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Abstract: This paper addresses the problem of ma-
nipulating three-dimensional objects with a reconfig-
urable gripper. A detailed analysis of the problem
geometry in configuration space is used to devise a
simple and efficient algorithm for manipulation plan-
ning. The proposed approach has been implemented
and preliminary simulation experiments are discussed.

1 Introduction

We address the problem of manipulating three-
dimensional polyhedral objects using a new reconfig-
urable gripper, currently under construction at the
University of Illinois [12]. The gripper consists of two
parallel plates whose distance can be adjusted by a
computer-controlled actuator (Figure 1). The bottom
plate is a bare plane, and the top plate carries a rect-
angular grid of actuated pins that can translate in dis-
crete increments under computer control. The details
of the gripper design can be found in [12], where a
grasp planning algorithm based on Rimon’s and Bur-
dick’s notion of second-order immobility [11] is also
presented.

Figure 1. The prototype of a reconfigurable gripper.

We propose here an efficient algorithm for manip-
ulating an object within a grasp by planning the se-
quence of pin configurations that will bring this object
to a desired position and orientation. It is based on
a detailed analysis of the geometry of the joint ob-
ject/gripper configuration space. Characterizing the
range of possible object motions associated with a

grasp configuration allows us to identify the “minimal”
configurations for which the object is totally immobi-
lized as well as the “maximal” ones for which there
is a non-empty open set of object motions within the
grasp, but no escape path to infinity.

More precisely, our approach is based on the con-
cept of inescapable configuration space (ICS) region,
i.e., on the idea of characterizing the regions of config-
uration space for which the object is not immobilized
but is constrained to lie within a bounded region of the
free configuration space (see [10] for related work in
the two-dimensional, two-finger case). ICS regions will
allow us to plan in-hand object motions as sequences
of gripper configurations (see [1, 4, 5, 6, 7, 9, 10] for re-
lated work): starting from some immobilizing config-
uration, we can open the gripper jaws and retract the
immobilizing pins, then choose another triple of pins
whose ICS region contains the initial gripper configu-
ration, lower these pins, and as the jaws close, move
the object to the corresponding immobilized config-
uration. Note that this approach does not require
modeling what happens when contact occurs, but it
requires frictionless contacts to avoid wedging. As ex-
plained in [12], the gripper is designed to minimize the
amount of friction at the contacts.

2 Geometry of the Problem

The gripper shown in Figure 1 can be used to hold
a polyhedral object through contacts with three of the
top plate pins, and either a face, an edge-and-vertex,
or a three-vertex contact with the bottom plate. We
will assume throughout the paper that the faces of the
polyhedron are triangular and detail the analysis of a
face contact between the object and the bottom plate.
It should be noted that this is for the sake of simplicity
and conciseness only: arbitrary convex faces and other
types of contacts can be handled as well.

Let us consider a contact between the bottom plate
and a triangular face f with inward unit normal n
and vertices v; (i = 1,2,3) and denote by f; (i =
1,2, 3) the remaining faces, with inward unit normals
n; (Figure 2).

We assume without loss of generality that the four



Figure 2. The four faces involved in a grasp.

vectors n and m; (i = 1,2,3) positively span R?, i.e.,
that a strictly positive linear combination of these vec-
tors is equal to zero (this is a necessary condition for
essential equilibrium). Given the physical layout of
our gripper, contact between the upper-jaw pins and
faces such that n - n; > 0 is of course impossible,
and we further assume without loss of generality that
n-n; <0fori=1,2,3.

Under these assumptions, we can choose a coordi-
nate system (u,v,w) attached to the object with w
axis parallel to m, and write in this coordinate sys-
tem n = (0,0,1)7 and n; = %(ai,bi,—l)T, where
li=+\/1+al+02.

