
Regrasp Planning for a 5-Fingered Hand Manipulating a Polyhedron

Thanathorn Phoka and Attawith Sudsang
Department of Computer Engineering,

Chulalongkorn University, Bangkok 10330, Thailand
{phoka,attawith}@cp.eng.chula.ac.th

Abstract— This paper addresses the problem of a 5-
fingered hand manipulating a polyhedron. In particular, as-
suming frictional point contacts, we present an approach for
computing a sequence of finger repositioning that allows the
hand to switch from one grasping configuration to another
while maintaining a force-closure grasp of the polyhedron
during the entire process. The proposed approach captures
ability to switch from one grasp to another in a graph
structure, allowing regrasp planning to be reduced to a graph
search problem. The proposed approach is implemented and
preliminary results are presented.

I. I NTRODUCTION

Ability of a multi-fingered hand to change its grasping
configuration while maintaining force-closure stability is
clearly desirable for in-hand object manipulation tasks.
A typical method for a hand to change its grasping
configuration is by repositioning its fingers – a process
generally known as regrasping or finger gaiting. This paper
addresses the regrasp planning problem of a 5-fingered
hand manipulating a polyhedron. In particular, assuming
hard fingers with frictional point contact, we propose a
technique for computing a sequence of finger repositioning
that transforms an initial grasp into a desired one while
keeping the manipulated object in a force-closure grasp
during the entire process.

Extensive review on grasping and dexterous manipu-
lation can be found in [1], [9]. The readers are referred
to [11] for necessary background on the classical concept
of force closure. Finger gait was suggested in [7] as a
method for replacing finger about to reach its workspace
limit during object manipulation. A general framework
for planning dexterous manipulation using finger rolling
and gaiting was proposed in [5] with an example of a
3-finger hand manipulating a sphere. An approach using
a branch-and-bound search with nonlinear programming
was proposed in [10] for regrasp planning of a polygon.

II. OVERVIEW

A hand can change its grasping configuration by exe-
cuting a sequence of finger repositioning. In this paper, we
classify finger repositioning into two different types:finger
switching and finger aligning. Given an object initially
in a force-closure grasp, a finger switching is a process
that a free finger1 is appropriately placed on the grasped
object to form another force-closure grasp, so that the

1a finger currently not in contact with the object

finger in the original grasp that is not involved in the
new grasp can be lifted off allowing the hand to change
from the original grasping configuration to the new one
while maintaining that the object stays in a force-closure
grasp during the finger swapping. Of course, the fingers
in the original grasp are sometimes not in the positions
where a finger switching can take place. They have to
be appropriately repositioned to allow the intended finger
switching. This situation calls for a finger aligning. Finger
aligning refers to a process that grasping fingers, without
breaking contact with the object, adjust their contact
positions while maintaining a force-closure grasp during
the entire process. With frictional contact assumed, this
may be implemented using finger rolling or sliding.

Our approach to in-hand manipulation amounts to com-
puting a sequence of appropriate finger switching and
finger aligning. To achieve this, we introduce a structure
called switching graph. Each vertex of the graph repre-
sents a set of force-closure grasps. For every pair of grasps
from the same vertex, there always exists a finger aligning
between the grasps. Two vertices are adjacent if there
exists a finger switching between a grasp from one vertex
and another grasp from the other. This property allows
regrasp planning to be formulated as a graph search. Note
that although finger kinematics and other relevant con-
straints are not initially taken into account, different search
strategies and policies may be later integrated to generate
regrasping sequences that meet additional requirement.

Clearly, a finger switch is possible when there is at least
one free finger. Since any three-dimensional object has
a frictional force-closure grasp with four fingers [8], for
a hand equipped with 5 fingers, our approach therefore
considers only 4-finger force-closure grasps. As mentioned
in [11], 4-finger force-closure grasps can be classified into
3 different types: concurrent, pencil and regulus grasps.
The approach for regrasp planning presented in this paper
handles only concurrent grasps. Although the other two
types are not accounted for, experimental results in Section
IV shows that our approach successfully finds a large
number of different grasping configurations and possible
finger switching for several test objects.

