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Abstract— This paper formalizes and proposes an algorithm to
computecoverage diametersof polygons in 2D. Roughly speaking,
the coverage diameter of a polygon is the longest possible distance
between two points through which the polygon cannot pass in
between. The primary use of coverage diameter is to form a
cage for transporting an object, not necessarily convex, with
multiple disc-shaped robots. The main idea of the computation
of coverage diameter is to convert the problem into a graph
structure, then perform the search for a solution path in that
graph. The proposed algorithm runs in O(n2 log n) time for the
input polygon with n vertices.

I. I NTRODUCTION

To cage an objectmeans to limit object’s configuration
space to a bounded subset. Many types of caging problems
have been raised, but the one that has been studied most
extensively is how to form a cage by a number of point
obstacles inR2. Solutions to this problem can be applied quite
directly to transportation of an object by multiple disc-shaped
robots: form a cage by robots, then move them together at the
same velocity.

In practice, it is difficult to synchronize multiple robots to
move together at exactly the same velocity, so if we are to
transport an object by putting it in a moving cage formed
by these robots, the cage should be allowed to deform a bit.
This paper presents a new sufficient caging condition for this
situation that is easy to maintain — it requires only that each
robot can keep the distances from itself to its nearby friends
under a predetermined value, which will be called “coverage
diameter”.

Roughly speaking, the coverage diameter of a rigid simple
closed curve inR2 is the shortest length of gap (space between
two points) that allows the curve to pass through. Therefore,
the curve cannot escape from surrounding points, and is said to
becaged, if every surrounding gap is smaller than the coverage
diameter.

The notion of caging was first introduced in [1]. The
problem of determining thecaging setfor 2-fingered gripping
systems with one degree of freedom in the plane was studied in
[2]. The extension to 3-fingered gripper, also with one degree
of freedom, was explored in [3]. Caging in these works serves
as a quick pre-process toward immobilizing grasp. Error-
tolerance was added in [4].

Later in [5], a way to producev-grips at concave vertices
using two fingers was presented. Once two fingers form a
v-grip, they can move inward or outward by some distance

while preserving the caging condition. The maximum amount
of distance that keeps the cage can be computed by the
method presented in [6]. Note that in some cases (such as
convex polygons) where no v-grips exist,surrounding points
that satisfy our coverage diameter condition can serve as a
complementary cage.

Manipulating polygonal objects using three 2-DOF robots,
proposed in [7], involved caging as a transition between differ-
ent form closures. The need of form closures was relaxed with
the help of MICaDs (maximum independent capture discs)
introduced in [8]. Then, motion planning and caging were
combined in [9]. Nonetheless, these methods are applicable
only to the case of three robots with high functionalities.

Cages of more than three robots were discussed in [10]. The
notion of object closurewas introduced and used in stating a
sufficient and necessary condition for caging, but the test to
verify object closure involves complicated operations and is
extremely time-consuming. An alternative test method which
takes less time was also presented in [10], but its completeness
was not guaranteed.

Presented in [11] is a new sufficient condition for caging
which is, though as well incomplete, much easier to check and
more practical in many situations. It involves the calculation of
diameter functionof convex polygons, which was first brought
up in [12]. However, the sufficient condition stated in [11] can
be both tightened and simplified with the meaning of coverage
diameter. The improved condition is stated in Section II after
an intuitive definition of coverage diameter is discussed.

In Section III, we introduce related terms, redefine coverage
diameter formally, and state lemmas that are needed in the
computation of coverage diameter of polygons. The idea of
the computation involves formulating the problem into a graph
structure. Such formulation is explained in Section IV. Finally,
the pseudocode of the algorithm and some experimental results
are shown in Section V.

II. COVERAGE DIAMETER AND CAGING CONDITION

Imagine an object in a cage formed by points. If the object
is about to escape the cage, it must get through a gap between
some two points of the cage. Our original goal is to find the
largest separation distance between points such that the object
cannot escape.

But in reality, when we try to transport the object by
forming a moving cage with mobile robots, distances among



them cannot easily be kept constant as they move. It is more
practical to allow some distance change and maintain only the
upper bound of separation distance. We call this upper bound
value thecoverage diameterand denote it byφcov(C) if the
curve isC. A new sufficient condition forC to be caged by
surrounding points is immediate from the notion ofφcov(C).

