Sensorless Sorting of Two Partsin the Plane Using Programmable Force Fields

Attawith Sudsang
Department of Computer Engineering
Chulaongkorn University, Bangkok 10330, Thailand
attawith@cp.eng.chula.ac.th

Abstract: A part that is placed on a massively parallel
actuator array can be manipulated by the force generated
by a large number of supporting actuators. At a high level
of abstraction, this form of nonprehensible distributed
manipulation can be modeled using programmable force
fields. This paper addresses the problem of manipulating
multiple parts using programmable force fields. In par-
ticular, given two convex parts in different shapes which
are in unknown configurations, we introduce a sequence
of force fields that isolates, recognizes, and brings each
part to its target configuration without any use of a sen-
sor. The novelty of the proposed approach lies in the part
isolation stage. Our technique uses part interaction un-
der a radial force field as a condition ensuring that both
parts will be separated from each other and move into
opposite halves of the plane. Once separated, each part
can be processed independently and simultaneously using
techniques for handling a single part.

1 Introduction

Examples of parallel actuator arrays include, in mi-
croscale, MEMS actuator arrays [3], and in macroscale,
modular distributed manipulator system [8], vibrating
plates [2], and arrays of air jets [1]. A part that is placed
on an actuator array can be manipulated by appropriately
controlling the supporting actuators in the array. This
form of nonprehensible distributed manipulation can be
modeled using programmable force fields. The modeling
approach represents an abstraction barrier between task-
level design and hardware implementation. This analyt-
ical approach is pioneered in [3], where programmable
force fields are used to represent MEMS actuator arrays.
The underlying idea is that a part lying in a force field is
driven toward a stable equilibrium by the resultant force
and torque induced by the field at the planar contact. This
basic idea allows a manipulation task to be considered as
a strategy for applying a sequence of fields to bring a part
from one equilibrium to another until it reaches a desired
configuration. In [3], it has been shown that polygonal
parts can be oriented by a sequence of squeeze fields. The

sequence is planned using an algorithm similar to the one
in [6] for orienting polygonal parts with a sensorless par-
allel jaw gripper.

Another research direction attempting to apply force
fields to the positioning problem aims at inventing a single
force field that can induce a unique stable equilibrium for
a given part. Such a field would be able to orient any part
in one step without any sensor or any sequencing control.
Along this avenue, the elliptical force field that induces
two stable equilibria was introduced in [7]. It was later
presented in [5] with an existential proof confirming the
conjecture in [3], namely, that there exists a combination
of the unit radial field and a small constant field capable of
uniquely orienting and positioning parts. Further progress
was made recently in [9] with a constructive proof and a
method for computing a field that induces a unique stable
equilibrium for a given part. A sequel of the paper [10]
also showed how to compute, for a set of distinct parts
(with different shapes), a single field that can uniquely
position and orient every part in the set.

Parallel actuator array devices provide a more promis-
ing potential to multiple object manipulation than tradi-
tional gripper based manipulators. Ability to simultane-
ously handle multiple parts is essential to many basic and
useful tasks including part isolation, sorting, and assem-
bly. However, the theory of force fields, so far, has been
mostly applied to manipulation problems of a single part.
In this paper, we investigate an application of force fields
to a problem in multiple object manipulation. In particu-
lar, given two distinct convex parts in unknown configura-
tions, we introduce a sequence of force fields that simul-
taneously isolates, recognizes, and brings each part to its
target configuration without using a sensor. The novelty
of the proposed approach lies in the part isolation stage.
Our technique uses part interaction under a radial force
field as a condition ensuring that both parts will be sep-
arated from each other and move into opposite halves of
the plane. Once separated, each part can be processed in-
dependently and simultaneously using techniques for han-
dling a single part.

The rest of the paper is organized as follows. We will
begin by giving some background and necessary nota-



tions in Section 2. A strategy for simultaneous position-
ing two convex parts from unknown configurations will
be presented in Section 3. This strategy consists of three
main stages, namely, part isolation, sorting and position-
ing. They will be presented in detail respectively in Sec-
tions 3.1,3.2 and 3.3. We will then conclude the paper
with discussion and conclusion in Section 4.

