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Abstract— This paper formalizes and proposes an algorithm to  while preserving the caging condition. The maximum amount

compute coverage diametersf polygons in 2D. Roughly speaking, of distance that keeps the cage can be computed by the

the coverage diameter ofapolygpn is the longest possible distancemethod presented in [6]. Note that in some cases (such as
between two points through which the polygon cannot pass in

between. The primary use of coverage diameter is to form a convex polygons) where no.v-grips exisl,l'r.rounding points
cage for transporting an object, not necessarily convex, with that satisfy our coverage diameter condition can serve as a
multiple disc-shaped robots. The main idea of the computation complementary cage.
of coverage diameter is to convert the problem into a graph  Manipulating polygonal objects using three 2-DOF robots,
structure, then perform the search for a solution path in that ;5456 in [7], involved caging as a transition between differ-
graph. The proposed algorithm runs in O(n*logn) time for the .
input polygon with n vertices. ent form closures. The ne_ed of fqrm closures was relaxed with
the help of MICaDs (maximum independent capture discs
|. INTRODUCTION introduced in [8]. Then, motion planning and caging were
To cage an objecimeans to limit object’s configuration combined in [9]. Nonetheless, these methods are applicable
space to a bounded subset. Many types of caging probleomy to the case of three robots with high functionalities.
have been raised, but the one that has been studied mostages of more than three robots were discussed in [10]. The
extensively is how to form a cage by a number of pointotion of object closurewas introduced and used in stating a
obstacles irR2. Solutions to this problem can be applied quitsufficient and necessary condition for caging, but the test to
directly to transportation of an object by multiple disc-shapegerify object closure involves complicated operations and is
robots: form a cage by robots, then move them together at #xremely time-consuming. An alternative test method which
same velocity. takes less time was also presented in [10], but its completeness
In practice, it is difficult to synchronize multiple robots towas not guaranteed.
move together at exactly the same velocity, so if we are toPresented in [11] is a new sufficient condition for caging
transport an object by putting it in a moving cage formedhich is, though as well incomplete, much easier to check and
by these robots, the cage should be allowed to deform a Imtore practical in many situations. It involves the calculation of
This paper presents a new sufficient caging condition for thisameter functiorof convex polygons, which was first brought
situation that is easy to maintain — it requires only that eactp in [12]. However, the sufficient condition stated in [11] can
robot can keep the distances from itself to its nearby frientie both tightened and simplified with the meaning of coverage
under a predetermined value, which will be called “coveragikameter. The improved condition is stated in Section Il after
diameter”. an intuitive definition of coverage diameter is discussed.
Roughly speaking, the coverage diameter of a rigid simpleIn Section Ill, we introduce related terms, redefine coverage
closed curve iRR? is the shortest length of gap (space betweatiameter formally, and state lemmas that are needed in the
two points) that allows the curve to pass through. Thereforspmputation of coverage diameter of polygons. The idea of
the curve cannot escape from surrounding points, and is saidite computation involves formulating the problem into a graph
becaged if every surrounding gap is smaller than the coveraggructure. Such formulation is explained in Section IV. Finally,
diameter. the pseudocode of the algorithm and some experimental results
The notion of caging was first introduced in [1]. The are shown in Section V.
problem of determining theaging setfor 2-fingered gripping
systems with one degree of freedom in the plane was studied in
[2]. The extension to 3-fingered gripper, also with one degreelmagine an object in a cage formed by points. If the object
of freedom, was explored in [3]. Caging in these works servesabout to escape the cage, it must get through a gap between
as a quick pre-process toward immobilizing grasp. Errosome two points of the cage. Our original goal is to find the
tolerance was added in [4]. largest separation distance between points such that the object
Later in [5], a way to produce-grips at concave vertices cannot escape.
using two fingers was presented. Once two fingers form aBut in reality, when we try to transport the object by
v-grip, they can move inward or outward by some distanderming a moving cage with mobile robots, distances among

II. CoOVERAGEDIAMETER AND CAGING CONDITION



them cannot easily be kept constant as they move. It is mgtéwal(Z) = d is called thefinal pointof Z, andgraph(Z) =
practical to allow some distance change and maintain only thHeis called thegraph of Z.

upper bound of separation distance. We call this upper bouncdMotion of a point will be represented by a directed arc
value thecoverage diameteand denote it by, (C) if the because magnitude of velocity is not relevant to our discussion.
curve isC. A new sufficient condition folC' to be caged by Next, we will consider the paired motion of two points together
surrounding points is immediate from the notiongof,,(C'). because a gap iR? is defined by two points.

