICS regions were first intro-
duced in the context of in-hand manipulation with
a multi-fingered reconfigurable gripper [22, 23] (see
[19] for a related notion in the two-finger case, and
[1,2,3,5,7,9, 14, 21] for other approaches to pushing
and manipulation). Here, ICS regions will allow us to
move an object by pushing it with three moving discs
moving along straight lines: starting from some immo-
bilizing configuration, we will move the robots one at a
time in some direction, then choose another direction
etc.. to achieve the desired translation and/or rota-



tion. The object will remain at all times in the ICS
region associated with the fingers, so that the planned
manipulation is guaranteed to be successful as long as
friction forces are not large enough to cause jamming.
In particular, our approach does not require that con-
tact be maintained during grasping or manipulation,
nor does it rely on any particular model of friction or
contact dynamics.

Let us show an example to illustrate this idea (Fig.
1). The polygon shown in Fig. 1(a) is immobilized
by the three discs since the three inward normals at
the contacts intersect [20]. In Fig. 1(c), we translate
one of the discs to a new position along the vector
v. During this motion, there is no path that will al-
low the polygon to escape the grasp of the three discs:
the polygon can move, but is constrained to remain
within the corresponding ICS region of free space. Fig-
ure 1(d)-(e) shows unsuccessful attempts to take the
polygon out of the grasp.

@ (b)

© (d)

Figure 1: A polygon constrained to remain in the ICS
region associated with the three robots.

3 Computing Maximum ICS Regions
We introduce formally in this section the concept of
an inescapable configuration space region. The anal-
ysis proceeds along the lines of [22, 23] by identifying
the constraints imposed by the robots in the configu-
ration space of the polygon. The general approach is
the same as in [22, 23] but the setting and the corre-
sponding constraints are of course different.
3.1 Contact
We reduce the problem of achieving contact be-
tween a disc and a line to the problem of achieving
point contact with a line. This is done without loss of

generality by growing the object to be grasped by the
disc radius and shrinking each disc into its center.

We attach a coordinate system (u,v) to the poly-
gon, and write in this coordinate system the equa-
tions of the line supporting the edge ¢; (i = 1,2,3)
as ucosa; + vsina; — d; = 0, where «; is the angle
between the v axis and the internal normal n; to the
edge, and d; is the distance between the origin of the
(u,v) coordinate system and the egde.

Without loss of generality, we also define a world
coordinate system (g, 7) such that the r axis is parallel
to the motion direction v and goes through the center
of the first (moving) disc. We denote by q; = (g;, ;)7
the position of the center of disc number ¢ in this co-
ordinate system. In particular, ¢; = 0 and r; = 9.

We can write the condition for contact between disc
number ¢ and the corresponding line as

q; = Rp; +t, (1)

where p; = (u;,v;)T and gq; = (g;,m;)T denote the
positions of the contact point in the two coordinate
systems, R is a rotation matrix of angle § and t =
(z,y)? is the translation between the two coordinate
frames. Let ¢; = cos(6 + «;) and s; = sin(f + «;), the
above equation can be rewritten as

(x —qi)ei + (y —ri)si +di =0, (2)

When the three contacts are achieved simultane-
ously, we have

1 S1 0s1 —ds T
Cy S Q202 + 19SSy — d> ] =0.
c3 83 Q33+ 7r3s3—ds -1

For this equation to be satisfied, the determinant
of the 3 x 3 matrix must be zero, which yields (after
some simple algebraic manipulation):

0sin(0+aq) + Az cos(0+ B2) + Az cos(0+ f3) — B = 0,
3)
where (s, 33 and As, A3, B are appropriate constants.
This condition defines a curve in 6, space, called
the contact curve. This curve is defined on the [0, 27]
interval, but an actual contact between the first disc
and the corresponding edge can only occur when the
angle between v and the internal normal to the edge is
obtuse, i.e., when 6 + «; € [, 27x]. It follows from the
form of its equation that the contact curve is in fact
bounded by two vertical asymptotes on that interval.
3.2 Equilibrium
At equilibrium, the various forces and moments ex-
erted at the contacts balance each other. This can be



written in the object’s coordinate system as

3
. n; _ A1, A2, A3 >0,
;Az <Pi < nl> =0, where { A+ o+ g = 1.
Using the change of coordinates (1) and taking ad-

vantage of the fact that Zle Ain; = 0 allows us to
rewrite this equation as

3
n; _
2N ((qui) x n> =0

which can be interpreted as a 3 x 3 homogeneous equa-
tion in the coeflicients A1, A2, A3. A necessary and suf-
ficient condition for this equation to have a non-trivial
solution is that its determinant be zero, i.e.,

ny no ns3
(R7'q) xm1 (R7'qy) xma (R7'q3) x 3

Expanding the determinant yields, after some ad-
ditional algebraic manipulation, the condition

dcos(f + ay) — Aasin(f + f2) — Az sin(@ + f3) =0,

and eliminating § between this equation and the con-
tact constraint (3) yields an equation in 6 only:

