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Abstract: We propose a new reconfigurable gripper
that consists of two parallel plates whose distance can
be adjusted by a computer-controlled actuator. The
bottom plate is a bare plane, and the top plate carries
a rectangular grid of actuated pins that can trans-
late in discrete increments under computer control.
We propose to use this gripper to immobilize objects
through frictionless contacts with three of the pins
and the bottom plate. We present an efficient grasp
planning algorithm, describe the design of the grip-
per, which is currently under construction, and report
preliminary simulation experiments.

1 Introduction

Classical parallel-jaw grippers are unable to adapt
to a wide variety of workpiece geometries; although
dextrous hands have been proposed by the academic
robotics community [10, 31], they are too expensive
and cumbersome for typical manufacturing applica-
tions. Thus different grippers are used for different
parts (hundreds of different models are indeed listed
by gripper manufacturers). This calls for the design
of reconfigurable grippers which combine the flexibil-
ity of dextrous hands with the cost-effectiveness and
simplicity of parallel-jaw grippers, and for the devel-
opment of accompanying software to reconfigure these
grippers according to part geometry.

We propose in this article a new reconfigurable grip-
per that consists of two parallel plates whose distance
can be adjusted by a computer-controlled actuator
(Figure 1). The bottom plate is a bare plane, and
the top plate carries a rectangular grid of actuated
pins that can translate in discrete increments under
computer control. We propose to use this gripper to
immobilize objects through frictionless contacts with
three of the pins and the bottom plate. Our approach
is based on the notion of second-order immobility in-
troduced by Rimon and Burdick [28]. We present an
efficient algorithm for grasp planning, describe the de-
sign of the gripper, which is currently under construc-
tion, and report preliminary simulation experiments.

Figure 1. A reconfigurable gripper. An actuated pin is
associated with each grid point. To avoid friction effects,
the bottom plate should have three passive planar degrees
of freedom.

1.1 Related Work

When a hand holds an object at rest, the forces
and moments exerted by the fingers should balance
each other so as not to disturb the position of this ob-
ject. We say that such a grasp achieves equilibrium.
For the hand to hold the object securely, it should also
be capable of preventing any motion due to external
forces and torques. Since screw theory [21] can be used
to represented both displacements (twists) and forces
and moments (wrenches), it is an appropriate tool for
analyzing and synthesizing grasps. Indeed, it is known
that six independent contact wrenches are necessary
to prevent any infinitesimal displacement which main-
tains contact, and that a seventh one is required to
ensure that contact cannot be broken [11, 32]. Such
a grasp prevents any infinitesimal motion of the ob-
ject, and it is said to achieve form closure [21, 27, 31].
A system of wrenches is said to achieve force closure
when it can balance any external force and torque.
Like wrenches and infinitesimal twists, force and form
closure are dual notions and, as noted in [19, 20] for
example, force closure implies form closure and vice
versa.

The notions of form and force closure are the
traditional theoretical basis for grasp planning algo-
rithms. Mishra, Schwartz, and Sharir [18] have pro-
posed linear-time algorithms for computing a finger
configuration achieving force closure for frictionless



polyhedral objects. Markenscoff and Papadimitriou
[15] and Mirtich and Canny [16] have proposed algo-
rithms for planning grasps which are optimal accord-
ing to various criteria [8]. In each of these works, the
grasp-planning algorithm outputs a single grasp for a
given set of contact faces. Assuming Coulomb friction
[20], Nguyen has proposed instead a geometric method
for computing mazimal independent two-finger grasps
of polygons, i.e., segments of the polygonal bound-
ary where the two fingers can be positioned indepen-
dently while maintaining force closure, requiring as
little positional accuracy from the robot as possible.
This approach has been generalized to handle various
numbers of fingers and different object geometries in
[1, 5, 22, 24, 25, 26].

Robotic grasping and fixture planning are related
problems (in both cases, the object grasped of fixtured
must, after all, be held securely), but their functional
requirements are not the same: as remarked by Chou,
Chandru, and Barash [6], machining a part requires
much better positional accuracy than simply picking
it up, and the range of forces exerted on the parts are
very different. The role of friction forces is also differ-
ent: in the grasping context, where fingers are often
covered with rubber or other soft materials, friction
effects can be used to lower the number of fingers re-
quired to achieve form closure from seven to four; in
the fixturing context, on the other hand, it is custom-
ary to assume frictionless contact, partly due to the
large magnitude and inherent dynamic nature of the
forces involved [6] (see, however [14] for an approach
to fixture planning with friction). Finally, the kine-
matic constraints on the positions of the contacts are
also quite different: in particular, dextrous grippers
have continuous degrees of freedom, corresponding to
the various finger joints, while modular fixtures have
mostly discrete degrees of freedom, corresponding for
example to the position of pins on an integer grid at-
tached to a fixturing plate.