Lemma 1:Let P be a polygon with verticesP1, P2, P3,
..., Pn ∈ R2 arranged counterclockwise and letP0 = Pn.
If C is a rigid closed curve that lies insideP and ‖Pi −
Pi−1‖ < φcov(C) wherei ∈ {1, 2, 3, ..., n}, thenC is caged
by {P1, P2, P3, ..., Pn}.

Note that the cage formed by surrounding points can contain
more than one objects provided that all separation distances
are smaller than the minimum coverage diameter of all objects
(Fig. 2).

coverage diameter longer than coverage diameter

longer than coverage diameter

(a) (b)

(c)

Fig. 1. The condition is sufficient but not necessary. (a) The object is caged
because all gaps are smaller than the coverage diameter. (b) The object may
escape when there is a gap larger than the coverage diameter. (c) The object
cannot escape despite the presence of a gap larger than the coverage diameter.

Fig. 2. Shown in dotted lines are coverage diameters. All objects are caged
because all gaps are smaller than the shortest coverage diameter.

III. F UNDAMENTALS

Definition 1: An arc is a connected set of points homeo-
morphic to the closed interval[0, 1]. A directed arcis a triple

Z = (A, s, d)

whereA is an arc,s is an endpoint ofA, andd is the other
endpoint ofA. initial(Z) = s is called theinitial point of Z,

final(Z) = d is called thefinal point of Z, andgraph(Z) =
A is called thegraph of Z.

Motion of a point will be represented by a directed arc
because magnitude of velocity is not relevant to our discussion.
Next, we will consider the paired motion of two points together
because a gap inR2 is defined by two points.

Definition 2: Let V be a Euclidean space.

1) If a ∈ V and b ∈ V , the inner distanceof (a, b) ∈ V 2

is ‖(a, b)‖in = ‖a− b‖.
2) If A ⊆ V 2, the maximum inner distanceof A is

‖dAe‖in = max{‖a‖in | a ∈ A}.

Similarly, theminimum inner distanceof A is

‖bAc‖in = min{‖a‖in | a ∈ A}.

A. Coverages and the Coverage Diameter

Imagine whenC is being pushed through a gap between
two pointsa andb in R2. The situation will be viewed from
a-b’s frame of reference wherea is the origin andb is on the
positive-y axis. Note thatb is allowed to move up and down
along the positive-y axis.

In the initial set up, letC lie totally in the left half plane.
Every point of C has an integer called thecoverage count
attached to it. All coverage counts are initially zero.

At any instant, thecross sectionis the part of C that
intersects the straight line segment drawn froma to b. If a
point of C is in the cross section and is moving into the right
half plane, the coverage count of that point is increased by
1. Oppositely, the coverage count is decreased by1 if it is
moving into the left half plane.
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Fig. 3. (a) The object is moving to the right. Coverage counts of points
in the cross section will increase by1. (b) The object is moving to the left.
Coverage counts of points in the cross section will decrease by1. (c) The
object is rotating around a point (not shown). Coverage counts of points in
the cross section may decrease or increase depending on the position of the
fixed point.

When the whole motion is known, a point ofC starts to be
coveredat the last moment its coverage count changes from
0 to 1. Once a point becomes covered, it remains covered for
the rest of the motion (Fig. 4).

When all coverage counts are equal to1, C is said to be
coveredby the paired motion ofa and b viewed from C ’s
frame of reference. Such paired motion can be represented by
a directed arc inR4 that is called acoverageof C.
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Fig. 4. (a) The point starts to becoveredat the moment its coverage count
increases from and never decreases to0. If we know that the point is eventually
covered, it is possible to view backward (from right to left) and marks the
point asuncoveredonce its count reaches zero. (b) An example of not-yet-
covered points in the real situation.

The maximum inner distance of a coverage is equal to the
maximum separation distance betweena and b during the
motion. It is obvious that the smallest maximum inner distance
of all coverages is exactly the same ascoverage diameterwe
have mentioned.

Definition 3: If C is a simple closed curve inR2, its
coverage diameter is

φcov(C) = min{‖dgraph(Z)e‖in | Z is a coverage ofC}

Note that there are infinitely many coverages whose max-
imum inner distances are equal toφcov(C). We need to find
just one of them.