Ay As
cos(f+ay) = B cos(fy —az) + B cos(fs —ai). (4)

There are (at most) two solutions for this equation
in the [0, 27] interval. When they exist, exactly one
of them is in the interval of physically achievable con-
tacts. It is also easy to show that the corresponding
solution is a minimum of the contact curve. As in
[22, 23], this minimum corresponds to an immobiliz-
ing configuration [20].!

Figure 2 shows an actual example in the object’s
and disc’s coordinate frames. The triangle has to ro-
tate 60 degrees counterclockwise to be immobilized by
the matching discs (Fig. 2(c)). This is verified on the
contact curve shown in Fig. 2(e) where the minimum
occurs at 60 degrees in the physically realizable inter-
val. The maximum of the curve corresponds to the
configuration shown in Fig. 2(d), and it cannot be
achieved in reality: the first disc would have to lie
inside the triangle.

I The object will be immobilized even if there is no friction:
although this appears to contradict classical screw theory, which
states that three fingers are not sufficient to immobilize a two-
dimensional object in that case [6], recall that screw theory is
concerned with infinitesimal motions: there exists an escape
velocity but no finite escape motion. See [20] for details.
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Figure 2: A grasp and the corresponding contact curve.

3.3 Free Configuration Space Regions

Let us consider an immobilizing configuration of the
robots, and denote by g, yo, g, the corresponding
values of x,y,6,0. Let us also assume that the posi-
tions of robots 2 and 3 are held constant while the &
coordinate of the first robot may change.

We denote by S; the set of object configurations
(z,y,6) for which contact between disc number i and
the corresponding object edge is achieved. From (2),
this is a ruled surface in (z,y,0) space, whose inter-
section with a plane § = constant is a line L;(#) at
distance —d; from the fixed point (g;,7;) of the x,y
plane, and the angle between the z axis and the nor-
mal to this line is 8 + «;. Changing 6 corresponds to
rotating each line about the point (g;, ;). Changing §
amounts to translating the line L (6).

Together, the three ruled surfaces Si, Se and Ss
bound a volume V' of free configuration space. Given
the setup of the robots, it is obvious that if a con-
figuration lies in free space for some value d; of 9, it
also lies in free space for any other value o > d;. In
other words, V(61) C V(d2) when d2 > §1, and it fol-



lows that the immobilizing configuration (zg, yo, 6o) is
always in free space for d > dg.

In addition, the intersection of V with a plane
6 = coustant is a triangle 7'(f) that may contain an
open subset, be reduced to a point, or be empty. In
the second case, the three contacts are simultaneously
achieved, and (3) is satisfied.

It is easy to show that a necessary and sufficient
condition for the triangle T'(#) to contain at least one
point is that the point (6,6) be above the contact
curve. This allows us to characterize qualitatively the
range of orientations 6 for which 7'(8) is not empty:
for a given J, the condition (3) is an equation in
that may have zero, one, or two real solutions, with a
double root at the minimum § = Jy of the curve. In
this case, the range of orientations reduces to a single
point. For any value d; > dp, there are two distinct
roots €',0", and the range of orientations is the arc
bounded by these roots and containing 6.

In particular, since the volume V' is a stack of con-
tiguous triangles T'(#), it is clear at this point that, for
d > &g, V is a non-empty, connected, compact region
of R? x S'. The analysis confirms that the minimum
point (fg,d0) of the contact curve corresponds to an
isolated point of configuration space or equivalently to
an immobilizing configuration: indeed, for § = Jg, the
triangle T'(6y) is reduced to a point, and 7'(8) is empty
for any 6 # 6.

3.4 ICS Regions

The discussion so far has characterized the contacts
between the discs and the lines supporting the corre-
sponding edges, ignoring the fact that each edge is a
compact line segment. For a given value of §, let us
construct a parameterization of the set E;(6) of con-
figurations (z,y) for which disc number i touches the
edge ¢;. Obviously, E;(6) is itself a line segment sup-
ported by the line L;(6).