Likewise, since the vectors n and n; (i = 1,2,3)
positively span IR®, we can write n = — E 1 Mg,
where pu; > 0 for i = 1,2,3. To complete the specifi-
cation of the faces f; (z = 1,2,3), we will denote by
¢; the height of f; at the origin, so the plane of this
face can be parameterized by w; = a;u; + b;v; +¢;. Fi-
nally, since the faces f; are triangular, we will express
the fact that the point associated with the parameters
u;,v; actually belongs to f; by linear inequalities on
Uz, V5t

AU + bij’l)i + Cij S 0,
2.1 Contact

j=1,2,3. (1)

We reduce the problem of achieving contact be-
tween a spherical pin and a plane to the problem of
achieving point contact with a plane. This is done
without loss of generality by growing the object to be
fixtured by the pin radius and shrinking the spherical
end of the pin into its center (see [2, 13, 14] for a simi-
lar approach in the two-dimensional case). We attach
a coordinate system (g,r,w) to the gripper, and de-
note by R and t the rotation of angle # about n and
the translation (z,y) in the plane orthogonal to n that
map the (g,r,w) coordinate system onto the (u,v,w)
coordinate system.

If p, and g, denote respectively the positions of
the tip of pin number 7 in the object’s and gripper’s

coordinate frames, we can write p; = (u;, v, a;u; +
bivi + ¢i), q; = (¢i,7i,6 — hi)T and

q; = Rp; + ¢, (2)

where ¢;, 7; and h; denote respectively the integer pin
position on the bottom plate grid and its height, and
¢ is the jaw separation.

Equation (2) is a condition for contact between pin
number 4 and the corresponding face. It can be rewrit-
ten as Ci(z,y,6,0) = 0, where

Cilz,y,8,6) < (¢ — 4;) cos(8 + )
+(y — 'f'i) Sin(0 —+ Oéi) —+ dz(s — ey,

a; = Arg(a;,b;), d; = 1/+\/a? + b7, and e; = d;(c; +
hi).t Note that «; is simply the angle between the
u axis and the projection of n; onto the u,v plane

(Figure 3).

Figure 3. Contact between a pin and a face.

The three pins will be in contact with the cor-
responding faces when C;(z,y,0,0) = 0 is satisfied
for + = 1,2,3. In particular, any linear combination
E?Zl &iCi(z,y,0,0) of the contact constraints will also
be equal to zero. In particular, if we choose & =
wi/(d;l;), we can use the relation n = — 2?21 win; to
eliminate the variables  and y. We obtain

3
e i

HODESY - Cil..6,6) =6 — Acos(® —a) — B,

(3)

=1 i
where
=+vC?+ 5%, a=Arg(C,S),B = ZZ 1l cl—f-h)

C = lel (aigs + bir;), S = Zzll —bigqi + a;ri).

Note that the notation £(6, 9) is justified by the fact
that the value of £ is independent of z and y. More

)

IHere, abusing the usual mathematical notation, Arg(c,s
is the angle a such that cos(a) = ¢/Vc? + s? and sin(a)
s/vVe? + s2.



importantly, it is now clear that a necessary condition
for the existence of an object position achieving con-
tact with the three pins is that the point (6, ) lies on
the contact sinusoid defined by £(d,6) = 0. This con-
dition is also sufficient: for given values of § and § on
this sinusoid, the three linear equations C;(x,y,8,J)
(1 =1,2,3) in the two unknowns z and y are linearly
dependent, and thus admit a common solution.

2.2 Equilibrium

At equilibrium, the various forces and moments ex-
erted at the contacts balance each other. Exploiting
the fact that the overall scale of the wrenches is irrel-
evant allows us to simply write the force equilibrium
equation as n + Z?Zl win; = 0. In turn, using (2)
allows us to write the moment equilibrium equation
as

S (v xm) + 20 wl(R7 (g, — 1) x ni] =0,
with A +X2+ A3 =1 and A, A, A3 >0.
(4)

Using again the relation n = — Zle pin; and writ-
ing the dot product of the contact moments and n in
the (u,v,w) coordinate system yields

3 .

Z %[(—b,q, + airi) cosf — (aiqi + bz’l“z) sin 0] =0,
i=1 "
or equivalently, sin(f — a) = 0.

It follows that a necessary condition for three pins
in contact with the corresponding faces of the object
to achieve equilibrium is that § = a or # = a+x. Note
that these values of § are independent of the heights of
the pins, which proves extremely important in grasp
planning applications [12]. Equilibrium is necessary
but not sufficient for immobility. Indeed, as shown
in [12], the second-order condition for immobility of
Rimon and Burdick [11] is only satisfied when 6§ =
o+ .