B. Boundary Coverages

A coverageZ of C is called aboundary coverageif
1) graph(Z) ⊆ C2

2) ‖initial(Z)‖in = ‖final(Z)‖in = 0
We claim that there always exists a boundary coverage

whose maximum inner distance is equal toφcov(C). This fact
allows us to limit the search to boundary coverages only.

To prove the claim, let Z be a coverage with
‖graph(Z)‖in = φcov(C) (Fig. 5.a). At each instant of the
motion that constitutesZ, let a and b be the two moving
points and letK be the set of points in the cross sectionthat
are “covered” (as in Fig. 4) at that time. It is obvious that
‖dK2e‖in ≤ φcov(C) for all K.

Let U be the union of allK2, written as:

U =
⋃

all K

K2

It is again obvious that‖dUe‖in = φcov(C).
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Fig. 5. (a) Some snapshots ofZ. (b) Covered points in some cross sections
are shown in white.a′ andb′ are the farthest pair inK, i.e. ‖(a′, b′)‖in =
‖dK2e‖in. (c) The point of discontinuity:(a′, b′

1) and(a′, b′
2) are different

limits. (d-e) A directed arc inU that fixes the discontinuity.

Next, leta′ andb′ be two new moving points inK that are
closest toa and b (Fig. 5.b). We know that(a′, b′) ∈ U but
a′ and b′ might not be continuous with respect to time (Fig.
5.c). However, these discontinuities can be filled by directed
arcs inU whose initial and final points are the different limits
(Fig. 5.d, 5.e). These directed arcs always exist becauseU
is connected due to the fact that once a point is covered, it
remains covered through the rest of the motion. Therefore,
the paired motion(a′, b′) with all discontinuities removed
composes a coverage whose graph is a subset ofU ⊆ C2.

Combining this result with the fact that(p, p) ∈ U for all
p ∈ C, the coverage just described can be extended such that
its initial and final points have zero inner distance. If we let
the initial point be any member of the first non-emptyK2 and
the final point be any member of the last non-emptyK2, the
result of this extension becomes a boundary coverage. Our
claim is now proved and we summarize it in the following
lemma.

Lemma 2:For a given simple closed curveC ⊂ R2,
there always exists a boundary coverageZ such that
‖dgraph(Z)e‖in = φcov(C).

Proof: The above remark constitutes a proof.

C. Line Segments

A line segment is a special kind of arcs whose points can
be written as a linear function of one variable. Line segments
will be involved when we work with polygons, a special kind
of simple closed curves. The following lemma assumes that
distance of a point is measured from the origin.

Lemma 3: If p andq are the two endpoints of a line segment
L, max{‖x‖ | x ∈ L} = max{‖p‖, ‖q‖}.

Proof: If ‖p‖ ≥ ‖q‖, the circle with radius‖p‖ centered
at the origin will containL; therefore,max{‖x‖ | x ∈ L} =
‖p‖. The other case where‖p‖ < ‖q‖ is proved by exchanging
p andq.

Directed arcs whose graphs are line segments are called
directed line segments. The following lemma shows an impor-



tant characteristic of paired directed line segments that will be
used in the next section.

Lemma 4:Given two directed line segmentsX and Y
in R2, if Z is a line segment inR4 whose endpoints are
(initial(X), initial(Y )) and (final(X), final(Y )), then

‖dZe‖in = max{‖initial(X)− initial(Y )‖,
‖final(X)− final(Y )‖}

Proof: See Appendix.

IV. COMPUTATION OF φcov(C)

We are going to find the coverage diameter of the polygon
C ⊆ R2 that hasn vertices andn edges, namelyVi and Ei

where i ∈ Zn
1. Vi are ordered counterclockwise. EveryEi

is a line segment inR2 with endpointsVi andVi+1.
To find φcov(C), we will construct a graphG that contains

enough information ofC, then perform a search inG. The
steps toward construction ofG are outlined below:

1) We will define subsets ofC2 calledstates. Every point
of C2 will belong to exactly one state.

2) Every directed arc inC2 will have a corresponding
state sequence. We will show that it is adequate to
consider only state sequences without looking at any
corresponding directed arcs.

3) Initial andfinal states will be defined by examining state
sequences of boundary coverages.

4) Some states will be chosen to becomenodesof G and
we will derive edgesof G from state adjencies.