We first parameterize the corresponding edge e; by

U; COS (; — sin o
Cl=di | ) 4 ‘),
(7 Sin ¢ COS g

with 7; in some interval [7;1,7;2]. The segment E;(6)
can now be parameterized by

(o) =a() (). o

The counstraints 7;1 < 7 < ni2 (i = 1,2,3) define
the regions of configuration space where actual con-
tact will occur. When E;(0) and E;(0) intersect for all
i # 7, the three segments completely enclose the trian-
gle T'(A), and we will say that the corresponding con-
figuration satisfies the enclosure condition since there

is no escape path for the object in the z,y plane with
the corresponding orientation . More generally, when
all triples of segments in the range of orientations as-
sociated with a given § satisfy the enclosure condition,
V itself is an inescapable configuration space (ICS) re-
gion: in other words, the object is free to move within
the region V, but remains imprisoned by the grasp
and cannot escape to infinity.

3.5 Maximum ICS Regions

We now address the problem of characterizing the
maximum value ¢* for which V(§) forms an ICS re-
gion for any ¢ in the [dg, 0*] interval. We know that
at § = §p the three segments intersect at the immo-
bilizing configuration, forming an ICS region reduced
to a single point. Thus the enclosure condition holds
at 0 = dg.- On the other hand, as 6 — +oo, the
whole configuration space becomes free of obstacles,
thus there must exist a critical point for some mini-
mal value of § greater than dg. This guarantees that
0* has a finite value.

A critical configuration occurs when an endpoint
of the segment E;(f) lies on the line L;(8), j # i.
We intersect the lines L;(6) and L;(#) by substituting
the parameterization (5) in the contact equation (2).
Writing 1; = 1, (k = 1,2) yields

dj —d;cos(a; —a;) + (¢ — qj)cj + (ri — ;)8

ik = sin(a; — o)
(6)

It follows that critical points lie on one of the
six critical curves of (6,0) space defined by (6) for
i,j € {1,2,3} (i # j) and k = 1,2. Note that when
i,j € {2,3}, (6) is a function of 6 only, and the corre-
sponding critical curves are vertical.

We seek the minimum value of §* > §y for which
the range of possible object orientations defined by
the contact curve includes one of the critical config-
urations. Let us suppose first that a critical value
lies in the interior of the orientation range associated
with some §; > d¢p, and denote by iy the minimum
value of § on the critical curve. By definition, we have
01 > Omin. Suppose that d; > dmin- Then by conti-
nuity, there exists some 2 such that dy,i, < dy < 9y
and the corresponding range of orientations also con-
tains a critical orientation. The argument holds for
any value § > dpin- In other words, either the range
of orientations of dni, contains a critical orientation,
in which case 6* = dyin, or it does not, in which case
the critical value associated with 6* must be one of
its range’s endpoints. This is checked by intersecting
the contact curve and the critical curve. Note that
this process must be repeated six times (once per each



segment /vertex pair) to select the minimum value of
o*.

Figure 3 shows an example, where the contact and
critical curves have been constructed for some sam-
ple object (the contact curve is drawn with a thicker
brush). In this case, the minimum of the critical curve
occurs just below the contact curve, and the critical
configuration is the intersection of the two curves, ly-
ing at the right endpoint of the corresponding range
of orientations.
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Figure 3: The contact and critical curves for a sample
object. The critical range of orientations is shown as a
horizontal line. See text for details.

Computing the minimum of the critical curve
amounts to solving a trigonometric equation. It is
easily shown that intersecting the critical curve and
the intersection curve amounts to solving a quadratic
equation in tan(f/2) when i = 2,3 and j = 1, and
a quartic equation in the same variable when ¢ = 1,
J = 2,3. The intersection can be computed in closed
form in both cases.

4 Planning Grasping and Manipula-
tion Sequences

It is easily shown that the set of equilibrium (hence
immobilizing) grasps of a polygon can be identified
through linear programming, and various grasp opti-
mality criteria (e.g., [4, 8, 10, 16]) can be defined to
choose a particular immobilizing grasp among this set.
In this section, we will assume that an immobilizing
grasp has been selected and that the initial object po-
sition and orientation are known, and we will show
how to actually execute the grasp and then manipu-
late the polygon, moving the three robots one at a time
while guaranteeing that the object will not escape.