Lemma 1:Let P be a polygon with verticed’, P, Ps, Definition 2: Let V' be a Euclidean space.
..., P, € R? arranged counterclockwise and & = P,. 1) If a € V andb € V, theinner distanceof (a,b) € V2
If C is a rigid closed curve that lies insidB and || P; — is |[(a,b)|lin = |la — b]|.

Pi_1|| < ¢eov(C) Wherei € {1,2,3,...,n}, thenC is caged  2) |f A C V2, the maximum inner distancef A is
by {P17P27P3, ,Pn}

Note that the cage formed by surrounding points can contain ITATlin = max{{|alli | a € A}
more than one objects provided that all separation distances
are smaller than the minimum coverage diameter of all objects

(Fig. 2). ILAI[lin = min{[lallin | @ € A}.

Similarly, theminimum inner distancef A is

. . . i A. Coverages and the Coverage Diameter

Imagine whenC' is being pushed through a gap between
. o e . two pointsa andb in R2. The situation will be viewed from
a-b’s frame of reference where is the origin and is on the
positive4 axis. Note thabt is allowed to move up and down

* /" S @ ; along the positivey axis.
coverage diameter longer than coverage diameter In the initial set up, letC lie totally in the left half plane.
@) (b) Every point of C' has an integer called theoverage count

attached to it. All coverage counts are initially zero.
At any instant, thecross sectionis the part of C' that

Jonger than coverage diameter intersects the straight line segment drawn franto b. If a
point of C is in the cross section and is moving into the right
""""" (c) half plane, the coverage count of that point is increased by

) o . o 1. Oppositely, the coverage count is decreasedl i/ it is
Fig. 1. The condition is sufficient but not necessary. (a) The object is cag

because all gaps are smaller than the coverage diameter. (b) The object ving into the left half plane.
escape when there is a gap larger than the coverage diameter. (c) The object
cannot escape despite the presence of a gap larger than the coverage diameter.

¢ B . (a) (b) ()
N Fig. 3. (a) The object is moving to the right. Coverage counts of points
. in the cross section will increase Hy (b) The object is moving to the left.

Coverage counts of points in the cross section will decrease. lfg) The
object is rotating around a point (not shown). Coverage counts of points in
Qa cross section may decrease or increase depending on the position of the
Ixed point.

Fig. 2. Shown in dotted lines are coverage diameters. All objects are caé
because all gaps are smaller than the shortest coverage diameter.

When the whole motion is known, a point 6f starts to be
coveredat the last moment its coverage count changes from

Definition 1: An arc is a connected set of points homeo# to 1. Once a point becomes covered, it remains covered for
morphic to the closed interva, 1]. A directed arcis a triple the rest of the motion (Fig. 4).

Z=(A,s,d) When all coverage couqts are equallth is said to be
e coveredby the paired motion of: and b viewed from C’s

where A is an arc,s is an endpoint ofd, andd is the other frame of reference. Such paired motion can be represented by
endpoint ofA. initial(Z) = s is called theinitial point of Z, a directed arc ifR* that is called aoverageof C.

IIl. FUNDAMENTALS
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Fig. 5. (a) Some snapshots &t (b) Covered points in some cross sections
are shown in whitea’ andd’ are the farthest pair ik, i.e. ||(a’, ) ||in =
[ITE2]||in- (c) The point of discontinuity(a’,b}) and (a’, b}) are different
limits. (d-e) A directed arc ifU that fixes the discontinuity.