2 Background

Consider a two dimensional part with uniform mass dis-
tribution that is placed in the plane of a force field. We
attach the world frame (&, i) to this plane.

The resultant force F' and torque M exerted by the field
g(&,m) on a part can be written as

F= [ [glendedn and

M=//< g ) x g(&,n) dédn,

where both integrations are performed over the plane re-
gion occupied by the part. A part in the field achieves
an equilibrium when the corresponding resultant force F
and torque M vanish. Note that the lateral force modeling
used here results in first order dynamics of the motion of
parts under force fields. It is a commonly used hypothesis
in part orientation with force fields [4, 3, 7].

In this paper, we deal with only two types of force
fields: constant fields and radial fields. A constant field
is a force field (see Figure 1(a)) with the same force at
every point and a radial field (see Figure 1(b)) is a force
field for which all forces point toward a single center and
the magnitude of the force at a point depends only on the
distance between the point and the center.
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Figure 1: Examples of (a) a constant field, and (b) a radial field.

We denote by a tuple (¢, f()\)) a radial field with center
c and the force at any point p be the unit force in the di-
rection from p to ¢, scaled by f(\) where X is the distance
between p and ¢. Note that a linear radial field is a radial
field for which the function f is linear in A. We also use
a pictorial representation to illustrate a radial field. Figure
2 shows an example.
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Figure 2: Pictorial representation of the radial field {c, f(\)),
with f(A) > 0. The arrows on the rays depict the direction of
the forces.

We define the pivot point! of a part under a radial field
to be a fixed point in the part’s coordinate frame situated
at the center of the field when an equilibrium is achieved.
Note that the pivot point is unique for the unit and linear
radial fields [9].

3 Handling Multiple Parts

Consider two distinct (i.e., of different shapes) planar con-
vex parts with uniform mass distribution. Let the two
parts be arbitrarily placed in the plane of force fields. We
will introduce in this section a sequence of force fields that
simultaneously brings both parts to their target configura-
tions using neither sensory inputs nor the knowledge of
the initial configurations. The idea is that each force field
in the proposed sequence will be activated one by one.
At each activation step, the parts will move from one sta-
ble equilibrium to the next, and when the entire sequence
has been executed, the two parts are expected to reach the
desired configurations. We assume dissipative dynamics.
For a system with totally dissipative dynamics, the total
energy along any trajectory always decreases. While ki-
netic and potential energy may be compensated at differ-
ent points, no energy is added to the system; instead phe-
nomena such as friction and viscoelasticity cause a con-
tinual loss of the total energy as time evolves. The as-
sumption of dissipative dynamics ensures that a part un-
der a force field will eventually stop at a stable equilibrium
configuration if one exists.

The proposed sequence of force fields for moving the
two convex parts to the desired configurations from the
unknown ones consists of the following three sequential
stages (see Figure 3):

1. Isolating parts: In this stage, the two parts which are
originally in unknown configurations will be sepa-
rated. Each part will move to, and stop in a different
half plane. At the end of this stage, one part will lie
in the top half while the other will lie in the bottom
half (cannot be determined at this point which part is
in which half of the plane).

T We borrow this term from [3] where it is defi ned only for the unit
redial fi eld.



2. Sorting parts: In this stage, only a specified part will
move to the left half plane. We will, therefore, know
which part is in which region of the plane.

3. Positioning parts: A field for orienting and position-
ing parts is applied independently in each half plane
to move each part to a desired configuration.

@ (b)
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Figure 3: (a) Two parts in unknown configurations, (b) they
are isolated in different half planes, (c) only a specified part is
moved to the left half plane, and (d) they are positioned in de-
sired configurations independently in each half plane.

In the following sections, we discuss each stage of the se-
quence in detail. In the discussion, we consider two dis-
tinct convex parts By and By with area 4; and A, respec-
tively. Without loss of generality, we assume A, > As.
We also denote by B;(q),i = 1,2 the plane region occu-
pied by the part B; when it is at the configuration q.