In the rest of this section, a joint configuration
of the polygon and the robots will be denoted by
q=(491,95,95,%,y,0), where g, is as before the posi-
tion of disc number i and (z,y, 8) denotes the polygon
configuration. Given an immobilizing configuration
q, MaxICS(q, i, v) will denote the maximum distance

that robot number ¢ can travel in the direction v while
guaranteeing that the object cannot escape.
4.1 Capturing and Grasping a Polygon

Given some input grasp configuration g, we choose
one of the discs (say the first one) and some direc-
tion v, say the external normal to the corresponding
edge, and compute 6 = MaxICS(¢,1,v) as described
in the previous section. To capture the object, we first
move the robots one by one from their home position
to g, + $6v, g, — $6v, and g3 — 36v. The polygon
is now guaranteed to be in the maximum ICS region
associated with the robots. We then translate the first
robot by —dwv.

Although the object may (and indeed will) move
when contact occurs, it will end up in the planned
immobilized configuration. Note that this approach is
robust to uncertainty in the position of the object, but
that it requires precise relative motions of the robots.

In the next two sections, we show how to achieve
arbitrary translations and rotations of the object once
it has been grasped. The overall motion will be de-
composed into atomic translations of the three fin-
gers along appropriate directions. The object will re-
mained imprisoned in the grasp of the three robots
during each motion.

4.2 Translating a Polygon

Let us assume that the object is currently immobi-
lized by the discs in configuration ¢, and let us show
how to apply the translation dv to the polygon. The
immobilizing configuration is shown in Fig. 4(a). To
translate the polygon, we will apply a translation Jv
to discs 2, 3, and 1 in succession. The problem is to
compute the maximum value of § guaranteeing that
the polygon cannot escape at any time. If d < §, we
will reset & to d before applying the translation. If
d > §, we will simply apply the same translation steps
as many times as necessary.

The first thing to note is that the object should not
escape the grasp when we move disc 2, so é must be
smaller than or equal to d» = MaxICS(q,2,v). Like-
wise, once we have moved discs 2 and 3 by dv, the
polygon should still be unable to escape, which implies
that ¢ must be smaller than §; = MaxICS(g, 1, —v).

Using the value ¢ = min(dy, d2) is not sufficient be-
cause the polygon may move when the contact with
discs 2 and 3 is broken. We use bisection to com-
pute the maximum value of ¢ in the [0, min(dy,d2)]
range such that both discs 2 and 3 can undergo a dv
translation while maintaining inescapability (Fig. 4):
For a given value of 4, we suppose first that disc 2
has already moved to its new position (Fig. 4(b)),
then find the translation ~ of disc 3 along v that will
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Figure 4: Translating a polygon.

yield a new immobilizing configuration, say ¢'(Fig.
4(c)). Consider now the net maximum translation
o' = MaxICS(¢’,3,v) — 7 that disc 3 may undergo
while guaranteeing that the polygon cannot escape. If
o' > ¢, we know that disc 2, then disc 3 can safely
undergo the translation dv: the bisection step is suc-
cessful and we increase the value of 6. If §' < 4, then
the bisection step has failed, and we try again with a
lower value of §. Figures 4 and 5 show respectively a
failed bisection step and a successful one.
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Figure 5: Translating a polygon: successful bisection step.

A pseudocode version of the algorithm is given be-
low. In it, ¢ denotes the initial configuration, the func-
tion ImTransls(q,, g+, g5, v) returns the distance that
g5 must travel along v to reach an immobilizing config-
uration, and the function ImConfig(q,, g, g;) returns
the object configuration associated with the contacts

q;- The output of these two functions is easily com-
puted using the contact and equilibrium conditions
(2), (3) and (4). The variables v and § below are re-
spectively the low and high values used to bound the
bisection.

1: q=(41,92,45,2,9,0);

2: 01 = MaxICS(q, 1, —v);

3: 02 = MaxICS(q, 2,v);

4: v =0.0;

5: if &2 > ;1 then § = 1

6: else § = dy;

7: do {

8: a5 = qy + 0v;

9: ~v = ImTransl;(q,, g5, qs,v);
10: 45 = g3 +7v;

11: (z',y',0") = ImConfig(q;, g5, q3) ;
12: ql = (qlaqéaql’o‘axlaylaal);
13: 03 = MaxICS(q', 3,v);

14: if 65—y > 6

15: then v = (6 +v)/2
16: else §=(0+v)/2

17: } until (§ —v <e¢);
18: return §.