Fig. 4. (a) The point starts to beoveredat the moment its coverage count . . .
increases from and never decrease tbwe know that the pointis eventually ~ Next, leta’ andb’ be two new moving points i that are

covered, it is possible to view backward (from right to left) and marks thg|osest toa and b (Fig. 5.b). We know thata’,b’) € U but

point asuncoveredonce its count reaches zero. (b) An example of not-yet-, I . . . .

covered points in the real situation. a’ and b’ might not be continuous with respect to time (Fig.

5.c). However, these discontinuities can be filled by directed

arcs inU whose initial and final points are the different limits

géig. 5.d, 5.e). These directed arcs always exist becalse

IS connected due to the fact that once a point is covered, it

remains covered through the rest of the motion. Therefore,

e paired motion(a’,b’) with all discontinuities removed

composes a coverage whose graph is a subsgt ofC?.
Combining this result with the fact thap, p) € U for all

p € C, the coverage just described can be extended such that

its initial and final points have zero inner distance. If we let

beon(C) = min{||[graph(Z)]||in | Z is a coverage o’}  the initial point be any member of the first non-empfy and

the final point be any member of the last non-emfty, the

are_sult of this extension becomes a boundary coverage. Our

Saim is now proved and we summarize it in the following

The maximum inner distance of a coverage is equal to t
maximum separation distance betweerand b during the
motion. It is obvious that the smallest maximum inner distan
of all coverages is exactly the same@werage diametewe
have mentioned.

Definition 3: If C is a simple closed curve iR?, its
coverage diameter is

Note that there are infinitely many coverages whose m
imum inner distances are equal ¢o,,(C). We need to find

: lemma.
Just one of them. Lemma 2:For a given simple closed curvé’ C R?,
B. Boundary Coverages there always exists a boundary coverage such that
A coverageZ of C is called aboundary coveragéf [Tgraph(Z)|llin = ¢coun(C).
1) graph(Z) C C? Proof: The above remark constitutes a proof. ]

2) |linitial(Z)||in = || final(Z)||in =0 C. Line Segments
We claim that there always exists a boundary coverage

whose maximum inner distance is equalig, (C). This fact A line segment is a special kind of arcs whose points can
allows us to limit the search to boundary coverages only. be written as a linear function of one variable. Line segments

To prove the claim, letZ be a coverage with will be involved when we work with polygons, a special kind
lgraph(Z)||in = beon(C) (Fig. 5.a). At each instant of the of simple closed curves. The following lemma assumes that

motion that constitutesZ, let « and b be the two moving distance of a point is measured from the origin.
points and letk’ be the set of points in the cross sectibat _ -emma 3:If p andq are the two endpoints of a line segment
are “covered” (as in Fig. 4) at that timelt is obvious that L max{|[z|| | z € L} = max{]|p], [|lq]}-

ITE2]lin < Geon(C) for all K. Proof: If ||p|| > ||¢||, the circle with radiug|p| centered
Let U be the union of allK2, written as: at the origin will containL; therefore,max{||z| | z € L} =
lp|l. The other case whelp|| < ||¢|| is proved by exchanging
U = U K? p andq. ]
all K Directed arcs whose graphs are line segments are called

It is again obvious thal [U]||in = ¢cov(C). directed line segment3 he following lemma shows an impor-



tant characteristic of paired directed line segments that will be
used in the next section.

Lemma 4:Given two directed line segment¥ and Y
in R?, if Z is a line segment iMR* whose endpoints are

o=
.C‘

(initial(X),initial(Y)) and (final(X), final(Y")), then el F P
Pii Fij
W Z1lin = max{|initial(X) — initial(Y)]], " "
[final(X) — final(Y)[|} _ _ S _
Proof: See Appendix. m Fig. 6. The line segment; P; ; may or may not be perpendicular 0.
(€) ViP?‘,j _is perp_endicular td;. (b) V; P; ; is not perpendicular tdZ; and
IV. COMPUTATION OF g0, (C) Py ; coincides withV; or Vj 1.

We are going to find the coverage diameter of the polygon
C C R? that hasn vertices and» edges, namely; and E;
wherei € Z, 1. V; are ordered counterclockwise. EveFy B. State Sequences
is a line segment iR? with endpointsV; and V; ;.