2.3 Free Configuration Space Regions

Let us consider an immobilizing configuration of the
gripper, defined by the position ¢;,r; and height h; of
the pins (i = 1,2,3), by the position zg,yo and ori-
entation €y of the object in the gripper’s coordinate
system, and by the jaw separation dy. We assume that
the values of ¢;, r; and h; are held constant and ex-
amine what happens when the separation of the jaws
changes.

For a given jaw separation 0, the set S;(d) of ob-
ject configurations (x,y,#) for which C;(z,v,6,6) =0
forms a ruled surface: indeed, its intersection with a

plane 6 = constant is a line L;(4,0) at distance e; —d;
from the fixed point (g;,r;) of the z,y plane, and the
angle between the x axis and the normal to this line
is @ 4+ «; (Figure 4). Changing 6 corresponds to rotat-
ing the line about the point (g;,r;), while changing ¢
corresponds to translating the line.

Free Space

Li(S.6)

Figure 4. Contact between a pin and a face in configura-
tion space.

The ruled surface S;(J) splits the three-dimensional
space R? x S of configurations z,y,6 into a “free”
half-space V;(d) and a “forbidden” half-space W;(4)
where pin number i penetrates the plane of f;. Fur-
thermore, V;(d) (resp. W;(d)) is characterized by
Ci(x,y,ﬁ,é) Z 0 (resp, S O)

Now let us consider the volume V(d) = Vi(4) N
V2(6) N V3(d). Given the form of C;(z,y,0,9), it is
obvious that if a configuration lies in free space for
some value 1 of §, it also lies in free space for any other
value 63 > ;. In other words, V(d;) C V(d2) when
d2 > 07 (this is also intuitively obvious since increasing
d corresponds to opening the jaws). In particular, the
immobilizing configuration (zo, yo, 0o) is always in free
space for § > dy.

The intersection of V() with a plane § = constant
forms a triangular region T'(d,0). Note that the tri-
angles corresponding to various values of 8 are all ho-
mothetic since their edges make constant angles with
each other. However, their size, position, and orien-
tation varies with . Note also that these triangles,
although possibly empty, are not degenerate: indeed,
it is easy to verify that a necessary and sufficient for
two edges of T'(,0) to be parallel is that the normals
to the corresponding faces be either equal or symmet-
ric with respect to the vector n, which contradicts the
assumption that the directions n; (i = 1,2,3) and n
positively span R®.

As shown in Figure 5, the region T'(9,6) may con-
tain an open subset (Figure 5(a)), be reduced to a
single point (Figure 5(b)), or be empty (Figure 5(c)).

In the second case (Figure 5(b)), the three pins
simultaneously touch the corresponding faces, and
£(6,0) = 0. In fact, it is easy to show that a necessary
and sufficient condition for T'(4, ) to contain at least
one point is that £(4,0) > 0: the condition is clearly



Figure 5.
T(6,0) of V(8) with a plane § = constant: (a) 7(d,6)
contains an open neighborhood; (b) it is reduced to an
isolated point of the xz,y plane; (c) it is empty.

Possible configurations of the intersection

necessary: since £(6,0) is by construction a convex
combination of the functions C;(z, y, 0, §), the fact that
£(6,0) < 0 implies that, for any z,y, there exists some
i € {1,2,3} such that Ci(z,y,60,d) < 0. To show
that the condition is also sufficient, let us assume that
T(6,0) is empty. This implies that, for any z,y, there
exists some i € {1,2,3} such that C;(z,y,0,d) < 0.
In particular, if (z12,y12) is the point where the two
lines associated with the faces fi and fo intersect (as
remarked earlier, these lines are not parallel), we must
have 5(6, 0) = (,Ltg/dglg)Cg (11?12, Y12, 0, (5) < 0.