III. SWITCHING GRAPH

The switching graph concept is based on the idea
that a set of concurrent grasps can be represented by
a point in three-dimensional space. This representation



will be explained in detail in Section III-A. We will
also show how contiguous points representing concurrent
grasps can be grouped together to form a cell. A vertex of
a switching graph represents a set of grasps by establishing
an association with a cell. The way we form a cell allows
us to compute (1) a finger aligning between two grasps
within the same cell and (2) a finger switching between
a grasp in one cell and another grasp in another cell
(associated with a neighboring vertex). This computation
will be discussed in Section III-D.

A. Representing Concurrent Grasps

As mentioned earlier, a grasp is geometrically defined
by the positions of the fingers on the object’s faces.
Assuming polygonal object model, the position of a con-
tact point can be defined by specifying an ordered pair
representing coordinates of the point on the corresponding
grasped face. With four grasping fingers, this amounts to
using eight parameters to uniquely define a grasp (with
the four grasped faces already chosen). However, using
Proposition 1 from [12], we can define a set of concur-
rent grasps with only three parameters. This proposition
requires the following definition.

Definition 1: Let Vi, i = 1, 2, 3, 4 be the four cones
of half-angleθ centered on vectorvi. We say that the
four vectorsvi, i = 1, 2, 3, 4 θ-positively span<3 if any
combination of vectorsv′i ∈ Vi, i = 1, 2, 3, 4 positively
span<3.

To tell whether four given vectorsθ-positively span
<3, we may verify that for any triplev1,v2,v3 of these
vectors, the conesV1, V2, V3 of half-angleθ centered on
v1,v2 andv3 lie in the interior of the same half-space and
the cone−V4 of half-angleθ centered on the direction
opposite to the fourth vectorv4 lies in the interior of
the intersection of the trihedra formed by all triples of
vectors belonging toV1, V2 andV3. Geometrically, it can
be shown that the intersection of the trihedra is essentially
the trihedron bounded by three planes, each of which
passes through the origin and touches two of the three
conesV1, V2, V3 while separating them into different half-
space from the remaining cone.

Proposition 1: A sufficient condition for four fingers to
form a force-closure grasp is that the four internal normals
at the four contact pointsθ-positively span<3 and there
exists a pointx0 such that the inverted friction cones at
this point (Fig. 1) intersect the four contact faces.

x0

F

Fig. 1. Inverted friction cone of faceF at x0

Note that each pointx0 satisfying Proposition 1 yields
four independent contact regionswhere fingers can be

placed independently while achieving concurrent grasp:
these regions are simply the intersection of the inverted
friction cones inx0 with the contact faces. As we will
discuss in Section III-C, locally adjusting contact points
within independent contact regions is a means for finger
aligning to move from one grasping configuration to
another one belonging to the same vertex in the switching
graph.

We are now ready to discuss how a vertex in a switching
graph represents a set of grasps. A vertex of a switching
graph represents a set of concurrent grasps by having
an association with a set of all pointsx0 satisfying
Proposition 1 for a given combination of four faces. Since
an inverted friction cone atx0 intersect the corresponding
face whenx0 lies in the volume defined by the union of
all double-sided friction cones at every point on the face
(Fig. 2(a)), the set of allx0 satisfying Proposition 1 can
be obtained from the intersection of the four volumes each
of which is the union of all double-sided friction cones on
each face. In the following definition, we name the union
and the intersection for future references.

Definition 2: The union of all double-sided friction
cones at every point on faceFa will be called the union
volume for the face and will be denoted byUa.