After G is completely defined, the algorithm to findφcov(C)
will be presented.

A. States

The following subsets ofC2 for all i, j ∈ Zn are called
states:

• ViVj = {(Vi, Vj)}
• ViEj = {Vi} × Ej

• EiVj = Ei × {Vj}
• EiEj = Ei × Ej

Note that the union of all states isC2.
Let bXcin denote the point of a stateX with smallest inner

distance. If there are more than one points with equal inner
distance, we can choose any one of them. Note that‖bXc‖in

(from Definition 2) is equal to the inner distance ofbXcin.
We need to knowbXcin of all statesX. For states of the

form ViVj , it is obvious thatbViVjcin = (Vi, Vj). Next, if
we let Pi,j be projections2 of Vi on Ej , then bViEjcin =
(Vi, Pi,j) andbEiVjcin = (Pj,i, Vi).

In order to findbEiEjcin, it is easy to show thatbEiEjcin
must be equal to at least one of these four points:bViEjcin,
bVi+1Ejcin, bEiVjcin and bEiVj+1cin. Three comparisons
will give the correct value of eachbEiEjcin.

1Zn is a group of non-negative integers less thann. Additions and
subtractions are calculated modulon.

2In this context, theprojection of a point p on a setS is the point ofS
closest top. With this definition, the projection must exist and be unique
given thatS is a line segment.

Ej

Vi

Pi,j

Ej

Vi

(a) (b)

Pi,j

Fig. 6. The line segmentViPi,j may or may not be perpendicular toEj .
(a) ViPi,j is perpendicular toEj . (b) ViPi,j is not perpendicular toEj and
Pi,j coincides withVj or Vj+1.

B. State Sequences

For a given directed arcZ in C2, let σ(Z) be the sequence
of states that points ofZ belong to. Here arises one problem:
a point ofC2 may be a member of more than one states. We
will try to choose states of the formViVj first, ViEj andEiVj

next, thenEiEj . As “belong to” is defined this way (different
from “∈”), the functionσ(Z) is now clearly defined.

Let S be a finite state sequence of lengthm:

S = (S1, S2, S3, ..., Sm)

The maxi-min inner distanceof S is

‖dbSce‖in = max{‖bSic‖in | i = 1, 2, 3, ...,m}

It is easy to show that‖dgraph(Z)e‖in ≥ ‖dbSce‖in when-
everσ(Z) = S.

Two statesX and Y are adjacent if and only if the state
sequence(X, Y ) exists. All state adjacencies are listed below:

• States adjacent toViVj :
EiEj , EiEj−1, Ei−1Ej , Ei−1Ej−1,
ViEj , ViEj−1, EiVj andEi−1Vj

• States adjacent toViEj :
EiEj , Ei−1Ej , ViVj andViVj+1

• States adjacent toEiVj :
EiEj , EiEj−1, ViVj andVi+1Vj

• States adjacent toEiEj :
ViVj , ViVj+1, Vi+1Vj , Vi+1Vj+1,
ViEj , Vi+1Ej , EiVj andEiVj+1

We are going to show that ifX andY are adjacent states,
then bXcin ∈ X ∩ Y or bY cin ∈ X ∩ Y . SinceViEj are
not adjacent to anyVkEl or EkVl, it suffices to consider only
these cases:

• If X = ViVj : X ⊆ Y , so bXcin ∈ X ∩ Y .
• If X = EiEj : Y ⊆ X, so bY cin ∈ X ∩ Y .

This means ifX andY are adjacent states, there always exists
a directed arcZ such thatσ(Z) = (X, Y ) and ‖dZe‖in =
max{‖bXc‖in, ‖bY c‖in}. We also know that all states are
convex subsets ofR4, which means once a point enters a state
Si, it can move tobSicin in a straight line motion. Therefore,
when the state sequenceS is given, it is always possible to
find Z such thatσ(Z) = S and, with the help of Lemma 4,
‖dZe‖in = ‖dbSce‖in.



C. Initial and Final States

Imagine the paired motion of two points(a, b) that
constitutes a boundary coverageZ again, the constraint
“‖initial(Z)‖in = ‖final(Z)‖in = 0” requires that the two
points start from one initial point, split in opposite directions
relative to each other, then meet again at one final point.
Without loss of generality, we can assume two things:

• a andb do not cross during the whole time except at the
initial and final points.