This result allows us to characterize qualitatively
the range of orientations 6 for which T'(4,6) is not
empty (Figure 6): for a given 4, the condition £(4,0) =
0 is an equation in § that may have zero, one, or two
real solutions: a double root occurs at the minimum
0 = 0p or at the maximum 6 = dmay Of the sinusoid.
In the former case, £ is strictly positive everywhere
except at § = a where it is equal to zero, and the range
of orientations is S'. In the latter case, the range of
orientations reduces to a single point g = o + w. For
any value ¢; in the open interval ]dg, dmax|, there are
two distinct roots 8', 6", and the range of orientations
is the arc bounded by these roots and containing 6.
Finally, for values of é outside the [do, dmax] interval,
there is no solution: either § is strictly smaller than
do and the range of orientations is empty (at least one
of the pins penetrates the plane of the corresponding
face), or 0 is strictly larger than d,ax, and the range
of orientations is S*.

In particular, since the volume V(§) is a stack of
contiguous triangles T'(d,80), it is clear at this point
that, for § > dg, V(d) is a non-empty, connected, com-
pact region of R?> x S'. The analysis conducted in
this section also gives some geometric insight on the
immobility conditions derived in [12]. In particular,
it confirms that the minimum point (a + 7, dg) of the
contact sinusoid corresponds to an isolated point of
configuration space or equivalently to an immobiliz-
ing configuration: indeed, the triangle T(dg, + 7)
is reduced to a point, and T'(§,0) is empty for any
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Figure 6. Regions of 6, space delimited by the sinusoid
£(6,0) =0.

0 # 6y. Likewise, although the maximum (a, dmax) of
the sinusoid corresponds to an equilibrium grasp, it
does not yield an immobilizing grasp since the object
is free to undergo arbitrary rotations.

2.4 ICS Regions

The discussion so far has characterized the contacts
between the pins and the planes of the correspond-
ing faces, ignoring the fact that each face is in fact
a convex polygon in its plane. Let us construct a
parameterization of the set E;(4,6) of configurations
(z,y) for which the tip of pin number i belongs to
the corresponding face. Obviously, E;(d,6) is a sub-
set of L;(d,60). This line is at distance —d;0 + ¢; from
the point (g;,7;), with a normal whose orientation is
0 + ay; hence, it can be parameterized by

T—q;\ _ cos(0 + ;) —sin(0 + ;)
<y —r; > = (~did+e:) ( sin(6 + ;) > + < cos(0 + ;)

where 7 is some real parameter.
Using this parameterization and (2) yields

U; COS ; — S Q;
(vi> = (did — &) <sinai> - ( COoS ; ) ’

In turn, substituting these values in the inequalities
(1) defining f; yields a set of linear inequalities in 7
and §. Actual contact occurs for pairs (7,d) lying in
the convex polygon defined by these constraints. It
follows that for given values of § and 6, E;(4,0) is a
line segment, and the parameters 7’ and 7’ associated
with its endpoints are piecewise-linear functions of 4.

Now let us consider the three segments FE;(J,0)
(i =1,2,3) together (Figure 7): if E;(J,0) and E;(4,6)
intersect for all i # j, then the three segments com-
pletely enclose the triangle T'(5,6) (Figure 7(a)). We
say that the corresponding configuration satisfies the
enclosure condition since there is no escape path for
the object in the z,y plane with the corresponding



orientation 6. More generally, when all triples of seg-
ments in the range of orientations associated with a
given jaw separation § satisfy the enclosure condition,
V' (0) itself is an inescapable configuration space (ICS)
region: in other words, the object is free to move
within the region V'(J), but remains imprisoned by
the grasp and cannot escape to infinity.

Figure 7. Triangle configurations: (a) three segments
enclosing a triangle; (b) a critical configuration; (c¢) an
opened triangle and an escape path.

2.5 Maximum ICS Regions

Here we address the problem of characterizing the
maximum value ¢* for which V(§) forms an ICS re-
gion for any ¢ in the [dg, 0*] interval. We know that
at d = dp the three segments intersect at the immo-
bilizing configuration, forming an ICS region reduced
to a single point. Thus the enclosure condition holds
at 6 = dg. On the other hand, as 6 — +oo, the
whole configuration space becomes free of obstacles,
thus there must exist a critical point for some mini-
mal value of § greater than dg. This guarantees that
0* has a finite value.