(a) (b)

Fig. 2. Union volume: (a) construction, and (b) its shape (see text)

Definition 3: The volume containing all pointsx0 sat-
isfying Proposition 1 for a given combination of four faces
Fi, Fj , Fk andFl wherei 6= j 6= k 6= l will be called the
focus cell for the faces and will be denoted byCi,j,k,l.

Before proceeding to the next section, it is helpful to
discuss briefly about the shape of the union volume and
the focus cell. Let us begin by considering an example of
a triangular face with its union volume. As shown in Fig.
2(b), the union volume is composed of two symmetric
parts (in mirror-like fashion): one above the face, and
the other one below. Note that the union volume is an
unbounded body. This is because double-sided friction
cones are symmetric and unbounded. Clearly from the
construction, the boundary of the union volume consists
of unbounded rectangular and conic patches (at rounded
corners). With conic parts involved, quadric surfaces are
needed to exactly describe the union volume’s boundary.
This requirement implies that to construct a focus cell
by intersecting four union volumes, univariate polynomial
equations of degree upto 8 are to be solved (e.g., to obtain
curved edges from intersecting two conic patches and to
obtain a vertex from intersecting three conic patches).



A typical technique to avoid this complexity is to give
up some exactness by approximating conic parts of the
boundaries of union volumes with multi-facet pyramids.
This approximation will allow a union volume to be
described as a polyhedron and, in turn, a focus cell can
readily be obtained using an algorithm for intersecting
polyhedra [6]. This approximation scheme should be used
with caution because when the number of facets of the
approximating pyramids is too large, the resulting poly-
hedron will have so many faces that intersecting polyhedra
might be slower than using algorithms for computing inter-
section of quadric surfaces [6]. This issue on construction
of focus cells will become important as we discuss how to
build a switching graph in Section III-D. Before then, let
us explain how focus cells are related to finger switching
and finger aligning operations.

B. Finger Switching

Let us consider two focus cellsCa,b,c,d and Ca,b,c,e
such thatCa,b,c,d ∩ Ca,b,c,e 6= ∅. Let q be a point in
Ca,b,c,d∩Ca,b,c,e. Clearly,q defines two sets of concurrent
grasps: one for the combination of facesFa, Fb, Fc, Fd and
the other for the combination of facesFa, Fb, Fc, Fe. Let
us suppose that the fingers 1,2,3 and 4 are respectively on
facesFa, Fb, Fc andFd and forming one of the concurrent
grasps defined byq. It is easy to see that the hand can
switch to another concurrent grasp (represented byq) on
facesFa, Fb, Fc andFe by placing finger 5 on any point in
the intersection between faceFe and its inverted friction
cone atq (becauseq ∈ Ca,b,c,d∩Ca,b,c,e). Once finger 5 is
on Fe, finger 4 can leave faceFd resulting in a switching
from a concurrent grasp onFa, Fb, Fc, Fd by fingers
1,2,3,4 to another concurrent grasp onFa, Fb, Fc, Fe by
fingers 1,2,3,5. This finger repositioning sequence enables
us to plan finger switching by identifying intersection
between two focus cells having one different grasped face.

C. Finger Aligning

Clearly, a finger switching cannot occur between two
grasps whose corresponding focus cells do not overlap.
For example, let us consider focus cells in Fig. 3. Obvi-
ously, becauseCa,b,c,d ∩ Ca,b,c,f = ∅, it is not possible
to switch directly from a grasp on facesFa, Fb, Fc, Fd
to another grasp on facesFa, Fb, Fc, Ff using a finger
switching discussed in the previous section. However, sup-
pose the current grasp on facesFa, Fb, Fc, Fd is defined
by q1, a finger switching can be performed to switch
to another grasp on facesFa, Fb, Fc, Fe (q1 is in both
Ca,b,c,d andCa,b,c,e) and somehow if the hand can adjust
the fingers to change from the grasp defined byq1 to
a grasp defined byq2 (which could be any point in
Ca,b,c,d ∩ Ca,b,c,e), another finger switching atq2 can be
applied to switch to a grasp on facesFa, Fb, Fc, Ff as
desired.

