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ABSTRACT

This thesis addresses the problem of immobilizing and manipulating parts with de-

vices that have a mixture of discrete and continuous degrees of freedom. Immobilizing

an object requires calculating the device parameters that reduce the positions and orien-

tations of the object compatible with the contact constraints to a single point of its con-

�guration space. Likewise, manipulating an object requires identifying the regions of its

con�guration space where it is free to move under the contact constraints. The kinematic

theory of second order mobility of rigid bodies is used, together with the new concept

of Inescapable Con�guration Space region, to devise e�cient algorithms for planning

immobilizing �xtures, grasps, in-hand manipulation sequences and obstacle avoidance

manipulation plans for parts with known geometry. This approach is applied to three

di�erent mechanisms: a �xturing device assembled from standard modular elements, a
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement

This thesis addresses the problem of immobilizing and manipulating parts through a

few contacts with devices that have a mixture of discrete and continuous degrees of free-

dom (Figure 1.1). Immobilizing an object requires calculating the device parameters that

reduce the positions and orientations of a part compatible with the contact constraints to

a single point of its con�guration space [48]. Likewise, manipulating an object requires

identifying the regions of its con�guration space where it is free to move under the con-

tact constraints. Assuming frictionless contacts, we propose to use Rimon's and Burdick's

kinematic theory of second-order mobility of rigid bodies [81, 82], together with a new

notion of \Inescapable Con�guration Space (ICS) Region" [95] based on a detailed anal-

ysis of the geometry of contact constraints in con�guration space, to solve these problems

and devise e�cient algorithms for constructing immobilizing �xtures and grasps, in-hand

manipulation sequences and motion plans avoiding collision with obstacles for parts with

known geometry. This approach is applied to three di�erent mechanisms: a �xturing

device assembled from standard modular elements, a novel recon�gurable gripper, and a

team of three mobile robots.
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(a) (b) (c)

Figure 1.1 The three devices studied in this thesis: (a) a �xturing rig constructed from
modular elements; (b) a novel recon�gurable gripper; (c) a team of three mobile robots.

1.2 A New Manipulation Framework

Current approaches to manipulation planning rely on detailed models of friction and

contact dynamics to predict the object trajectory during task execution. This is di�cult,

sometimes unrealistic, and we also believe this is unnecessary. The main theme of this

thesis is to develop a method that bypasses such modeling and prediction. We propose

a new framework for object manipulation that is guaranteed to work in the absence

of jamming. The proposed methodology is based on the new concept of Inescapable

Con�guration Space (or ICS) region for which kinematic constraints (imposed by the fact

that solid objects cannot penetrate each other) are used to characterize the spectrum of

joint object/robot con�gurations guaranteed to capture and immobilize the object.

More speci�cally, an ICS region is de�ned to be a pocket of free con�gurations that

can be shrunk, without being broken, to an immobilizing con�guration as the robots

perform some command. This is illustrated by Figure 1.2 that shows a snapshot of the

execution of a grasp of a triangle by three robots (shown as black disks). The two robots

at the bottom are �xed and the commanded action is the motion of the top robot along

the line segment. In the right part of the �gure, the object is immobilized by the three

robots. As the top robot moves along the vertical line, the object may move but not

escape. The corresponding pocket of free con�gurations of the object is shown in the
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bottom half of each �gure (the con�guration space is in 3-D but the pocket is drawn

in 2-D for simplicity). As we move the top robot closer to the other two robots, the

corresponding pocket gets smaller and smaller (as the object has less and less space

to move) and �nally the pocket contains only an immobilizing con�guration when the

top robot is at A. Because the pocket is never broken during the sequence, once it is

known that the con�guraton of the object is contained in the pocket we will be able to

guarantee that the object cannot escape regardless of the position of the top robot on the

line segment from A to C and of the con�guration of the object inside the corresponding

pocket. This pocket is the ICS region associated with the command to move the robot

along the line segment from A to C.

B

C

A

(a) (b) (c)

Figure 1.2 De�nition of ICS.

The illustration given above is for a command with one degree of freedom. In general,

the concept of ICS region can be applied to cases for which commanded actions have more

degrees of freedom. We will consider commands with degrees of freedom ranging from

two to six in Chapter 5 and 6.

We propose to use the concept of ICS regions to manipulate objects by computing

a sequence of the commanded actions to bring the objects from an immobilizing con�g-

uration to another. This can be done by constructing a capture graph where nodes are

the immobilizing con�gurations of the object and the robots, and there is an arc from

node n0 to node n00 if n0 lies in the ICS region of n00. In the diagram shown in Figure 1.3,

immobilizng con�gurations are denoted by lowercase letters, and their ICS regions are

3



depicted by ovals labels by the corresponding uppercase letters: the immobilizing con�g-

urations b and c both lie in the ICS region B associated with immobilizing con�guration

b. Given the corresponding graph (shown in the right part of the �gure), we can conclude

that an object lying at any point p inside A can be moved to e by four atomic motions:

p! a; a! b; b! d and d! e.