As noted by Wallack [35], there has recently been
a renewed interest in the academic robotics commu-
nity for manufacturing problems in general and fix-
turing in particular. Mishra has studied the prob-
lem of designing fixtures for rectilinear parts using
toe clamps attached to a regular grid, and proven
the existence of fixtures using six clamps [17] (this
result has since then been tightened to four clamps
by Zhuang, Goldberg, and Wong [36]). In keeping
with the idea of Reduced Intricacy Sensing and Control
(RISC) robotics of Canny and Goldberg [4], Wallack
and Canny [34, 35] Brost and Goldberg [2] have re-
cently proposed very simple modular fixturing devices

and efficient algorithms for constructing form-closure
fixtures of two-dimensional polygonal and curved ob-
jects. Brost and Peters [3] have extended this ap-
proach to prismatic three-dimensional objects, and
Wagner, Zhuang, and Goldberg [33] have proposed a
three-dimensional seven-contact fixturing device and
an algorithm for planning form-closure fixtures of a
polyhedron with pre-specified pose.

Recently, Rimon and Burdick have introduced the
notion of second-order immobility [28, 29, 30] and
shown that certain equilibrium grasps (or fixtures) of a
part which do not achieve form closure effectively pre-
vent any finite motion of this part through curvature
effects in configuration space. They have given oper-
ational conditions for immobilization and proven the
dynamic stability of immobilizing grasps under various
deformation models [30]. An additional advantage of
this theory is that second-order immobilization can be
achieved with fewer fingers (four contacts for convex
fingers) than form closure (seven contacts [11, 32]). In
[23], we introduced a new approach to modular fixture
planning, based on the notion of second-order immo-
bility. Here we bridge the gap between fixture and
grasp planning by using second-order immobility to
design efficient grasping strategies for a new class of
reconfigurable grippers with mostly discrete degrees
of freedom, which have the potential of achieving the
same level of flexibility as dextrous robotic hands for
a fraction of the cost.

1.2 Second-Order Immobility

Let us consider a rigid object and the contacts be-
tween d pins and this object. Let us also denote
by p;, (i = 1,..,d) the positions of the contacts in
a coordinate frame attached to the object, and by
n; (i = 1,..,d) the unit inward normals to the cor-
responding faces. Equilibrium is achieved when the
contact wrenches balance each other, i.e.,

Z by <pi Zn> =0, (1)

=1

for some A; > 0 (i =1,..,d) with E?Zl A; = 1. Equi-
librium is a necessary, but not sufficient, condition for
force and form closure.

Czyzowicz, Stojmenovic and Urrutia have recently
shown that three contacts in the plane and four con-
tacts in the three-dimensional case are sufficient to im-
mobilize (i.e., prevent any finite motion of) a polyhe-
dron [7]. Rimon and Burdick have formalized the no-
tion of immobilizing grasps and fixtures in terms of iso-
lated points of the free configuration space [28, 29, 30].



They have shown that equilibrium fixtures that do not
achieve form closure may still immobilize an object
through second-order (curvature) effects in configura-
tion space: a sufficient condition for immobility is that
the relative curvature form associated with an essen-
tial equilibrium! grasp or fixture be negative definite.
The relative curvature form can be computed in terms
of the contact positions as well as the surface normals
and curvatures of the body and pins at the contacts.

In the case of equilibrium contacts between spheri-
cal pins and polyhedra, it is easily shown [23] that the
symmetric matrix associated with the relative curva-
ture form is

d
K= in{([nixﬂpix])s —rinix] nix]}, (2)

where r; denotes the pin’s radius, the weights \; are
the equilibrium weights of (1), and, by definition,
AS = %(A + AT).

Thus, immobilizing grasps can be found by enumer-
ating all equilibrium configurations, then testing that
the matrix K is negative definite.

2 Grasp Planning

In this section, we present an efficient algorithm for
enumerating all immobilizing grasps of a polyhedral
object. To simplify this planning process, we reduce
the problem of achieving contact between a spheri-
cal pin and a plane to the problem of achieving point
contact with a plane. This is done without loss of gen-
erality by growing the object to be fixtured by the pin
radius and shrinking the spherical end of the pin into
its center (see [2, 34, 35] for similar approaches in the
two-dimensional case).

As shown in Section 2.2, when an object is immo-
bilized by the gripper, its orientation relative to the
gripper depends only on the position of the pins and
not on their length. This allows us to decompose the
grasp planning algorithm into three steps as follows.