In fact, changing grasping configuration within the same
focus cell is the process we referred to as finger aligning.

C

2
qq1

a,b,c,fCa,b,c,e
Ca,b,c,d

Fig. 3. Moving between non-overlapping cells

This process can be accomplished by taking advantage
of the idea that force closure can be maintained during
finger sliding, finger rolling (see [5], [2] on how to apply
rolling in dexterous manipulation), or finger switching
within an independent contact region. To illustrate, let
us consider Fig. 4 showing configuration pointsq and
q′ in the same focus cellCa,b,c,d. The inverted friction
cones of the four grasped faces atq intersect the faces
in the four independent contact regionsRa, Rb, Rc and
Rd and likewise the inverted friction cones atq′ intersect
the four grasped faces inR′a, R′b, R

′
c and R′d. Suppose

that the four fingers are atxa ∈ Ra,xb ∈ Rb,xc ∈ Rc
and xd ∈ Rd. This can be represented byq. To move
from q to q′, we move the four fingers fromxi to
x′i ∈ Ri ∩ R′i(i = a, b, c, d). It is sufficient to ensure
force closure during the fingers’ motion by maintaining
that the fingers are in the independent contact regions of
q during the entire process. This can be done by rolling
or sliding the fingers on the grasped faces fromxi to
x′i(i = a, b, c, d). Instead of rolling or sliding, it is also
possible to apply finger switching within each independent
contact region by placing a free finger atx′i and lifting
off the finger atxi. Because there is only one free finger
during a concurrent grasp, this kind of finger switching
can be performed in one independent region at a time.

By continuity, for any point in a focus cell, there exists
a neighborhood for which the four independent contact
regions of the point intersect the four independent contact
regions of every point in the neighborhood. That is, there
always exists a finger repositioning sequence to move
between any pair of configuration points in the same focus
cell.

dR’

dF
dR

aR

aR’
a

F

q’q

bR’
bR

bF

a,b,c,d
C

cR
cR’

cF

Fig. 4. Moving within a focus cell

D. Computing a Switching Graph

To construct a switching graph, all of its vertices and
edges need to be found. To identify all vertices of a
switching graph, we compute all focus cells and to identify
all edges, we compute all pairs of overlapping focus cells
with three common grasped faces.



Computing all focus cells requires identifying all com-
binations of four faces with concurrent grasps satisfying
Proposition 1. Instead of enumeratively checking all com-
binations, the number of candidates can be significantly
reduced by considering only those combinations whose
internal normals positively span the plane. Our technique
for generating such combinations is based on the fact
that when three normals are given, the fourth one must
lie strictly inside the trihedron formed by the inverses of
the three given normals in order that the four normals
positively span<3 (otherwise, they would be in the same
half space).

It is also important that every combination of four
normals is listed without any repetition. This is essentially
the problem of generating allk-subsets (i.e., subsets with
k members) of a given set withn members. A simple
solution for this problem is to assign a totally ordered
relation to all members of the set and list everyk-subset
in the form of ak-tuple for which each element (except
the last one) precedes the next one according to the
assigned order. Applying this method to our problem,
each unit normal is reparameterized using an ordered pair
of two angles(α, β) where α ∈ [0, 2π] is the angle
between thex-axis and the projection of the normal on
the x-y plane, andβ ∈ [0, π] is the angle between
the z-axis and the normal. With this parameterization, a
sorted order can be imposed by defining that a normal
na = (αa, βa) precedes a normalnb = (αb, βb) when
βa < βb, or whenαa < αb in the case thatβa = βb.
For clarity, let us present pseudocode of the resulting
algorithm. In the pseudocode, then sorted unit normals
are stored in the arraynormal[1..n] with corresponding
indices to faces in the arrayfaceId[1..n] and variable
upwardIndex containing the index to the last normal in
the array with angleβ smaller thanπ/2 (i.e., all normal
vectors innormal[1..upwardIndex] points in the upward
direction).