A

B

C

D

E
a

c

b d
e

p
A

B

C

D

E

Figure 1.3 Immobilizing con�gurations and their ICS regions form a directed capture
graph. In this example an object located at a point p of the ICS region A can be brought
to the immobilizing con�guration e by a sequence of four actions.

Constructing the capture graph does not require maintaining a global boundary rep-

resentation of the con�guration space obstacles. Indeed, tasks such as grasping or part

re-orientation can be parameterized by a small number of variables (e.g., �nger posi-

tions): as illustrated by Figure 1.4, the maximal free region of parameter space cor-

responds to a critical value of these variables for which the corresponding ICS pocket

becomes unbounded. Once this value is known, all that is needed is e�cient algorithms

for determining the immobilizing con�gurations lying inside the associated ICS region

and testing whether some con�gurations lie inside the region, which is much simpler than

constructing an explicit description of this region.

We will present in Chapter 4 an e�cient in-hand manipulation planner based on

the capture graph idea. The algorithm searches the graph for a sequence of appropriate

gripper con�gurations (pin triples and pin heights) that can bring the object from a given

initial con�guration to one of the immobilizing con�gurations. A varient of this approach

is applied in Chapter 5 and Chapter 6 to the problem of manipulating polygons using

4



(a) (b) (c) (d)

Figure 1.4 ICS region: (a) an immobilizing con�guration; (b) a pocket is formed; (c)
the pocket merges with an unbounded region of free space at a critical point; (d) the
pocket does not exist anymore.

three disc-shaped robots. The manipulation planning for this problem is done without

explicitly constructing the capture graph and the graph search is implicit by using only

a single grasping con�guration.

1.3 Thesis Organization

We review in Chapter 2 the classical concepts of equilibrium, force and form closure,

and the newer theory of second-order mobility of rigid bodies [81, 82]. We also present

the notion of ICS region in more detail.

We consider the problem of �xturing a three-dimensional object using simple modular

elements in Chapter 3. Conceptually, the �xturing rig consists of two parallel plates with

locator holes drilled along a rectangular grid, and of a set of spherical locators with

integer height and radius. Four of these locators can be selected to form a �xture, and

the rig has one continuous degree of freedom (the plate separation) and twelve discrete

ones (the integer position and height of the locators). Standard modular elements such

as the ones available from the QU CO kit can be used to implement this �xturing device

(Figure 1.1(b)), and as shown in Chapter 3, second-order mobility theory can be used

to derive simple su�cient conditions for the immobility of the �xtured part [81, 82] and

the stability of the �xture [64, 38, 83]. In turn, these conditions are the basis for an

algorithm that enumerates all of the stable immobilizing �xtures and grasps of a given

polyhedron.
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We then introduce in Chapter 4 a new recon�gurable gripper (Figure 1.1(b)) that

consists of two parallel plates whose distance can be adjusted by a computer-controlled

actuator. The bottom plate is a bare plane, and the top plate carries a rectangular grid of

actuated pins that can translate in discrete increments under computer control. We have

�nished the construction of a prototype of the gripper as part of this thesis. A detailed

analysis of the geometry of contact constraints in con�guration space is used to devise

a much more e�cient variant of the �xturing algorithm and apply it to the problem of

immobilizing a part with the gripper. This analysis also allows us to characterize the

inescapable con�guration space (ICS) regions associated with given gripper parameters

[80] and to devise in-hand manipulation strategies that, unlike previous approaches to

similar problems, do not require strong (and a priori unveri�able) assumptions on contact

dynamics [1, 26, 33, 49, 55]. Simulation and actual experimental results are reported.

In Chapter 5, we apply again the concept of ICS to the problem of grasping, capturing

and manipulating a polygonal object with three disc-shaped robots in the plane (Figure

1.1(c)). We characterize the range of possible motions of the object within the capture

of the robots when two of the robots are �xed and the other one is allowed to move

in the plane with two degrees of freedom. The algorithm for generating manipulation

sequences has been implemented and both simulation and experimental results with Scout

Normadics robots are included.

In Chapter 6, we revisit the same problem but this time all three robots move simul-

taneously. We present a new set of constraints allowing us to de�ne regions in which the

robots can simultaneously move freely while keeping the object from escaping. Although

these new constraints are only su�cient and thus only approximate ICS regions, their

simplicity enables us to prove the system controllability which in turn leads to a novel

algorithm for planning manipulation sequences in the presence of obstacles.