For each quadruple of faces do:

1. Test whether they can be held in essential equi-
librium.

2. Enumerate all pin positions that may immobilize
the object and compute the corresponding object
orientation.

3. For each such position, enumerate the pin lengths
that immobilize the object and compute the re-
maining grasp parameters.

I Essential equilibrium is achieved when the coefficients \; in
(1) are uniquely defined and strictly positive [28].

2.1 Testing Essential Equilibrium

For a polyhedral object, the normals n; are fixed
vectors. To ensure essential equilibrium, we restrict
our attention to quadruples of faces such that no three
of them have coplanar normals. This ensures that the
coefficients \; in (1) are uniquely defined, and it allows
us to compute them from the equation 5, A\jn; = 0
and to test whether they all have the same sign. If
they do not, the four candidate faces are rejected.

Our gripper can be used to immobilize a polyhedral
object through contacts with three of the top plate
pins, and either a face, an edge-and-vertex, or a three-
vertex contact with the bottom plate. Let us assume
for the sake of simplicity that the faces of the poly-
hedron are triangular (convex faces can be handled
in similar ways, see [6] for a related approach). Any
wrench exerted at a contact point between a face and
the bottom plate can be written as a positive com-
bination of wrenches at the vertices. Likewise, the
wrenches corresponding to an edge-and-vertex contact
are positive combinations of wrenches exerted at the
end-points of the line segment and at the vertex. Thus
equilibrium configurations can be found, in general, by
writing the equilibrium equation (1) for six elementary
wrenches.

We detail the case of a contact between the bottom
plate and a triangular face with unit normal n and
vertices v; (i = 1,2,3). Let p; and n; (i = 1,2,3)
denote the remaining contact points and surface nor-
mals; we take advantage of the fact that the overall
scale of the wrenches is irrelevant to rewrite (1) as

3 ] n 3 ) Uz —
Zi:l)\l (,Uix,n>_‘_Z’L'leuz (sznz> O’

M+ +A3=1,
(3)
where \;, u; >0 (i =1,2,3).
We can parameterize each contact p, by two vari-
ables u;, v;. For example, we can use the parameteri-

zation .
) (4)

where the coordinates of p; are written in some coordi-
nate system attached to the object with z axis parallel
to the vector n, and a;, b;, ¢; are constants. Assuming
convex faces, the fact that the contact points actually
belong to the faces can be written as a set of linear
inequalities on u;, v;:

p; = (Ui, v, qu; + biv; + ¢

fij(uiavi) S 01 .7 = ]-7"aki7 (5)

where k; is the number of edges that bound face num-
ber 1.



When the four surface normals are linearly inde-
pendent, the equation n = — Z?Zl uin; allows us to
compute the coefficients p; and check whether they
have the same sign. If they do not, the quadruple of
faces under consideration is rejected. If they do, the
(3) provides four linear equations in the the nine un-
knowns A;,u;,v; (i = 1,2,3). We test the existence
of equilibrium configurations by using linear program-
ming to determine whether the five-dimensional poly-
tope defined by (3) and the inequality constraints (5)
and \; > 0is empty. When this polytope is not empty,
there is only (in general) a subset of each face that can
participate in an equilibrium configuration. The sub-
set corresponding to face number ¢ is determined by
projecting the polytope defined onto the plane (u;, v;).
Several algorithms can be used to perform this projec-
tion, including Fourier’s method [9], the convex hull
and extreme point approaches of Lassez and Lassez
[13, 12], and the Gaussian elimination and contour
tracking techniques of Ponce et al. [26]. For faces with
a bounded number of edges, all of these algorithms run
in constant time, and they can be used to construct
subsets of the original faces that are then passed as
input to the rest of the algorithm. This projection
process affords an early pruning of gripper configu-
rations that cannot achieve equilibrium and therefore
immobilization.

2.2 Enumerating Pin Positions

Let us now suppose for a moment that we have
chosen the configurations (position plus length) of the
three pins, and let q; (i = 1,2,3) denote the corre-
sponding position of their tips in the coordinate sys-
tem attached to the gripper. If R and t respectively
denote the rotation of angle # about n and the trans-
lation that map the gripper’s coordinate frame onto
the object’s own frame,? we have

qi = sz + ta fOY Z = ]-7 21 37 (6)
and substituting in (3) yields

(0 hivs) xn+ 0 wilR Y (g; — )] x mi = 0,
A+ X+ A3 =1.
(7)

In turn, using the fact that n = — E?Zl Hing,
forming the dot product of the above expression with
n, and using elementary properties of triple products

yields
3

> wl(R7'q;) xn]-n; = 0. ®)

i=1

2The translation t includes a “vertical” translation along n
corresponding to the unknown distance between the two plates.