x

n

β

α

z

y

Fig. 5. Parameterization of a unit normal vector

1: for i = 1 to upperIndex do
2: n1 = normal[i]; f1 = faceId[i]
3: for j = i+ 1 to n− 2 do
4: n2 = normal[j]; f2 = faceId[j]
5: for k = j + 1 to n− 1 do
6: n3 = normal[k]; f3 = faceId[k]
7: m = max(k + 1, upperIndex+ 1)
8: Compute all normal vectors innormal[m..n]

that is contained in the trihedron formed by
−n1,−n2 and−n3

From line 1 of the above pseudocode, we can see that
every first normal is chosen such that it has to point
upward (withβ < π/2). This is because choosing a first
normal with angleβ ≥ π/2 would result in having all four
normals withβ ≥ π/2 which means that they are all in
the same lower half-space and therefore cannot positively
span<3. The same reason is applied in line 7 to allow a
fourth normal to point downward only (withβ > π/2),
otherwise all four normals would be pointing upward and
lie in the same upper half-space. Line 7 also incorporates
the fact that, to generate different combinations without
repetition, a fourth normal must be after the third normal
according to the sorted order (i.e., with greaterβ than that
of the third normal). The following paragraphs describe
how line 8 can be implemented.

Because a unit normal can be thought of as a point
on the unit sphere, and a trihedron formed by three
unit vectors intersects the unit sphere in a triangular
region (bounded by three sections of great circles), all
normal vectors contained in the trihedron are therefore
those vectors corresponding to the points lying inside this
triangular region. If we can somehow map the surface of
the sphere onto the plane, a range searching algorithm can
be applied to find the desired normals.

In fact, we have already mentioned one such mapping.
Recall that we parameterize every unit normal using an
ordered pair of angles(α, β). This allows each normal
vector to be mapped to a point in theα-β plane. The
triangular region on the sphere mentioned above will be
mapped to a planar region bounded by three vertices and
three curved edges (Fig. 6). Each edge of the triangular
region on the sphere may contain the highest or the lowest
point of the corresponding great circle. By considering
the mapping of these points and the three vertices of the
region, it is easy to show that the smallest isothetic box2

covering the planar region can be drawn by considering
only the range of the coordinates of all these points. With
this bounding box, we can then apply an orthogonal range
searching algorithm [4] to find all the points contained in
the box (note that before applying the range searching, the
bounding box may need to be clipped to ensure that the
angleβ of a fourth normal is greater than that of the third
normal). For each point obtained, its corresponding normal
is checked with the three previously chosen normals to
tell whether they can positively span<3. By using range
trees [4] to perform orthogonal range searching, the overall
algorithm runs inO(n3 log2 n).

In constructing the bounding box described above, it is
important to take into account the nature of the mapping
from the spherical to the cartesian coordinates. In partic-
ular, when the triangular region on the sphere intersects
the arc defined byα = 0 (Fig. 7) , two bounding boxes
are to be constructed to reflect that the arcsα = 0 and

2a rectangle with its sides parallel to the axes



Fig. 6. Mapping from the spherical to cartesian coordinates

α = 2π coincide.

α = 0

Fig. 7. Two bounding boxes are needed when the triangular region
cross over the arcα = 0

Another case is when the triangular region covers the
“south pole” (bottommost point) of the sphere. When this
occurs, the normals corresponding to the three vertices
of the triangular region have their normal projection on
the x-y plane positively spanning the plane. This should
be handled by constructing a bounding box covering the
entire range ofα (from 0 to 2π).

Every combination of faces found by the algorithm
outlined above is also tested whether the corresponding
four normal vectorsθ-positively span<3. This can be done
in constant time by following geometric description given
after Definition 1. Now that we know all combinations of
faces whose normal vectorsθ-positively span<3, the next
step is then to find which ones of these combinations yield
focus cells, and which pairs of these focus cells overlap. In
this paper, we investigate two different approaches for this
task: direct geometric computation, and random sampling.