To find ¢.0, (C), we will construct a grapldr that contains
enough information of”, then perform a search i&. The

For a given directed arZ in C?, let o(Z) be the sequence
of states that points af belong to. Here arises one problem:
a point of C? may be a member of more than one states. We

steps toward construction @f are outlined below: ~will try to choose states of the forii V; first, V; E; and E,V;
1) We will define subsets af* called states Every point ~next, theniZ, 5;. As *belong 10" is defined this way (different
of C* will belong to exactly one state. from “€”), the functiono(Z) is now clearly defined.

state sequenceWe will show that it is adequate to

consider only state sequences without looking at any S = (51,852,535, ..., Sm)
corresponding directed arcs. o _ _
3) Initial andfinal states will be defined by examining statel "€ maxi-min inner distancef 5' is

sequences of boundary coverages. o M li=1.9
4) Some states will be chosen to beconwalesof G and ITLSIMlin = max{[[LS:]llin [ 4 =1,2,3,..., m}

we will derive edgesof G from state adjencies. It is easy to show thall [graph(Z)]|lim > I[L.S]]]lin When-
After G is completely defined, the algorithm to fingl,,(C) evero(Z) =S.
will be presented. Two statesX andY are adjacentif and only if the state
sequencéX,Y’) exists. All state adjacencies are listed below:

A States « States adjacent t&;V;:

The_ following subsets of”>? for all 4,5 € Z, are called E.E;, EEj_1, Eiqufj, Ei 1B 1,
states: V.E;, V.E,_1, EiV, and E,_V,

o ViV ={(Vi,V;)} « States adjacent to; E;:

« ViEj ={Vi} X E; EiE;, E;_1E;, V;V; and ViV,

o EVj=E; x{V;} « States adjacent t&;V;:

o LiEj = E; X E; E:E;, E:E;_y, V;V; and Vi, V;
Note that the union of all states 2. « States adjacent t&; F;:

Let | X |;, denote the point of a stat€ with smallest inner ViV, ViVii1, VieaVy, Viga Vi,

distance. If there are more than one points with equal inner V,E;, V; 1 E;, E;V; and E;V; 11

distance, we can choose any one of them. Note [that| [, We are going to show that ik andY are adjacent states,
(from Definition 2) is equal to the inner distance [0X |in.  then | X|m € XNY or Y], € XNY. SinceV;E; are
We need to know X |;, of all statesX. For states of the o aqjacent to any;, E; or E,V;, it suffices to consider only
formI :/l;/] Itt) is obvut)_us t?atf[‘(;vjij: t(r:/i,Vj‘)/.hi\lext, if these cases:
we let P; ; be projections? of V; on E;, then |V;E;|;, =
4 D€ prol - J [ViE;] e If X=V,V;: XCVY,s0|X|; €XNY.
Vi, i) and LW, Jin = (B, Vo) If X = BB Y C X, 0¥ e XY
In order to find| B, E; |, it is easy to show thatE; E |, * =EiE; Y C X, s0[Y]in € '
must be equal to at least one of these four poilt3E, |, This means ifX andY are adjacent states, there always exists
\Vit1Ejliny |EiVi]in and | E;Vjy1]in. Three comparisons @ directed arcZ such thato(Z) = (X,Y) and ||[Z][[in =
will give the correct value of eachF; E; | ,. max{|[[ X |[lin, [ [Y][lin}. We also know that all states are
convex subsets d*, which means once a point enters a state
!Z,, is a group of non-negative integers less than Additions and S;, it can move to|.S; |, in a straight line motion. Therefore,
subtractions are calculated moduto _ _ when the state sequenceis given, it is always possible to
In this context, theprojection of a pointp on a setS is the point of S ind Z h th =S d ith the hel fL 4
closest top. With this definition, the projection must exist and be uniquéIn such t atU( ) = 5 and, with the help of Lemma 4,
given thatS is a line segment. ITZin = NTLSI T in-