Obviously, when the robots can perform the commanded actions perfectly, we can

always bring the object from any con�guration in an ICS region to the associated immo-

bilizing con�guration. This assumes perfect modeling and control. We report a number

of successful experiments with real devices but it is clear that in general modeling and

6



control will not be perfect and that, in addition, friction may cause jamming. We assume

frictionless contact through most of this thesis. This is a common (if sometimes implicit)

assumption, since most grasping techniques, for example, assume that an object will

not move at all during grasping, or will somehow move into the desired position. The

frictionless assumption is mainly to ensure that the object reaches a desired immobi-

lizing con�guration when being grasped which is critical to the manipulation planning

approach based on the capture graph search mentioned previously. However, in practice,

friction may be signi�cant enough to induce jamming. This motivates us to model the

e�ect of friction in Chapter 7. We assume Coulomb friction and characterize the jam-

ming con�gurations of a polygonal object being grasped by three robots. The purpose of

this study is to gain a better understanding of the relationship between friction and the

occurance of jamming with the goal to develop manipulation planning techniques that

can accomodate relatively high friction loads without jamming.

Finally, we conclude the thesis in Chapter 8 with a summary of the thesis contributions

and a discussion of future research plans.
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CHAPTER 2

RIGID BODY MOBILITY THEORY

In this chapter, we review results of classical and modern kinematics that characterize

the mobility (or lack thereof) of rigid bodies. In particular we present elementary concepts

of screw theory [5], introduce the notions of form and force closure [59, 79], and discuss

the concept of second-order immobility recently introduced by Rimon and Burdick [81,

84, 85]. We also clarify the relationship between these various notions, and introduce the

notion of inescapable con�guration space (or ICS) regions.

2.1 Screw Theory

We recall some elementary notions of screw theory. The following is largely based on

Roth's excellent introduction [86]. See [5, 39, 8, 65, 66, 56] for more details.

A screw is a straight line with a pitch. The pitch is a linear magnitude that can be

thought of as the rectilinear distance through which a nut attached to an ordinary screw

is translated parallel to the screw axis while the nut is rotated through a unit angle [5].

Screws provide a uni�ed representation for displacements and forces: from Chasles'

theorem, any displacement of a rigid body can be described by a single rotation about

a unique axis, combined with a unique translation parallel to this axis. The rotation

axis is called the screw axis, and the ratio of the linear translation to the rotation angle

is the pitch of the screw. The displacement is referred to as a twist about a screw. Its

8



magnitude is the angular rotation about the screw axis. In�nitesimal displacements and

rigid body motions can also be described by twists.

From Poinsot's theorem, any system of forces and moments applied to a rigid body

can be uniquely replaced by a single force and a couple, such that the force is parallel

to the axis of the couple. In turn, these can be represented by a unique screw axis, a

moment about this axis, and a force along it. The pitch of the screw is the ratio of the

moment to the force. This combination of force and couple is called a wrench acting on

a screw. The magnitude of the wrench is the magnitude of the associated force.

Algebraically, a screw can be represented by a sextuple of screw coordinates:

s = (u;x� u+ pu);

where u is a non-zero vector parallel to the screw axis, x denotes the coordinate vector

of an arbitrary point on the axis, and p is the screw pitch. Alternatively, we can write

the screw coordinates as s = (u; v), where u; v are three-dimensional vectors.

Screw coordinates are homogeneous and a screw does not have a meaningful magni-

tude; in other words, screws form a �ve-dimensional projective space. However, screw

coordinates can also be used to represent twists and wrenches, which are truly six-

dimensional entities. In this case the magnitude of the screw coordinate vector is the

magnitude of the associated twist or wrench.

We are now in a position to de�ne force and form closure, but before closing this sec-

tion, let us note that the wrench associated with a pure force (with no torque component)

has a zero pitch; in other words, its screw coordinates are those of a line.

2.2 Force Closure, Form Closure and Equilibrium

We consider positive grips [59, 60] constructed as non-negative linear combinations of

primitive wrenches (this amounts to assuming non-sticky �ngers), and associate with a

system of n primitive wrenches w1; : : : ;wn the wrench set

W = f
nX
i=1

�iwi : �i � 0 for i = 1; : : : ; ng:
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De�nition 1 A system of n wrenches w1; : : : ;wn is said to achieve force closure when

the corresponding wrench set W is equal to IR6.

Intuitively, a system of wrenches achieves force closure when any external load can

be balanced by a non-negative combination of the primitive wrenches. Force closure is

sometimes called force/torque closure [59, 60]. A related notion is form closure (also

called complete restraint) [79, 43, 87]: a system of wrenches acting on some object is said

to achieve form closure when it prevents all motions (including in�nitesimal ones) of this

object. Force and form closure are dual of each other, in the same sense as wrenches

and in�nitesimal twists are dual notions [86] and, as noted in [63, 60] for example, force-

closure grasps are form-closure and vice versa.