Direct Geometric Computation:To test whether a com-
bination of four facesFa, Fb, Fc, Fd (with normals θ-
positively spanning<3) forms a focus cell, intersection
of the union volumesUa, Ub, Uc, Ud is computed. The
intersection, if not empty, is the resulting focus cell
Ca,b,c,d. To find overlapping focus cells corresponding
to an edge in the switching graph, all pairs of resulting
focus cells with one different face are again checked for
intersection.

Random Sampling:The underlying idea is that all
the points contained in a focus cell are contained in all
the union volumes of the faces that form the cell. This
implies that if we have found such points, we have an
evidence showing that the corresponding focus cell exists.
Likewise, we can conclude that two focus cells overlap if
we can find some points that are contained in both cells.
Following this simple idea, instead of directly computing
intersection to explicitly obtain focus cells, a number of
points in three dimensions are randomly selected, each of

which is then tested to list all faces whose union volumes
can contain the point. The resulting list of faces is then
scanned for matching with combinations of four faces
whose normal vectorsθ-positively span<3 (obtained from
the algorithm previously described). A matching indicates
a focus cell found, and any pair of matching with the
two corresponding combinations having one different face
indicates that the corresponding focus cells overlap and an
edge in the switching graph linking the two cells exists.

It is clear that the completeness of the switching graph
generated using this approach depends heavily on the
number of sampled points and the region in<3 where
the sampling takes place. To define the sampling re-
gion that is guaranteed to cover all focus cells without
actually computing them is still an open problem. Our
implementation shown in the next section relies on an
ad hocalternative by defining the sampling region to be
the cube obtained from enlarging the smallest isothetic
cube that can contain the object four times about its
center. Although a complete switching graph cannot be
guaranteed, experimental results show large number of
vertices and edges are found within a fraction of the time
used by the direct geometric approach.

IV. I MPLEMENTATION AND RESULTS

We have implemented the regrasp planning based on
the switching graph concept described in the paper. The
program is written in C++ using ACIS library [3] for
geometric computation. All run times are measured on
a PC with a 1 GHz CPU.

Some test polyhedra with 14, 24, 40 and 42 faces
are shown in Fig. 8. Test results in Table I show the
number of focus cells found, the number of links found
and the run time for each object in Fig. 8 when using the
direct intersection approach to build the switching graph.
Test results from random sampling approach with 1,000,
5,000, 10,000, and 20,000 sampling points are shown in
Tables II-V correspondingly (these are average numbers
over 20 runs for each test object). Without guaranteeing a
complete switching graph, the random sampling approach
appears to generate a large portion of the graph when
spending only small amount of time compared with the
direct intersection approach. In particular, for the object
in Fig. 8(b), the random sampling approach is 20 times
faster and also producing the complete switching graph.
It is of course difficult to give a general statement from
only few examples, however we feel that the random
sampling approach is very promising especially in its
ability to quickly produce a sketch of the switching graph.
Fig. 9(a)-(i) show snapshots of a short sequence of finger
repositioning generated from the program to transform the
initial grasp in Fig. 9(a) into the target grasp in Fig. 9(i).
With a switching graph already computed, the program
takes less than 0.1 second to generate the sequence.



(a) (b) (d)(c)
Fig. 8. Test objects with the number of faces = (a) 14, (b) 24, (c) 40
and (d) 42

TABLE I

RESULTS FROM DIRECT INTERSECTION APPROACH FOR EACH

TEST OBJECT INFIG. 8

Fig. # focus cells # links time (s)
8(a) 22 24 6.2
8(b) 177 384 99.8
8(c) 684 2043 294.0
8(d) 830 2434 207.2

V. CONCLUSIONS AND FUTURE WORKS

We have presented a method for regrasp planning of a
polyhedron by a 5-fingered hand based on the concept
of the switching graph and demonstrated an efficient
implementation of the proposed approach. Our interest
for future works include the comprehensive study of the
efficiency of random sampling approach. We are also
interested in addition of the other two types of 4-fingered
force closure grasps (i.e., pencil and regulus grasps) to our
regrasp planning.