C. Initial and Final States We now revisit the problem of specifyingitial nodesand
Imagine the paired motion of two point§a,b) that fina_l n_odes Fro.m the previous discussion, nodes that may act

constitutes a boundary coveragé again, the constraint @S initial and final nodes aré;V;, V.E;, ViE; ., E;V; and

“llinitial(Z)||sn = ||final(Z)||in = 0" requires that the two E;_1V;. We want to assign each of them as initial or final

points start from one initial point, split in opposite direction§nly; but not both.

relative to each other, then meet again at one final point.e ViE; should be declaredhitial because(p,q) belongs

Without loss of generality, we can assume two things: to V;E; implies thatp = V; and ¢ lies in the counter-

« a andb do not cross during the whole time except at the clockwise direction fromp (due to our restriction of the
initial and final points. counterclockwise arrangement Bf).

« Whena andb split and meetq is moving in theclockwise ~ * ViFi-1 should be declareéinal because(p, ¢) belongs
direction relative tob. to V; F;_; implies thatp = V; andq lies in the clockwise

. . direction fromp.
Every state that contains a point of the fo(m p) can act as _
both aninitial state and afinal state All states that hagp, p) * %VZ ;horlld It()je S ec(ljarelﬂ:ladlhtilt(iaclalgsd/;Ei z‘a;%h'tlal .
are: V;Vi, iEy, ViEi_y, EiVi, Ei\Vi, EE;, EiF;py and  ° i-1Vi SHOUA DS GECAremiial becausey b are

: . final.
E;E;_1. We will look more closely at this matter after states .
bécémle nodes of! y « V;V; can be removed because all nhodes adjaceiif 9

have already been declared initial or final.
D. The GraphG: We are now ready to list all nodes and edge&'afs follows:
From all the above discussions, it seems rather clear howl) FromV;E;:
G should be constructed: states become nodes, transitions V;_1E;, ViV andE;_1 Vi
become edges, and state sequences become paths. The idea2)f From E;_, V;:
the algorithm is also simple: find a state sequence that starts V;_1V;, V,_1E; andE;_1V; ;1
from one initial state, ends at one final state, and has the3) FromE;V;:
smallest maxi-min inner distance. This simple idea actually  E;V,_1, V;11V; andV, 1 E; 4
works, but there are numerous redundancies that should bd) FromV;E;_;:

removed for efficiency. ViVie1, EiVioqp and Vi By
Start by looking atFE;E;. It is obvious that all minimum  5) FromV;V}, i # j:
inner distances of states adjacentHpl; are never smaller ViE;, ViE;_1, E;V; and E;_,V

than||| E; E; ||;. This means ifX andY are states adjacent 6) FromV;Ej;, i # j andi # j + 1.

to E,E;, || E:Ej]| i can be excluded from the calculation E;V;, EiVii1, BEi1V;, BV, ViV and ViV

of maxi-min inner distance ofX, E;E;,Y). With another  7) FromE;V}, i # j andi # j + 1

observation that adjacent statesifE; are NOT of the form ViEj, VigaEj, ViEj_1, VigaEj—1, ViV and Vi V;

EyE,, all E;E; can be removed from every sequence as th¢y) and (2) are from initial nodes. (3) and (4) are from final

are subsumed by adjacent states. nodes. (5), (6) and (7) are from internal (neither initial nor
Next, consider states of the forijV;. Before E;E; are final) nodes. The total number of nodes3is? — n and the

removed, all states adjacent¥V; are not of the formi/;,V;, total number of edges i&n? — 8n.

but once we bypasg; E;, V;V; can jump to somé/, V. Still, To find ¢c0n (C), we need to search for a pathin G that

we can manage to insert some states of the foéftli; or starts from an initial node, ends at a final node, and has the

E;V; in between and reduce some adjacencies. Look at th@allest maxi-min inner distance. Ongeés found, a boundary

state sequence coverageZ of C such thatz(Z) = S and||[graph(Z)]||in =

(ViVi, BBy, Vig1 Visa ). ITLSlin always exists.

V. ALGORITHM
Our goal is to find a patly in G that coversC, i.e. starts
ViV = Viga Vi from an initial node and ends at a final node. The characteristic
of maxi-min inner distance of paths allows us to apply the idea
from Dijkstra’s shortest path algorithm.