So far, we have shown how to translate the poly-
gon in one direction. We can translate the polygon
in arbitrary directions using plans computed for three
directions only by switching the roles of the discs and
alternating between the three directions. If the cho-
sen directions positively span the plane, it is easy to
see that we can arrange a sequence of translations to
bring the polygon to any position. One simple choice
for these directions is the inward normals at the con-
tacts.

4.3 Rotating a Polygon

Some of the steps involved in translating a polygon
also prove useful in rotating it (Fig. 4): Starting in
some configuration ¢, we rotate the polygon counter-
clockwise by first translating disc 2 in direction v for
some distance ¢ (Fig. 4(b)), before translating disc 3
in the direction —wv until the polygon is immobilized
in a new configuration ¢’ (Fig. 4(c)). To guaran-
tee that the polygon will not escape, we must have
d < MaxICS(q,2,v) and § < MaxICS(¢',3,v). Note
that in this case the translation of disc 2 is actually
performed, but disc 1 does not move, and thus does
not constrain the value of §. The maximum value of
¢ is found as before through bisection. Clearly, for a
given vector v, this value yields the maximum possible
rotation. Achieving a smaller rotation is done by using
a smaller § (the corresponding positions of discs 2 and



3 are once again easily calculated in this case using
the equilibrium and contact conditions). Achieving
a larger one involves repeating the same elementary
rotation several times.

Note that the rotation steps will change the posi-
tions of the discs along the edges of the polygon (Fig.
6(a)). We would like these positions to remain un-
changed so that we can apply the same rotating steps
repeatedly and achieve a pure rotation (Fig. 6(b)).

@ (b)
Figure 6: Effect of a rotation: (a) the position of the discs
along the edges has changed; (b) corrected disc positions.

To correct the disc positions, we move them one by
one toward their initial configuration along the edges.
The object may move during this correction stage, but
it will eventually come back to its original position and
orientation, which are uniquely determined by the disc
positions in their initial configurations. The difficulty
is to guarantee that the polygon will remain impris-
oned by the discs during the correction steps. This
corresponds to computing the maximum ICS region
in the direction of the corresponding edges. The ICS
computation degenerates in this case to the following
construction (Fig. 7): In Fig. 7(a), the polygon is
immobilized, and disc 2 touches the edge E in A. Let
L denote the line supporting E in this configuration
(L is fixed but E will move when the position of disc
2 changes), and let w denote the direction in which
we want to move disc 2 along L. We want to find the
furthermost point on L to which we can move disc 2
from A in the direction w.

@ ) (b) ©
Figure 7: Moving a disc along a line.

If this point is further than the edge endpoint B, the
polygon will obviously be able to escape (Fig. 7(b)).
In addition, moving disc 2 in the direction w will allow

the polygon to rotate clockwise. Figure 7(c) shows the
maximum clockwise rotation preventing the polygon
to escape (vertex V touches disc 3). Let C denote
the intersection of L and E in that case. Clearly, the
point we seek must not be further than C, since this
would also allow the polygon to escape. In general, it
can be shown that we can safely move disc 2 along L
anywhere from A to the closest of the two points B
and C.

With this method, we move a disc toward its initial
position along the corresponding edge (if the position
is not in the allowable range, we move to the point
closest to the position), update the current position
of the disc, apply the method to another disc, and
continue this procedure until all three discs reach the
desired positions.

Note that the rotation steps also affect the overall
position of the polygon. To perform a pure rotation, a
final translation stage has to be performed, using the
technique presented in the previous section.

5 Implementation and Results

We have implemented the algorithm for planning
manipulation sequences described in the previous sec-
tion. Figure 8 shows intermediate immobilizing con-
figurations in a manipulation sequence that brings an
equilateral triangle with edges of unit length from
some initial configuration (lower right) to a goal con-
figuration (upper left). The triangle is first rotated
to the desired orientation, and then translated to the
desired position. The entire sequence has 28 steps.
By choosing a grasp with contacts at the center of the
edges, and the inward normals as the translation di-
rections, we obtain a maximum translation distance of
0.092, and a maximum rotation angle of 14.98 degrees.
The program takes less than 1 second to compute the
sequence on a 200MHz PC.
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Figure 8: A manipulation sequence.

Figure 9 shows snapshots of some of the translation
and rotation steps used in the experiment of Fig. 8.



Figure 9(a) shows the input grasp. Figure 9(b)-(d)
shows the elementary stages of a translation step, and
Fig. 9(e)-(i) shows the elementary stages of a rotation
step, including the disc motions along the edges.
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Figure 9: Snapshots of translation and rotation steps.
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