3.1 Isolating Parts

There are two steps in isolating parts:

1. Drawing parts together: The radial field J ef

(0,kA), where & > 0 is applied to draw the two
parts together. The parts will stop in a combined sta-
ble equilibrium configuration for which the next step
can ensure that the two parts will be pushed to oppo-
site halves of the plane.

2. Pushing parts away from each others: An inverse
squeeze field with its axis fixed with the plane of
force field and passing through the center o is applied
to push the parts to opposite half-planes separated by
the field axis.

We will explain in detail how these two steps work in Sec-
tions 3.1.1 and 3.1.2. To completely understand the dis-
cussion, the following two lemmas about some properties
of the field 7 are needed.

Lemma 1l The pivot point of a part under the radial field
J is the part’s centroid.

The proof of this lemma can be found in Appendix of the
paper.

Lemma 2 The resultant force induced by the radial field
J onapartis kpoA, where A denotes the part’s area and
p denotes the position of the centroid of the part (Figure
4).

Figure 4: The resultant force F induced by the radial field
{0,kN).

The proof of this lemma can also be found in Appendix of
the paper.

3.1.1 Drawing Parts Together

In this step, we apply the radial field 7 to attract the two
parts (from unknown configurations) toward the center of
the field. The two parts will stop at a combined stable
equilibrium configuration ¢ = (q,, g,) Where g, and g,
respectively denote the configurations of the parts B; and
B when the system of the two parts is at this stable equi-
librium.

For the system of B, and Bs, there are only two exter-
nal forces?. They are exerted by the field ;7. By Lemma
2, the field 7 exerts on B, the force F; = kp;64; and
exerts on B, the force Fy = kp,0A, where p, and p,
are the positions of the centroids of B;(q,) and Bs(q,).
Clearly, the system is in equilibrium when F'; = —F'5, or
equivalently when p;6A; = —p,6A,. This means that at
the combined equilibrium configuration, the center of the
field and the two centroids must lie on the same straight
line where the center of the field is between the two cen-
troids (Figure 5). From now on, let us call this straight
line by G.

3.1.2 Pushing Partsaway from Each Others

Once the two parts stop at the combined stable equilib-
rium q, the field 7 is turned off and an inverse squeeze

2commonly assumed that other physical forces such as friction are
negligibly small



Figure 5: B; and Bs in equilibrium under the field .7 with their
centroids colinear with the field center o.

field is activated to separate the parts into different half
planes. In the following, we explain how this inverse
squeeze field is constructed.

As mentioned earlier, at the combined equilibrium con-
figuration ¢ = (q4,q,), we must have F; + Fy =
kproA; + kpy6A, = 0. Thatis, (o — p;)A1 + (0 —
D5)As = 0 or equivalently o = %. Noticing
that the position of the centroid of B, (q,) U Bz2(g,) can
be written as %, we therefore have that this cen-
troid must be situated at the field center o.

Let L be a horizontal line (i.e., parallel to the &-axis of
the world frame mentioned in Section 2) that is fixed with
the plane of force fields and passing through the field cen-
ter o. This line divides the plane into the top half H; and
the bottom half H,. By a simple fact that a line passing
through the centroid of a region cuts the region into two
pieces with equal area and that the line L is defined to pass
through the centroid of B;(q,) U B2(q-), we obtain that
the area of B1(g;) U B2(q,) in H; is equal to that in H,
(see Figure 6), or more precisely

area([B1(q,) U Ba2(g,)| N Hy) =

area([B1(q,) U Ba(q,)] N Hy). (1)

Figure 6: At an equilibrium under 7, the areas of the regions
occupied by the two parts on both sides of a line passing through
the field center are equal (i.e., areas of the shaded and unshaded
region are equal).