Note first that (8) is actually independent of the
heights of the individual pins: indeed, since the rota-
tion R is about the axis m, the term (R~!q,) x n only
depends on the coordinates of g; in the plane orthog-
onal to m. For given pin positions, (8) is a univariate
equation in 6, and its solution is easily shown to be
6 = Arg(C, S) + m, where Arg(c, s) denotes the angle
a such that cosa = ¢, sina = s,

3 3

c=3 B (aigi + biro), S = > B (big + air),

Li prlll

and l; = \/1+ a? + b?. (The proof is omitted here for
the sake of conciseness.)

Thus we can first enumerate all possible pin loca-
tions on the lower plate and compute the correspond-
ing rotations, then enumerate the corresponding pin
heights and compute the corresponding object pose.

An exhaustive search of all possible grid coordi-
nates would be extremely expensive: consider an ob-
ject of diameter D (measured in units equal to the
distance between successive grid points); there are a
priori O(D*) different pin locations, since we can po-
sition one pin at the origin and the other two pins
at arbitrary locations on the grid. Instead, we use
an approach similar to the algorithms presented by
Wallack and Canny [34, 35] and Brost and Goldberg
[2], using bounds on the distance between two faces
to restrict the set of grid coordinates under consider-
ation. Clearly, each pin must lie within the horizontal
projection of each face. Thus if we position the first
pin at the origin, the integer point corresponding to
the second pin is constrained to lie within the circu-
lar shell centered at the origin with inner radius equal
to the minimum distance between the projections of
the two corresponding faces and outer radius equal to
the maximum distance. Given the position of the sec-
ond pin, the third pin is now constrained to lie within
the region formed by the intersection of the two shells
associated with the first and second pin.

Enumerating the pin locations thus amounts to de-
termining the integer positions falling in planar re-
gions defined by a circular shell or the intersection of
two such shells. This can be done in optimal time pro-
portional to the number V' of these points by using a
scan-line conversion algorithm (Figure 2).

2.3 Enumerating Pin Lengths
Once the position of the pins has been chosen and

the corresponding rotation has been computed, we can
align the gripper’s and object’s coordinate systems so
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Figure 2. Scan-line conversion: spans between consecu-
tive boundary elements are filled one scan-line at a time.

they are only separated by the translation £. In par-
ticular, (4) and (6) reduce to

Ui + T =g
vity=r; for i=1,2,3, (9)
aju; + b + ¢ + 2z = 55

where ¢t = (z,y,2)T and q; = (gi,7i,5:)T. In partic-
ular, let us denote by f; the corresponding face and
by fi the set {(z,y) = (¢ — wi,ri — vi)|fij(ui, v;) <
0for j = 1,..,k}.*> The first two rows of (9) imply
that the horizontal part of the translation is restricted
to lie within the polygon F = fj N fj N fi. Substi-
tuting in the third row of (9) and using the fact that
q1 = r1 = s1 = 0 now yields

() eta(y) v (y)em

where

A= @~ b1 — b2 b— azq2 + bara +c2 — c1
a1 —az byi—0b3 )’ a3q3 +bsrs+c3—c1 )’

@ * ®) 2
Figure 3. Enumerating pin lengths: (a) the polygon F’
defined in the z,y plane by the intersection of the faces
fi, and (b) the corresponding convex polygon in the hs, hs
plane, along with the integer points inside it.

3The set fzf is simply the convex polygon obtained by pro-
jecting f; onto the (u;,v;) plane, then applying to the projec-
tion a symmetry with respect to the origin and a translation by
(gisms)-

In other words, the possible values of (s2,s3) are
simply the integer points that lie in the polygon de-
fined by the above equation, which is obtained from
F by an affine transformation. These points can once
again be determined in optimal time proportional to
their actual number using a polygon scan-line conver-
sion algorithm.

Now, for a given configuration (location plus
length) of the pins, (9) forms a system of nine linear
equations in the six variables u;, v; (i = 1,2,3) and the
three components of ¢. This system is readily solved
to yield the pose of the object and the separation of
the plates. Note that the values of the coefficients \;
are easily computed from (7) if required.