• Whena andb split and meet,a is moving in theclockwise
direction relative tob.

Every state that contains a point of the form(p, p) can act as
both aninitial state and afinal state. All states that has(p, p)
are: ViVi, ViEi, ViEi−1, EiVi, Ei−1Vi, EiEi, EiEi+1 and
EiEi−1. We will look more closely at this matter after states
become nodes ofG.

D. The GraphG

From all the above discussions, it seems rather clear how
G should be constructed: states become nodes, transitions
become edges, and state sequences become paths. The idea of
the algorithm is also simple: find a state sequence that starts
from one initial state, ends at one final state, and has the
smallest maxi-min inner distance. This simple idea actually
works, but there are numerous redundancies that should be
removed for efficiency.

Start by looking atEiEj . It is obvious that all minimum
inner distances of states adjacent toEiEj are never smaller
than‖bEiEjc‖in. This means ifX andY are states adjacent
to EiEj , ‖bEiEjc‖in can be excluded from the calculation
of maxi-min inner distance of(X, EiEj , Y ). With another
observation that adjacent states ofEiEj are NOT of the form
EkEl, all EiEj can be removed from every sequence as they
are subsumed by adjacent states.

Next, consider states of the formViVj . Before EiEj are
removed, all states adjacent toViVj are not of the formVkVl,
but once we bypassEiEj , ViVj can jump to someVkVl. Still,
we can manage to insert some states of the formViEj or
EiVj in between and reduce some adjacencies. Look at the
state sequence

(ViVj , EiEj , Vi+1Vj+1).

The corresponding path withEiEj removed is

ViVj → Vi+1Vj+1

We know that intermediate states (adjacent toViVj and
Vi+1Vj+1) areViEj , EiVj , Vi+1Ej andEiVj+1, all of which
have minimum inner distances not exceedingmax{‖Vi −
Vj‖, ‖Vi+1−Vj+1‖}. Inserting any of them in the middle does
not increase the maxi-min inner distance of the path, so we
do so

ViVj → ViEj → Vi+1Vj+1

All the other cases, such as(ViVj , X, ViVj+1), can be handled
by similar arguments. Edges ofG, then, do not have to include
ViVj → VkVl.

We now revisit the problem of specifyinginitial nodesand
final nodes. From the previous discussion, nodes that may act
as initial and final nodes are:ViVi, ViEi, ViEi−1, EiVi and
Ei−1Vi. We want to assign each of them as initial or final
only, but not both.

• ViEi should be declaredinitial because(p, q) belongs
to ViEi implies thatp = Vi and q lies in the counter-
clockwise direction fromp (due to our restriction of the
counterclockwise arrangement ofVi).

• ViEi−1 should be declaredfinal because(p, q) belongs
to ViEi−1 implies thatp = Vi andq lies in the clockwise
direction fromp.

• EiVi should be declaredfinal becauseViEi are initial .
• Ei−1Vi should be declaredinitial becauseViEi−1 are

final.
• ViVi can be removed because all nodes adjacent toViVi

have already been declared initial or final.
We are now ready to list all nodes and edges ofG as follows:
1) FromViEi:

Vi−1Ei, ViVi+1 andEi−1Vi+1

2) FromEi−1Vi:
Vi−1Vi, Vi−1Ei andEi−1Vi+1

3) FromEiVi:
EiVi−1, Vi+1Vi andVi+1Ei−1

4) FromViEi−1:
ViVi−1, EiVi−1 andVi+1Ei−1

5) FromViVj , i 6= j:
ViEj , ViEj−1, EiVj andEi−1Vj

6) FromViEj , i 6= j and i 6= j + 1:
EiVj , EiVj+1, Ei−1Vj , Ei−1Vj+1, ViVj andViVj+1

7) FromEiVj , i 6= j and i 6= j + 1:
ViEj , Vi+1Ej , ViEj−1, Vi+1Ej−1, ViVj andVi+1Vj

(1) and (2) are from initial nodes. (3) and (4) are from final
nodes. (5), (6) and (7) are from internal (neither initial nor
final) nodes. The total number of nodes is3n2 − n and the
total number of edges is8n2 − 8n.