As shown by Figure 7(b), a critical event occurs
when one of the endpoints of a segment lies on the line
supporting another segment. After this event, the line
segments fail to enclose the triangle T'(4,6) and the
object can escape the grasp (Figure 7(c)).

According to the results established in the previous
section, we can parameterize the coordinates of one of
the endpoints of the segment E;(d,60) by 1 = fi0 + g;
on the appropriate § interval, with constants f; and g;
determined by the coefficients a;j, b;; and ¢;; of (1).

A critical event occurs when the endpoint under
consideration is on the line L;(4,6) for some j # i.
Substituting into C;(z,y,8,d) = 0 yields, after some
simple algebraic manipulation

A;jcos(f + Bij) + Bijo + Cij =0, (5)

where

Aij = V(4 — ¢;)° + (ri = 15)°,

Bij = aj — Arg(gi — qj,7: — 15),

Bij = dj — d, COS(Oéj — Oéi) + f, SiIl(Oéj — Oéi),
Cij = —ej +e;cos(aj — a;) + g;sin(ay — ;).

In other words, critical configurations form a second
sinusoid in 6, § space, called the critical sinusoid in the
rest of this presentation.

We seek the minimum value of §* > &g for which
the range of orientations includes one of the critical
orientations. As discussed above, we know that &*
exists. Let us suppose first that a critical value lies
in the interior of the range of orientations associated
with some §; > dg, and denote by i, the minimum
value of é on the critical sinusoid. By definition, we
have §1 > dmin- Suppose that é; > dpin. Then by con-
tinuity, there exists some s such that dpin < d2 < 61
and the corresponding range of orientations also con-
tains a critical orientation (Figure 8). The argument
holds for any value of § > di,. In other words, either
the range of orientations of d,,;, contains a critical ori-
entation, in which case 6* = dmin (Figure 8(a)), or it
does not, in which case the critical value associated
with §* must be one of its range’s endpoints (Figure
8(b)). This is checked by intersecting the contact sinu-
soid and the critical one. Note that this process must
be repeated six times (once per each segment/vertex
pair) to select the minimum value of §*.
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Figure 8. Critical configurations: (a) the critical config-
uration is the minimum of the critical sinusoid (shown as
the thicker curve); (b) the critical configuration is the min-
imum intersection of the critical sinusoid and the contact
sinusoid.

2.6 Main Result

The following lemma follows immediately from the
results established in Sections 2.3, 2.4 and 2.5 and
summarizes the findings of these sections.

Lemma 1: For given integer pin positions and heights
gi, ri and h; (i = 1,2,3) and an immobilizing config-



uration (zo, Yo, 0o, do), there exists a critical jaw sepa-
ration §* such that:

(1) for any & > &*, there exists a path allowing the
object to escape the grasp,

(2) for any ¢ in the interval [dg, 6*], the volume V' (0) is
an inescapable region of configuration space that con-
tains the configuration (zq, yo, 80, do),

(3) for any &' < §" in the interval [dg,6*], V(¢') C
V(6"), and

(4) 6* can be computed in closed form as the minimum
of a sinusoid or the intersection of two sinusoids.

3 Algorithm

Lemma 2 can be used as a basis for in-hand manip-
ulation by remarking that an object anywhere in the
ICS region associated with some gripper configuration
can be moved to the corresponding immobilized posi-
tion and orientation by closing the gripper jaws (this
follows immediately from properties (2) and (3) in
Lemma 2). Thus we can plan manipulation sequences
from one immobilized configuration to another by us-
ing the following algorithm:

Off-line:

(1) Compute the set S of all immobilizing configura-
tions of the object.

(2) Construct a directed graph G whose vertices are
the elements of S and whose edges are the pairs (s, s')
of elements of S such that s belongs to the maximum
ICS region ICS(s') associated with s'.

On-line:

(3) Given two configurations 7 and g in S, search the
graph G for the shortest path going from the initial
configuration 7 to the goal configuration g.