Let us note that there is unfortunately no general agreement on terminology in the

grasping literature (see [98, 57] for discussions of this problem): for example, Reulaux

[79], Salisbury [87], Ji [41], Markensco� et al. [52], and Trinkle [98] use the expression

form closure for what we call force closure, and reserve the expression force closure for

grasps that can only balance certain external loads. Our de�nitions match the ones used

by Mishra et al. [59], Nguyen [63], and Murray et al. [62].

A somewhat weaker notion is equilibrium, de�ned below.

De�nition 2 A system of n wrenches w1; : : : ;wn is said to achieve equilibrium when

the convex hull of the points w1; : : : ;wn in IR6 contains the origin.

In other words, a given system of wrenches achieves equilibrium when the equation

nX
i=1

�iwi = 0 (2.1)

admits a non-trivial, non-negative solution.

Mishra, Schwartz, and Sharir [59] have shown that a necessary and su�cient condition

for a system of wrenches to achieve force closure is that the origin of IR6 lies in the

interior of the convex hull of the primitive wrenches. In particular, force closure implies

equilibrium but there are wrench systems that achieve equilibrium but not force closure.1

1These systems of wrenches are called strong force-closure systems by Trinkle [98]. Of course, as
noted before, his notion of force closure is di�erent from ours.
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In the frictionless case, Reulaux [79], Somov [91] and, much later, Lakshminarayana

[43] have shown that four (resp. seven) �ngers are necessary to achieve force closure of

a 2D (resp. 3D) object. In turn, Mishra, Schwartz, and Sharir [59] have shown that six

(resp. twelve) �ngers are always su�cient for objects without rotational symmetries, and

Markensco�, Ni, and Papadimitriou [52] have tightened this result by showing that under

very general conditions, four (resp. seven) �ngers are su�cient to achieve a force-closure

grasp of a 2D (resp. 3D) object without rotational symmetries. They have also shown

that when Coulomb friction is taken into account, three �ngers are su�cient in the 2D

case, and four are su�cient in the 3D case.

2.3 Second-Order Immobility

Paradoxically, there exist grips which are not form-closure yet actually immobilize

the grasped object: for example, three frictionless �ngers positioned at the centers of the

edges of an equilateral triangle cannot prevent an in�nitesimal rotation of the triangle

about its center of mass, yet prevent any �nite motion. More generally, Czyzowicz,

Stojmenovic and Urrutia have shown that three point contacts in the plane and four

contacts in the three-dimensional case are su�cient to immobilize (i.e., prevent any �nite

motion of) a polyhedron [18].

Rimon and Burdick [81, 84, 85] have clari�ed the notion of immobility by re-casting

it in terms of the con�guration space C [48, 46] representing all possible positions and

orientations of the manipulated body B. In this framework, B maps onto a point B of

C, while the �ngers maps onto volumes (obstacles) Oi. Contact between a �nger and the

object is achieved when B is on the surface of the corresponding obstacle Oi, and the

wrench exerted by the �nger in this case is the normal to the surface of Oi. Fingers are

in simultaneous contact with the object when the surfaces of the corresponding obstacles

intersect in B, and immobilized con�gurations simply correspond to isolated points of

the free space of C.
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This solves the paradox mentioned earlier: at equilibrium, the tangent planes to the

various obstacles are linearly dependent. Force (hence form) closure is achieved when

the normals to the obstacles positively span IRd where d = 3 in the plane and d = 6 in

three dimensions, so the inner half-spaces associated with the tangent planes e�ectively

isolate the point lying at their intersection. With fewer than d + 1 �ngers, the normals

cannot positively span IRd, and since they are linearly dependent, there is at least a one-

dimensional escape route for the object in the intersection of the half-spaces. Of course,

the actual surfaces of the con�guration space obstacles are curved, and the intersection

of these obstacles may very well isolate the point B even if the half-spaces associated with

their tangent planes do not. In other words, form closure is only a su�cient condition

for immobility, based on a �rst-order approximation of the obstacles' surfaces by their

tangent planes.

Rimon and Burdick have gone further and shown that a su�cient condition for im-

mobility is that the relative curvature form associated with an essential equilibrium 2

grasp or �xture and de�ned by (see [84, Def. 4 and Eq. (8)]):

�rel =
dX
i=1

�ijwij�i

be negative de�nite. Here the weights �i are the equilibrium weights of (3.1), and jwij
is the magnitude of the wrench exerted by �nger number i. The coe�cient �i is the

curvature form associated with the corresponding contact; it is de�ned by (see [84, eq.

(20)]):

�i =
1

jwij(v
T ;!T )(CTi LiCi +Di)

0
@ v

!