VI. REFERENCES

[1] A. Bicchi and V. Kumar. Robotic grasping and contact: A review.
In IEEE Int. Conf. on Robotics and Automation, 2000.

[2] A. Bicchi and A. Marigo. Rolling contacts and dexterous manip-
ulation. In IEEE Int. Conf. on Robotics and Automation, 2000.

[3] J. Corney and T. Lim. 3D Modeling with ACIS. Saxe-Coburg
Publications, 2002.

[4] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf.
Computational Geometry: Algorithms and Applications. Springer,
1997.

TABLE II

RESULTS FROM RANDOM SAMPLING APPROACH FOR EACH

TEST OBJECT INFIG. 8 WITH 1,000SAMPLING POINTS

Fig. # focus cells # links time (s)
8(a) 13 14 0.4
8(b) 111 218 0.8
8(c) 57 92 3.9
8(d) 111 236 5.1

TABLE III

RESULTS FROM RANDOM SAMPLING APPROACH FOR EACH

TEST OBJECT INFIG. 8 WITH 5,000SAMPLING POINTS

Fig. # focus cells # links time (s)
8(a) 20 24 1.6
8(b) 158 304 2.3
8(c) 184 269 6.3
8(d) 319 701 8.8

TABLE IV

RESULTS FROM RANDOM SAMPLING APPROACH FOR EACH

TEST OBJECT INFIG. 8 WITH 10,000SAMPLING POINTS

Fig. # focus cells # links time (s)
8(a) 22 24 2.9
8(b) 177 384 4.4
8(c) 482 1071 9.9
8(d) 371 854 13.3

TABLE V

RESULTS FROM RANDOM SAMPLING APPROACH FOR EACH

TEST OBJECT INFIG. 8 WITH 20,000SAMPLING POINTS

Fig. # focus cells # links time (s)
8(a) 22 24 5.0
8(b) 177 384 7.8
8(c) 560 1346 16.7
8(d) 553 1392 20.3

[5] L. Han and J.C. Trinkle. Dextrous manipulation by rolling and
finger gaiting. InIEEE Int. Conf. on Robotics and Automation,
1998.

[6] Christoph M. Hoffman. Geometric and Solid Modeling. Morgan
Kaufmann, San Mateo, California, 1989.

[7] J.W. Hong, G. Lafferriere, B. Mishra, and X.L. Tang. Fine
manipulation with multifinger hand. InIEEE Int. Conf. on Robotics
and Automation, 1990.

[8] X. Markenscoff, L. Ni, and C.H. Papadimitriou. The geometry of
grasping.International Journal of Robotics Research, 9(1):61–74,
February 1990.

[9] A. Okamura, N. Smaby, and M. Cutkosky. An overview of
dexterous manipulation. InIEEE Int. Conf. on Robotics and
Automation, 2000.

[10] T. Omata and K. Nagata. Planning reorientation of an object
with a multifingered hand. InIEEE Int. Conf. on Robotics and
Automation, 1994.

[11] J. Ponce, S. Sullivan, A. Sudsang, J-D. Boissonnat, and J-P. Merlet.
On computing four-finger equilibrium and force-closure grasps of
polyhedral objects. International Journal of Robotics Research,
16(1):11–35, February 1997.

[12] A. Sudsang and J. Ponce. New techniques for computing four-
finger force-closure grasps of polyhedral objects. InIEEE Int.
Conf. on Robotics and Automation, 1995.

(a)

(i)(h)(g)

(f)(e)(d)

(c)(b)

Fig. 9. A regrasp sequence generated from a switching graph (see text)