Once a path has been found, the corresponding ma-
nipulation sequence can be executed: starting from
the configuration i, each edge (s,s’') in the path al-
lows us to move the object from s to s’ by opening the
jaws and retracting the pins associated with s, then
lowering the pins associated with s’ and closing the
jaws.

3.1 Triples of Pins: Prototypes and Shifts

The grasp planning algorithm of [12] can be used
to enumerate all immobilizing object/gripper configu-
rations and implement Step (1). There is however a
difference between grasping and manipulation applica-
tions: during grasp planning, one can always assume
that the first pin is at the origin with zero height. Of

course, when a grasp is actually executed, the pin po-
sitions and heights, along with the jaw separation, all
have to be shifted so that the corresponding variables
are all positive and the pin positions remain within
the extent of the top plate. Nonetheless, gripper con-
figurations that only differ by a shift of the three pin
positions are equivalent for grasping purposes. This is
not the case for in-hand manipulation, where the goal
is to move the object held by the gripper across the
bottom plate: this forces us to take into account all
shifted configurations of a grasp.

We will say that a triple of pin positions with the
first pin located at the origin is a prototype, and that
all positions of the triple within the bottom plate are
the shifts of this prototype. For each prototype, we can
define the minimum rectangle aligned with the (p,q)
coordinate axes and enclosing the pins. If W and H
denote the width and height of this rectangle, and K>
is the total number of grid elements, the prototype ad-
mits (K — W)(K — H) different shifts, which can triv-
ially be computed in time proportional to their num-
ber. Asshown in [12], there are O(D?d?) immobilizing
prototypes, to which correspond O(D?d*K?) shifted
object/gripper configurations. If we assume that the
manipulated object fits completely on the gripper’s
bottom plate, note that we will have d < D < K.

3.2 Constructing the Graph

Constructing the graph G requires the ability to de-
cide whether an immobilizing configuration s, lies in
the region ICS(s;) associated with another configura-
tion sp. Let 6, denote the orientation of the config-
uration s,, and J; denote the critical jaw separation
associated with s,. A necessary condition for s, to
belong to ICS(sp) is of course that s, belongs to the
range of orientations associated with d;.

When this necessary condition is fulfilled, let
T(0;,0,) denote the slice of ICS(sp) at 8 = 6,. Then
s, will belong to ICS(sp) if and only if s, is inside
T(0;,0,). Note that constructing T'(6;,60,) does not
require constructing an explicit boundary represen-
tation of ICS(sp) then intersecting it with the plane
0 = 6,: instead, we construct the triangle directly
from the lines L;(d;,6,) as explained in Section 2.3.

Thus constructing the graph only requires the abil-
ity of computing §* and the corresponding range or
orientations, constructing the triangles 7'(6*,6) for
discrete values of #, and testing whether a point be-
longs to one of these triangles. Each one of these com-
putations can be done in constant time.

From [12] and Section 2.2, we know that for a
given triple of pins, all immobilizing configurations of



a given object will have the same orientation, indepen-
dent of the pin heights. Of course, the immobilized
orientation of the object remains the same when the
triple of pins is arbitrarily shifted on the grid. Thus we
can associate to each immobilizing prototype a plane
f =constant of the object’s configuration space, and
all the corresponding immobilizing configurations will
lie in that plane. In other words, the vertices of the
graph G will form layers of immobilized configurations
corresponding to as many prototypes.

We now give an efficient algorithm for constructing
the edges of the graph G. Let S, and Sp be the sets of
immobilized configurations corresponding to the layers
0 = 6, and 8 = 6, of the configuration space. We want
to find all pairs of configurations s, in S, and s in Sy
such that s, lies within ICS(s;) or equivalently within
T(0;,60,). This can of course be achieved by testing for
each point-triangle pair whether the point belongs to
the corresponding triangle. Instead, we observe that,
following Section 2.3, the triangles T'(d;, 6,) associated
with all the elements of S, are homothetic and, since
0 is fixed, they also have the same orientation. This
allows us to derive a more efficient method.