1
A ;

where

Li =
0
@LBi

(LOi
+ LBi

)�1LOi
�LOi

(LOi
+ LBi

)�1

�(LOi
+ LBi

)�1LOi
�(LOi

+ LBi
)�1

1
A ;

2Essential equilibrium is achieved when the coe�cients �i in (3.1) are uniquely de�ned and strictly
positive [84].
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LBi
and LOi

denote respectively the second fundamental forms [21] of the surfaces of

body B and �nger Oi at the contact point (in the workspace), and

Ci =
0
@I �[pi�]
0 [ni�]

1
A ; Di =

0
@ 0 0

0 �([ni�]
T [pi�])

S

1
A ;

where, by de�nition, AS = 1
2
(A+AT ), and [a�] denotes the skew-symmetric matrix such

that [a�]x = a� x.

2.4 Inescapable Con�guration Space Regions

As observed in the previous section, the immobilized con�gurations of a rigid object

B correspond to isolated points of the free part F of its con�guration space C. More

generally, for a given con�guration of the �ngers (or obstacles) Oi, we will call a compact

connected component of F an inescapable con�guration space (or ICS) region, since any

object trajectory starting in such a region cannot escape this region. For polygonal

objects and obstacles in the plane, the rational representation of trigonometric functions

can be used to represent the boundaries of the ICS regions by algebraic ruled surfaces

of low degree in IR3 [12], and it follows that ICS regions can be identi�ed by classical

algebraic cell-decomposition methods [2, 17, 88].

In the approach to object manipulation presented in Chapters 4, 5 and 6, we will focus

on the case of polygonal or polyhedral objects resting on a plane, with a small and �xed

number of circular or spherical �ngers (obstacles), and will give a simple characterization

of the ICS regions in that case. In particular, we will show that appropriate motions of

the �ngers monotonically reduce the ICS regions to isolated points of F (i.e., immobilized

con�gurations). Conversely, we will also characterize the maximal ICS regions, i.e., the

critical �nger con�gurations for which the free space stops being compact and the object is

free to escape to in�nity. This will allow us to plan manipulation sequences by e�ciently

constructing and exploring the adjacency graph formed by overlapping maximal ICS

regions, and to e�ect a desired object motion by changing the �nger con�gurations so

the object goes from one immobilizing con�guration to the next.
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For an ICS region, there is an associated immobilizing con�guration. Identifying

the immobilizing con�guration is the �rst crucial step in applying the concept of ICS

region to a manipulation problem. In the next chapter, we will consider the problem of

immobilizing an object. This requires calculating device parameters that reduce the set of

possible positions and orientations of the object compatible with the contact constraints

to a single point. This method for identifying immobilizng con�gurations will be used

throughout the remaining of the thesis.
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CHAPTER 3

MODULAR FIXTURES

3.1 Introduction

We address the problem of immobilizing an object through a few contacts with simple

modular �xturing elements, with applications in manufacturing. Our approach is based

on the notion of second-order immobility introduced by Rimon and Burdick [81, 84, 85],

and it is related to recent work in �xture planning by Wallack and Canny [102, 103],

Brost and Goldberg [10], Wagner, Zhuang, and Goldberg [101], and Brost and Peters

[11].

For concreteness, let us consider the �xturing device shown in Figure 3.1: it consists

of two parallel plates with locator holes drilled along a rectangular grid, and of a set of

spherical locators with integer height and radius. Four of these locators can be selected to

form a �xture; either two of them are mounted on each plate (type I con�guration, Figure

3.1(a)), or three locators are mounted on the �rst plate, the last one being mounted on

the second plate (type II con�guration, Figure 3.1(b)). The distance between the plates is

a continuously adjustable degree of freedom of the device. (This device is a generalization

of the two-dimensional �xturing vise proposed by Wallack and Canny [102, 103].)

Our goal is to compute the locator con�gurations (i.e., placements and heights) as

well as the plate separation that will guarantee that a polyhedral part in frictionless

contact with the locators is immobilized. To solve this problem, we must (1) formulate

operational conditions for immobility, (2) enumerate all of the locator con�gurations
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(a) (b)

Figure 3.1 The proposed �xturing device: (a) type I con�guration, (b) type II con�gu-
ration.

that may achieve immobility, and (3) for each of these con�gurations, decide whether

there exists a pose of the �xtured object that simultaneously achieves contact with the

four locators and guarantees immobility. Our approach to step (1) is to specialize the

conditions formulated by Rimon and Burdick to the class of �xturing elements and objects

of interest. Step (2) can then be reduced to solving a combinatorial problem, so we can

attack step (3) using numerical algebraic methods [50, 51, 61].

It should be noted that the conceptual design shown in Figure 3.1 can be implemented

using standard modular �xturing elements such as the ones available in the QU CO

kit: for example, a type I con�guration can be constructed using two spherical locators

mounted on a plate and two additional locators mounted on a beam clamp (Figure 3.2).

A similar assembly with three locators and an adjustable vertical clamp can be used for

type II con�gurations.