Because the parts are assumed not to overlap, Equation
1 can be rewritten as

area(Bi(q;) N H;) + area(Ba(q,) N Hy) =

area(Bi(q,) N Hy) + area(Ba(q,) N Hy).  (2)

Lets; = area(B;(q;)NH;)—area(B;(q;)NHy),i = 1,2.
From Equation 2, we have that s; = —s5. By the general
position assumption, the line G does not coincide with the
line L (possibility of the coincidence is virtually zero).
The centroids of both parts (p, and p,) are therefore not
on L (Figure 6). This means that, in general, the area of
Bi(qy) in Hy is not equal to that in H;, and, as a result, im-
plies s; # 0. That s; = —s9 and s; # 0 suggests that we
would be able to push the parts into different half planes if

we could have a force field that exerts a force on

8
B; (i.e., opposite nonzero force for each part). It turns out
that such a force field exists; it is in the form of an inverse
squeeze field. Let us call it the field S. Under this field,
every point in H; is under the unit constant field ( g
while every point in H; is under the unit constant field

_01 > (Figure 7(a)). Because the net force exerted on

a part by a unit constant field is a force in the direction of
the field with its magnitude equal to the area of the part, it
is then easy to see that the force exerted by the field S on

the part B;,i = 1,2is as desired. Note that in-

8
stead of a simple inverse squeeze field, we may apply two
contiguous squeeze fields shown in Figure 7(b) to separate

the parts and center them on the line L; and L;.
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Figure 7: (a) an inverse squeeze field with the axis L, (b) two
consecutive squeeze fields, one in the top half plane with the axis
L, and the other in the bottom half with the axis L.

Our approach relies on the general position assumption
claiming that the event in which s; = 0 rarely occurs. We
might assume uniform distribution of the orientation of
the line G to support the claim but this might not be a rea-
sonable assumption for a certain problem under consider-
ation. A strategy that reduces the dependency on the gen-
eral position assumption should be explored. Also note
that the part convexity is assumed to prevent one part to
be entangled in concavity of the other during this isolation
stage. Therefore, concave parts could, in fact, be handled
if entanglement cannot occur.



3.2 Sorting Parts

At this point, one part is in the top half plane H; and the
other part is in the bottom half plane Hy. Still we do not
know which part is in which half of the plane. The goal
of this stage is therefore to recognize which part is B; or
B,. This process is also known as sorting. We propose
to perform sorting by applying a sequence of force fields
which will move only a specified part to a known region of
the plane. This sorting strategy relies on Lemma 3 which
is an excerpt from [10]. The lemma specifies a force field
that induces a unique stable equilibrium configuration for
every part in a given set. The proof of the lemma and the
computation of the corresponding stable equilibrium for
each part can also be found in the same paper.

Lemma 3 Consider distinct parts B;, i = 1,2,...,n. Let
h, k and ¢ be arbitrary positive constants and let d; be the
distance between the centroid of B; and the pivot point

of B; under the field K < (0,h + (k + c)X). Any
part B;, i € {1,2,...,n} with d; > 0 has a unique sta-
ble equilibrium under the combination of the radial field

T(0*) ¥ (0", h + (2k + ¢)\) and the constant field
¢ < _ﬁd >,where d* =min{d;, i = 1,2,...,n}.

At the beginning of this stage, note that there are two
possibilities: (1) By in H; and B, in Hy, and (2) By in Hy
and B, in H;. Without loss of generality, let us introduce
a sequence of force fields that selectively moves only B;
to the left half plane.

First, we simultaneously apply

e in the half plane H,, the combination of the field

J(o+ ( 3) )) and the constant field , and

e in the half plane H,, the combination of the field
J(o— < 3) >) and the constant field C,

where w is a positive constant and the field .7 and C are
defined according to Lemma 3 with n = 2. By Lemma
3, under the above force field setup, it is easy to see that
when the two parts stop at their stable equilibrium config-
urations, only two scenarios are possible. They are

1. B, in H; stops at the equilibrium configuration q; ,
while B, in Hy stops at the equilibrium configuration
g, (Figure 8(a)), and

2. Bs in H; stops at the equilibrium configuration g ,
while By in Hy stops at the equilibrium configuration

q, 5 (Figure 8(b)),

where g, , and g, ,,7 = 1,2 are the unique stable equi-
librium configurations of B; induced respectively by the
combination of the field 7 and C in the top and bot-
tom half planes. Noticing the position of the center of
the field 7 in each half plane, we have that q,, =
gy, — (0,2w,0)" and g, , = g,, — (0,2w,0)”. Also
note that the constant w must be set large enough that
Bi(q;,) and B;(q;;),7 = 1,2 do not intersect with the
line L.