Let us restate the problem: given a set of points
P = {p1,p2,..,pn}, and a set T = {t1,t2,..,t;} Of
homothetic triangles having the same orientation, find
all pairs (p;,t;) (¢ = 1,..,n, j = 1,..,m) such that
the point p; is inside the triangle ¢; (Figure 9). This
type of query is common in computational geometry:
for example, Chazelle gave an optimal O(logm + r)
algorithm for the related problem of finding the subset
of m isothetic rectangles which contain a query point,
where 7 is the number of rectangles returned [3].

Figure 9. Points and triangles within the same layer.

This problem can be mapped onto another classi-
cal one through the following transformation: let wu;
(i = 1,2,3) denote the inward unit normals to the
edges of the triangles. Given some choice of origin in
the plane, we can associate with any point p its coor-
dinates (x1,22,23) along the vectors u; (Figure 10).
Likewise, we can associate with each triangle ¢ the
signed distances (y1,¥y2,¥ys) between the origin and its
edges along the vectors u;. Obviously p is inside ¢ if
and only if x; > y; for i = 1,2,3. If we define the

partial order > over R® by (1,2, 23) > (y1,y2,¥3) if
and only if x; > y; for i = 1,2, 3, we have reduced our
initial problem to the problem of finding the pairs of
points p; in P' and #; in T" such that p; >~ ¢}, where
P’ and T' are subsets of R? containing respectively n
and m points. This is the problem called “3D Merge
Dominance” by Preparata and Shamos [8, pp. 357-
363], who give a simple divide-and-conquer algorithm
for solving this problem in O((m + n)log(m + n) + s)
time and O(m + n) space, where s is the number of
pairs found by the algorithm.

Figure 10. Three-dimensional coordinates associated
with a point p and a triangle ¢.

3.3 Algorithm Analysis

The cost of the algorithm is dominated by the con-
struction of the graph. Let V denote the number of
immobilizing gripper configurations (or equivalently
the number of vertices of G), and let P denote the
number of prototypes associated with these configura-
tions. Note that P = O(D?d?) and V = O(Pd*K?)
according to the analysis of [12]. Let E denote the
number of edges of G. Since each prototype yields
O(d?K?) shifted configurations and d < K, it follows
from the analysis of the dominance algorithm that the
construction of the graph takes O(P2d>K?log K+V +
E) time. Of course, E = O(V?2).

3.4 Implementation and Results

We have finished the mechanical assembly of the
gripper, but are still in the final stages of complet-
ing the electronics and computer interface. Since our
gripper is not operational yet, we can therefore only
present simulated grasping experiments. We have im-
plemented the manipulation planning algorithm, in-
cluding its 3D dominance part, and tested our imple-
mentation using a 5 x 5 grid resolution. The program
has been written in C, and all run times have been
measured on a SUN SPARCstation 10.

Figure 11 shows an example of maximum ICS re-
gion in the configuration space (z,y,6) for one of the



immobilized configurations of a tetrahedron. Note
that this graphical representation is for display only:
our algorithm does not construct an explicit bound-
ary representation of the ICS. Instead, we compute
the corresponding 6* value and the associated range
of orientations. Our grasp planning program finds 208
prototypes and 33,868 shifted immobilizing configura-
tions, and the corresponding ICS computation takes
13 seconds. The graph G contains 1,247,374 edges,
and its construction takes 156 seconds. Once the
graph has been constructed, the search for sequences
of gripper configurations is quite efficient: a simple
breadth-first approach has been used in our experi-
ments to search the graph G, and the search time is
below 1 second in all cases.

“H

(a) (b) (c)
Figure 11. An ICS region in configuration space: (a)-(b)

two views of an immobilized configuration of a tetrahedron;
(c) the corresponding ICS region.

Figure 12 shows two examples. In the first one,
the program finds a 4-step sequence to move the ob-
ject from the configuration shown in Figure 12(a)
to the one shown in Figure 12(b). Note that, al-
though the pin configurations are the same in Figures
12(c) and 12(d), the pin lengths are actually different,
yielding different object positions. Figure 12(e)-(g)
shows a more complicated example, where the pro-
gram finds a 72-step sequence of gripper configurations
(Figure 12(g)) to move the object from the configura-
tion shown in Figure 12(e) to the one shown in Figure
12(f).
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