The rest of this chapter is organized as follows. Previous work in �xture planning

is reviewed in Section 3.2. Our approach is described in Section 3.3 and 3.4: su�cient

conditions for immobility and stability are derived in Section 3.3; they are used in Section

3.4 to design an e�cient algorithm for enumerating all immobilizing stable �xtures of a

given polyhedral object using the device shown in Figure 3.1. Preliminary experiments

are presented in Section 3.5.
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(a) (b)

Figure 3.2 Implementing type I and type II con�gurations of the proposed �xturing
device using standard modules from the QU CO kit.

3.2 Related Work

Modular �xturing systems consist of a kit of modules that can be recon�gured to

�xture di�erent parts. They have the potential of avoiding the costs associated with the

design of custom �xtures, but pose the problem of automatically planning the module

con�gurations adequate for a given part geometry. Traditionally, �xture designers have

relied on heuristics such as the 3:2:1 �xturing principle [35, 89]: the object to be �xtured

is �rst positioned relative to a plane (primary datum) de�ned by three contact points; it

is then positioned relative to a line (secondary datum) de�ned by two additional contact

points, and �nally positioned relative to a last point contact (tertiary datum). When the

six points have been chosen correctly, the position of the �xtured object is completely

determined as long as the contacts are maintained (deterministic positioning [3]). The

object is then clamped into place by one or several additional contacts (total constraint

[3]). Positioning is typically achieved through contact with passive �xturing elements
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such as plates, vee blocks, and locators, while clamping is achieved through contact with

active �xturing elements, such as vises, toe clamps, or chucks.

The theoretical justi�cation for such an approach �nds its roots in the dual role of

�xtures: immobilizing a part and resisting the forces and torques involved in manufac-

turing tasks such as assembly or machining.1 Since screw theory [5, 39, 66] can be used

to represented both displacements (twists) and forces and moments (wrenches), it is an

appropriate tool for analyzing and designing �xtures. Indeed, it is known that six inde-

pendent contact wrenches are necessary to prevent any in�nitesimal displacement which

maintains contact, and that a seventh one is required to ensure that contact cannot be

broken (these correspond to the positioning and clamping contacts introduced above)

[43, 91]. As discussed in Chapter 2, such a �xture prevents any in�nitesimal motion of

the object, and it is said to achieve form closure [66, 79, 87]. Form closure implies force

closure [60, 63], and �xtures achieving form/force closure also ful�ll their second role as

devices capable of resisting external forces and torques.

Past approaches to �xture planning have been based on expert systems [28, 34, 54],

kinematic analysis and screw theory [3, 6, 16, 58], or a combination of both [25, 30]:

Markus et al. have used a rule-based system to interactively design �xtures for box-

type parts and to select appropriate �xture modules [54]. Ferreira and Liu have used a

generate-and-evaluate approach to determine the orientation of workpieces for machining

operations [28]. Hayes and Wright have proposed Machinist, an expert-system-based

process planner that incorporates �xturing information in the construction of a machining

plan [34].

While expert systems are limited in their ability to generate �xture con�gurations

based on analytical considerations, approaches based on screw theory can accurately

predict the performance of �xture designs: Asada and By have proposed the Automati-

cally Recon�gured Fixturing (ARF) system, which uses a detailed kinematic analysis to

derive conditions for deterministic positioning, part accessibility and detachability, and

1There are of course other issues involved in �xturing, for example the analysis of part deformation
under clamping, see [19, 37] for approaches using �nite-element methods.
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total constraint [3]. Their approach has been integrated into a robotic assembly cell.

Chou, Chandru, and Barash have developed a mathematical method based on screw

theory for analyzing and synthesizing �xtures, and used linear programming to generate

optimal clamp positions constrained to lie within convex contact polygons [16]. Bausch

and Youcef-Toumi have introduced the notion of motion stop which represents the ge-

ometric resistance of a contact point to a given screw motion, and they have used it

to compare �xture con�gurations. Their approach is integrated with the CATIA CAD

system and is capable of synthesizing optimal �xture con�gurations from a discrete set

of candidates.

Finally, it should be noted that some systems bridge the gap between expert systems

and kinematic and force analysis: Gandhi and Thompson have proposed a methodology

that relies on expert knowledge, force analysis, and geometric reasoning to synthesize

and analyze modular �xture con�gurations [30]. Englert has also combined analytical

considerations and knowledge-based methods to identify tradeo� relations between part

production attributes and propose a control structure for planning part setup and clamp-

ing [25].

As noted by Wallack [103], there has recently been a renewed interest in the academic

robotics community for manufacturing problems in general and �xturing in particular.