The corresponding path with; £; removed is

We know that intermediate states (adjacent Wg/; and

Vis1Vjy1) areV;E;, E;V;, Viy1 E; and E; V44, all of which . . -
S . . . - The pseudocode of the algorithm is shown in Fig. 7.
have minimum inner distances not exceedingx{||V; Note that if max{d, [|[¢][|in} in line (11) is replaced by

Vills |Vig1 —Vj41l}- Inserting any of them in the middle does :
not increase Jthe maxi-min inner distance of the path, so \ﬂﬁr [distance ofs - t), the pseud(_)cod_e becom_es exaqtly th_e
do so S orteds_t platg(alzglonthr)n. The running time of this algorithm is
accordinglyO(n®logn).

ViVy = Vil = Vi Vi The algorithm has been implemented in C++ and tested on
All the other cases, such &8;V;, X, V;V;11), can be handled 1.5 GHz CPU with 512 MB RAM. It could process the input
by similar arguments. Edges 6f, then, do not have to include polygon with 1000 vertices within3 seconds. Some visual
ViV, — ViVi. experimental results are shown in Fig. 8.



(1) rl;ce)a;/;szted be a set, initially empty, for storing visited APPENDIX
(2) Let H be a min-heap, initially empty, for storing Proof of Lemma 4

a couple (d, s) where d is a real number used in Proof: The existence and uniquenesszfollow at once as its

comparison and is a node ofG. two endpoints are specified. It is possible to let pointsXinY” and
(3)  For each initial node, add (0, s) to H. Z be formulated as linear functions of the same variabte [0, 1]
(4)  Repeat the following unti..., (C) is found: as follows:
(5) begin
(6) Retrieve and remove the minimum cougé, s) X(t) = (1-1t)-initial(X) +t- final(X)

from H. Y(t) = (1—t)- initial(Y) +t- final(Y)
(8) If s is a final node, report thab..,(C) = d and ’
terminate. Let W (t) = X (t)—Y (¢); it follows that the graph ofV (¢) where
9) For eacht ¢ Visited such that edge — ¢ exists, 0 <t <1is aline segment iR? with endpointsX (0) — Y'(0) and
(10) begin X (1) = Y(1). From Lemma 3, we have that
(11) Letm = max{d, |||t]]|in}
(12) If there exists a couplée, t) in H for somee, max{[|[W(#)[| [0 <t <1}
3 tti;en_ = max{[|X(0) = Y(0)[], |X(1) = YD}
egin -
(14) If m < e, replace(e,t) in H by (m,t) and Also, from Definition 2,
adjustH. Z®)|lin = 1X@®) =Y @) = WO,
(15) Eise, do nothing. | 1Z@)]lin = [1X () = Y (@) = W (@)
(16) end. and finally,
(17) Else, addm, t) to H. 11211l
(18) end.
(19) end. = max{[|Z()[in |0 <t <1}
= max{|W(t)||0<t<1}
Fig. 7. The pseudocode of our searching algorithm. = max{[|X(0) — Y(0)|,[|X(1) =Y ()|}

(1]

Fig. 8. Some experimental results. Coverage diameters are shown in dotted
lines.
[3]

V1. DISCUSSION ANDCONCLUSION [4]

We have formalized a new property of simple closed curves
in R? called “coverage diameter” and shown how it can bd5]
used in the problem of caging an object with point obstacles.
A new sufficient condition for caging which is tighter and [g)
simpler than the condition stated in [11] is also proposed.
Though our condition is sufficient but not necessary, it is,
suitable for forming a moving cage with robots that have low
functionalities.

The idea of the algorithm to compute coverage diameter of
polygon is based on the notion of paired motion of points and
the property of directed line segments shown in Lemma 4. The
algorithm runs inO(n? logn) time provided that the polygon
hasn vertices. Coverage diameters of all figures shown in this
paper have been verified by the algorithm we implemented.

The proof is now finished.

max{||initial(X) — initial (Y)||,
[ final(X) — final(Y)]|}
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