Figure 8: (a)-(b) two possible scenarios (see text), (c) a field
that selectively move only B; to the left half plane.

Because q; ; and g; ,% = 1,2 can be computed ([10]),
a great deal of uncertainty has been eliminated when the
two parts stop. To selectively move only B; to the left half
plane, we apply the field shown in Figure 8(c). This field
0
region H, — Bz(qy,) — B2(q, ;) where H,. denotes the
right half plane which is bounded on the left by the verti-
cal line M. Regardless of which one of the two scenarios
(listed previously) actually happens, the part B; always
overlap with the constant force field and will move to the
left half plane H; while the part By remains unaffected
and stays at either g, ; or g, ,. Note that the assumption
A; > A, given at the beginning ensures that it is impos-
sible that B1(q, ;) € B2(gy,) OF Bi(q:1) C B2(gs)
and therefore B; must overlap with nonzero force field.

is simply a unit constant field < ) applied only in the

3.3 Positioning Parts

At this point, it is known that the part By is in the left half
plane H; and the part B- is in the right half plane H,.. Fol-
lowing [10], we can, again, use Lemma 3 to appropriately
set up the field 7 and C to orient and position each part to
a target configuration in its half plane.

4 Discussion and Conclusion
We have introduced a sequence of force fields that brings

two distinct convex parts from unknown configurations
to target configurations without using any sensory input.



This is a preliminary attempt in using programmable force
fields to handle a sensorless multiple object manipulation
problem. It clearly demonstrates throughout the paper that
action can replace sensor in certain cases. The work is
based on an abstract model where control and execution
are assumed to be perfect. Of course, tolerance to errors
has to be investigated to make the approach useful in a
physical implementation. The work raises many issues
for further investigation. The most critical questions are:
how discretization would affect when continuous force
field cannot be realized in a physical implementation?,
how long does it take for a part in a given force field to
stop at an equilibrium, what is the appropriate damping
force model? Besides answering these questions, our fu-
ture works will focus in studying interaction of multiple
parts in other types of force fields. This may give us a
strategy for dealing with more parts which is apparently
useful for many applications such as part assembly.
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Appendix

Proof of Lemma 1

Cz

Let us denote by ¢ = the position of the

pivot point of the part under ftjhe field 7 in the part’s
frame (z,y). From the definition, the resultant force
induced by the radial field .7 vanishes when the pivot
point is positioned at the center of the field. More pre-
Cr >da:dy =
Cy

0, where all the integrations are performed over the re-
gion occupied by the part. Recalling that the area of
the part can be written as [ | dady , we therefore have

(1= (Yo - ()

Y
where A denotes the area of the part. That is ¢ =

(5 )-

point coincides with the centroid of the part. m

cisely, we must have & [ [ < ‘; -

%ff( Z dzdy. In other words, the pivot

Proof of Lemma 2

Let us denote by P the centroid and by M an arbitrary
3

point of the part. Also, let p and m = denote the

positions of P and M in the world frame when the part
is at a configuration q. We can write the resultant force
induced by the field 7 as

kJ (0 —m)dédn =k [ [(o— p)dedn+

where all the integrations are performed over the region
occupied by the part. It is easy to see that the second term
of the right side of Equation 3 vanishes. This is because
k(p — m) is essentially the force induced by [ at the
point M when the part is at the configuration such that
the centroid (which is, by Lemma 1, also the pivot point)
is positioned at the field’s center and the orientation of the
part is the same as that of the configuration q. Therefore,
we obtain the resultant force from only the first term of
the right side: & [ [ (o — p)dédn = kpoA.m
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