Mishra has studied the problem of designing �xtures for rectilinear parts using toe clamps

attached to a regular grid, and proven the existence of �xtures using six clamps [58]

(this result has since then been tightened to four clamps by Zhuang, Goldberg, and

Wong [107]). In keeping with the idea of Reduced Intricacy Sensing and Control (RISC)

robotics of Canny and Goldberg [13], Wallack and Canny [102, 103] and Brost and

Goldberg [10] have recently proposed very simple modular �xturing devices and e�cient

algorithms for constructing form-closure �xtures of two-dimensional polygonal and curved

objects. Wagner, Zhuang, and Goldberg [101] have also proposed a three-dimensional

seven-contact �xturing device and an algorithm for planning form-closure �xtures of a

polyhedron with pre-speci�ed pose.
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All of the approaches discussed so far are based on the concepts of form and force

closure. A di�erent notion is stability: a part is said to be in stable equilibrium if it

returns to its equilibrium position after having been subjected to a small displacement.

Stability is very important in real mechanical systems which cannot be expected to have

perfect accuracy. Nguyen has shown that force (or form) closure implies stability [64],

but Donoghue, Howard and Kumar have shown that there exist stable grasps or �xtures

which do not achieve form closure [23, 38]. As discussed in Chapter 2, Rimon and

Burdick have introduced the notion of second-order immobility [81, 84, 85] and shown

that certain equilibrium grasps (or �xtures) of a part which do not achieve form closure

e�ectively prevent any �nitemotion of this part through curvature e�ects in con�guration

space. They have given operational conditions for immobilization and proven the dynamic

stability of immobilizing grasps under various deformation models [85]. An additional

advantage of this theory is that second-order immobilization can be achieved with fewer

�ngers (four contacts for convex �ngers) than form closure (seven contacts [43, 91]). As

detailed in the next section, we propose to exploit second-order immobility in �xture

planning for three-dimensional polyhedral objects.

In this chapter, we �rst derive simple su�cient conditions for immobility and stability

in the case of contacts between spherical locators and polyhedral objects (Section 3.3).

We then use these conditions in Section 3.4 to design an e�cient algorithm for planning

stable immobilizing �xtures of a polyhedral object with the device shown in Figure 3.1.

3.3 Su�cient Conditions for Immobility and Stabil-

ity

3.3.1 A su�cient Condition for Immobility

Let us consider a rigid object and the contacts between d locators and this object. Let

us also denote by pi (i = 1; ::; d) the positions of the contacts in a coordinate frame at-
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tached to the object, and by ni (i = 1; ::; d) the unit inward normals to the corresponding

faces.

As before, we say that equilibrium is achieved when the contact wrenches balance

each other, i.e.,
dX
i=1

�i

0
@ ni

pi � ni

1
A = 0; (3.1)

for some �i � 0 (i = 1; ::; d) with
Pd

i=1 �i = 1.

We now specialize Rimon's and Burdick' su�cient condition for second-order immo-

bility to the case of a polyhedron in contact with d spherical locators. As shown in

Chapter 2, the relative curvature form is de�ned by

�rel =
dX
i=1

�ijwij�i

be negative de�nite. Here the weights �i are the equilibrium weights of (3.1), jwij is
the magnitude of the wrench exerted by locator number i, and �i is the curvature form

associated with the corresponding contact; this quadratic form is de�ned by:

�i =
1

jwij(v
T ;!T )(CTi LiCi +Di)

0
@ v

!

1
A ;

where v and ! denote the translational and rotational parts of an in�nitesimal twist,

Li is a matrix related to the surface curvatures of the body and locator at the contact

points, and the matrices Ci and Di depend only on the position pi of the contact point

and the normal to ni to the body's surface in pi.

Specializing the above equations to equilibrium contacts between spherical locators

and polyhedra yields:

�rel =
dX
i=1

�i!
TKi!; where Ki = ([ni�]

T [pi�])
S � ri[ni�]

T [ni�]; (3.2)

and ri denotes the locator's radius. Note that there is no term involving the translation

v in this case. It follows from (3.2) that a su�cient condition for immobility is that the

3� 3 symmetric matrix

K =
dX
i=1

�iKi
is negative de�nite.
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3.3.2 A Su�cient Condition for Stability

We prove a su�cient condition for the stability (in the sense of Nguyen [64], see

also [23, 38]) of a �xture con�guration, and show that it is equivalent to the immobility

condition derived in the previous paragraph (see [85] for a more general statement of the

dynamic stability of immobilizing grasps).

Each locator is modeled as a sphere of radius ri attached to a linear spring whose

axis is aligned with the inward normal to the corresponding contact face. As the solid

moves, the sphere slides on the contact face and translates along the corresponding spring

(Figure 3.3).

p

n

n’

i

i

i

i
p’

displaced
plane

i

Figure 3.3 Small displacement of a plane in contact with a sphere mounted on a spring.