2.4 Algorithm Analysis

Let us assume without loss of generality that each
face can be inscribed in a disc of diameter d (note
that d < D and that in practice, we will often have
d < D). The area of a circular shell is then O(Dd),
and the area of the intersection of two such shells is
also at worse O(Dd). Finally, the area of the poly-
gon F' is O(d?). Thus the total complexity of the
algorithm is O(N*D?d*). To obtain a more realistic
estimate of our algorithm’s behavior, let us consider
a polyhedron with total area A whose faces all have
the same area, so d> = O(D?/N) = O(A/N). Under
this assumption, the complexity of our algorithm is
O(N?A3). Tt should also be noted that in practice,
when d < D, the area of the intersection of two circu-
lar shells will often be proportional to d? rather than
Dd. Of course, this does not change the worst-case
complexity of the algorithm.

3 Gripper Design

The current design is a straightforward adaptation
of the conceptual design shown in Figure 1. A front
view is shown in Figure 4: the gripper consists of two
sub-assemblies: the top plate assembly and the lower
plate assembly. The top plate assembly consists of a
grid of 36 linear actuators (only 6 are seen in the front
view of the gripper in Figure 4) of 0.75 inch diame-
ter each and spaced an inch apart. A gripper pin is
attached to one end of the lead screw of each actua-
tor. This enables individual control for each gripper
pin. Each gripper pin is also mounted with a load cell
that functions as a force sensor capable of measuring
the axial force on the pin (although position control
is used in the current application). The top and lower
plate assemblies can be moved relative to each other
using a large linear actuator (Figure 4).
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Figure 4. A front view of the reconfigurable gripper.

The lower plate assembly has three passive degrees
of freedom and supports the object to be grasped. The
detailed design of the lower plate is shown in Figure 5.
The three degrees of freedom are provided to over-
come friction between the object and the object sup-
port plate. The two translational degrees of freedom
are achieved through two linear crossed roller slides.
These slides are designed to ensure precise, uniform,
linear motion with low friction and minimum side play
even under high load (> 75 lbs) conditions. They are
mounted orthogonal to each other (Figure 5) and are
equipped with stops to ensure that the slides do not
come apart. The additional rotational degree of free-
dom is achieved by mounting the two translational
units on top of a shaft that is guided by a roller bear-
ing as shown in Figure 5. The bottom end of the shaft
is attached to a teflon ring that comes in contact with
a stainless steel ball. This mechanism ensures that
the shaft does not rub against the bottom surface.
The height of the ball can be adjusted by a teflon stop
from the bottom of the bushing.
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Figure 5. Detailed design of the lower plate assembly.

We have completed the mechanical assembly of the
gripper (Figure 6), and are in the process of complet-
ing the electronics and computer interface. It should
be noted that the prototype under construction is in-

tended for proof-of-concept experiments only: we plan
to design and construct in the near future a second-
generation gripper with much fewer actuators, taking
advantage of the fact that only three of the pins may
have to move simultaneously.

Figure 6. The prototype of the gripper.

4 TImplementation and Results

Since our gripper is not operational yet, we can only
present simulated grasping experiments. The imple-
mentation has been written in C. Figures 7 and 8 show
some of the grasps of a tetrahedron and of a polyhe-
dron with 10 faces that our algorithm has found using
a5 x b grid.

Figure 7. Grasping a tetrahedron.



Figure 8. Grasping a 10-face polyhedron.

Table 1 gives some quantitative results. We have
used a K x K grid with various values of K, as well as
pins whose height may take ten discrete values. The
table shows the results obtained without any pruning
(N), using circular shell pruning only (S), and combin-
ing the projection- and shell-pruning stages (P+S). All
run times have been measured on a SUN SPARCsta-
tion 10.

Tetrahedron
K | Number of Run Time (s) # Candidates
Solutions N 5 PFS N 5 PFS
3 0 1 1 1 33 10 10
3 160 1 1 1 141 22 20
5 704 3 1 3 211 145 135
g 1,063 1 2 2 927 301 378
7 4,263 B 2 2 1,839 795 751
Polyhedron with 10 Faces
K | Number of Run Time (s) # Candidates
Solutions N B PFS N 5 PES
3 0 20 1 2 2,772 750 712
1 189 a7 3 2 11,844 3,213 3,102
5 794 72 9 9 34,524 3,810 3,537
G 3,326 142 | 20 20 77,868 7,811 7,125
7 5,046 341 | 43 a1 154,476 | 16,250 | 14,051

Table 1. Quantitative results for two test objects.

The table shows that, as could be expected, prun-
ing eliminates a much larger percentage of the possi-
ble configurations in the case of the polyhedron with
10 faces than in the case of the tetrahedron, corre-
sponding to the fact that, for most choices of faces,
the range between the minimum and maximum dis-
tances is smaller for the polyhedron with 10 faces.
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