To find φcov(C), we need to search for a pathS in G that
starts from an initial node, ends at a final node, and has the
smallest maxi-min inner distance. OnceS is found, a boundary
coverageZ of C such thatσ(Z) = S and‖dgraph(Z)e‖in =
‖dbSce‖in always exists.

V. A LGORITHM

Our goal is to find a pathS in G that coversC, i.e. starts
from an initial node and ends at a final node. The characteristic
of maxi-min inner distance of paths allows us to apply the idea
from Dijkstra’s shortest path algorithm.

The pseudocode of the algorithm is shown in Fig. 7.
Note that if max{d, ‖btc‖in} in line (11) is replaced by
d + [distance ofs → t], the pseudocode becomes exactly the
shortest path algorithm. The running time of this algorithm is
accordinglyO(n2 log n).

The algorithm has been implemented in C++ and tested on
1.5 GHz CPU with 512 MB RAM. It could process the input
polygon with 1000 vertices within 3 seconds. Some visual
experimental results are shown in Fig. 8.



(1) Let V isited be a set, initially empty, for storing visited
nodes.

(2) Let H be a min-heap, initially empty, for storing
a couple (d, s) where d is a real number used in
comparison ands is a node ofG.

(3) For each initial nodes, add(0, s) to H.
(4) Repeat the following untilφcov(C) is found:
(5) begin
(6) Retrieve and remove the minimum couple(d, s)

from H.
(7) Add s to V isited.
(8) If s is a final node, report thatφcov(C) = d and

terminate.
(9) For eacht /∈ V isited such that edges → t exists,
(10) begin
(11) Let m = max{d, ‖btc‖in}.
(12) If there exists a couple(e, t) in H for somee,

then
(13) begin
(14) If m < e, replace(e, t) in H by (m, t) and

adjustH.
(15) Else, do nothing.
(16) end.
(17) Else, add(m, t) to H.
(18) end.
(19) end.

Fig. 7. The pseudocode of our searching algorithm.

Fig. 8. Some experimental results. Coverage diameters are shown in dotted
lines.

VI. D ISCUSSION ANDCONCLUSION

We have formalized a new property of simple closed curves
in R2 called “coverage diameter” and shown how it can be
used in the problem of caging an object with point obstacles.
A new sufficient condition for caging which is tighter and
simpler than the condition stated in [11] is also proposed.
Though our condition is sufficient but not necessary, it is
suitable for forming a moving cage with robots that have low
functionalities.

The idea of the algorithm to compute coverage diameter of a
polygon is based on the notion of paired motion of points and
the property of directed line segments shown in Lemma 4. The
algorithm runs inO(n2 log n) time provided that the polygon
hasn vertices. Coverage diameters of all figures shown in this
paper have been verified by the algorithm we implemented.

The following are probable extensions we have foreseen:
• Extracting some more information, such as possible two-

fingered contracting grips and cages, from the graph
constructed in Section IV.

• Allowing curved edges in the input shape. (Lemma 4 will
require a substitute.)

APPENDIX

Proof of Lemma 4
Proof: The existence and uniqueness ofZ follow at once as its

two endpoints are specified. It is possible to let points inX, Y and
Z be formulated as linear functions of the same variablet ∈ [0, 1]
as follows:

X(t) = (1 − t) · initial(X) + t · final(X)

Y (t) = (1 − t) · initial(Y ) + t · final(Y )

Z(t) = (X(t), Y (t))

Let W (t) = X(t)−Y (t); it follows that the graph ofW (t) where
0 ≤ t ≤ 1 is a line segment inR2 with endpointsX(0)−Y (0) and
X(1) − Y (1). From Lemma 3, we have that

max{‖W (t)‖ | 0 ≤ t ≤ 1}
= max{‖X(0) − Y (0)‖, ‖X(1) − Y (1)‖}

Also, from Definition 2,

‖Z(t)‖in = ‖X(t) − Y (t)‖ = ‖W (t)‖,

and finally,

‖dZe‖in

= max{‖Z(t)‖in | 0 ≤ t ≤ 1}
= max{‖W (t)‖ | 0 ≤ t ≤ 1}
= max{‖X(0) − Y (0)‖, ‖X(1) − Y (1)‖}
= max{‖initial(X) − initial(Y )‖,

‖final(X) − final(Y )‖}

The proof is now finished.
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