The potential energy of the �xture is the sum of the potential energies of the individual

springs, i.e.,

U =
dX
i=1

1

2
�2
i ;

where �i is the displacement of the spring associated with locator number i from its

position at rest (we assume a unit spring constant for each locator). In general we can

write �i = ��i+�i, where �i is the compression at equilibrium (which is of course equal

to the coe�cient �i in (3.1)) and �i denotes the displacement of the sphere along ni

corresponding to a given displacement of the solid. An equilibrium �xture will be stable
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when it corresponds to a local minimum of the potential energy (as a function of small

displacements of the object).

A rigid displacement is speci�ed by a rotation R of axis a and angle �, and a transla-

tion v. Following Nguyen [64], we use a second-order Taylor expansion of the exponential

de�nition of rotations, and parameterize �i by the twist (v;!), where ! = �a.

The gradient and Hessian of the potential energy are respectively

rU =
dX
i=1

(��i + �i)r�i and (3.3)

r2U =
dX
i=1

r�ir�Ti + (��i + �i)r2�i:

A simple calculation shows that the gradient of �i at the origin is the wrench (n
T
i ;pi�

nT
i )

T , and it follows as expected that the �xture is in equilibrium if and only if equation

(3.1) is satis�ed. To decide whether the equilibrium is stable, we must examine the Hes-

sian of the potential function. Computing the Hessian of �i at the origin and substituting

in (3.3) yields:

r2U j0;0 = F + S;

where F =
dX
i=1

0
@ ni

pi � ni

1
A
0
@ ni

pi � ni

1
A
T

; and S = �
dX
i=1

�i

0
@ 0 0

0 Ki

1
A :

The equilibrium is stable when F+S, the Hessian of the potential function, or sti�ness
matrix, is positive de�nite. The matrix F is of course positive semi-de�nite, its zeros

being the twists reciprocal to the wrenches exerted by the locators (which are guaranteed

to exist for frictionless �xtures when d � 6). These twists satisfy the equations

v � ni + ! � (pi � ni) = 0 for i = 1; : : : ; d: (3.4)

For equilibrium �xtures, only three of the above equations are independent, and for

any choice of ! there exists in general a vector v such that (3.4) is satis�ed. Thus r2U

is positive de�nite if and only if the matrix K is negative de�nite. This condition is the

same as the su�cient condition for immobility derived earlier.
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3.4 Planning Four-Locator Immobilizing Fixtures of

Polyhedral Objects

In this section, we focus on the four-locator case and present an e�cient algorithm for

enumerating all immobilizing �xtures of a polyhedral object that can be achieved with

the device of Figure 3.1. To simplify this planning process, we reduce the problem of

achieving contact between a spherical locator and a plane to the problem of achieving

point contact with a plane. This is done without loss of generality by growing the object

to be �xtured by the locator radius and shrinking the spherical end of the locator into

its center (see [10, 102, 103] for similar approaches in the two-dimensional case). For

the sake of conciseness, we restrict our attention here to type II �xture con�gurations.

Planning type I con�gurations involves analogous methods and has the same cost.

The algorithm can be summarized as follows. For each quadruple of faces do:

1. Test whether they can be held in essential equilibrium.

2. Enumerate all locator con�gurations potentially achieving equilibrium through con-

tacts with the selected faces.

3. For each such con�guration, compute the pose of the object and test the immobi-

lization condition.

3.4.1 Testing Essential Equilibrium

For a polyhedral object, the normals ni are �xed vectors. To ensure essential equi-

librium, we restrict our attention to quadruples of faces such that no three of them have

coplanar normals. This ensures that the coe�cients �i in (3.1) are uniquely de�ned, and

it allows us to compute them from the equation
P4

i=1 �ini = 0 and to test whether they

all have the same sign. If they do not, the four candidate faces are rejected. If they do,

we obtain three independent linear constraints on the positions of the locators on the
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faces:
4X
i=1

(�ini)� pi = 0: (3.5)

(Note that the coe�cients �i are now constants depending only on the choice of faces.)

We can parameterize each contact pi by two variables ui; vi. Assuming convex faces,

the fact that the contact points actually belong to the faces can be written as a set of

linear inequalities on ui; vi:

fij(ui; vi) � 0; j = 1; ::; ki; (3.6)

where ki is the number of edges that bound face number i.

Given a choice of four faces, a necessary and su�cient condition for the existence of

contact points within those faces which achieve equilibrium is that there exists a solution

to (3.5) subject to the constraints (3.6). This can be tested using linear programming.

If the test is negative, the quadruple of faces is rejected.

For quadruples passing this second test, there is only (in general) a subset of each face

that can participate in an equilibrium con�guration. The subset corresponding to face

number i is determined by projecting the �ve-dimensional polytope de�ned by (3.5) and

(3.6) onto the plane (ui; vi). Several algorithms can be used to perform this projection,

including Fourier's method [29], the convex hull and extreme point approaches of Lassez

and Lassez [45, 44], and the Gaussian elimination and contour tracking techniques of

Ponce et al. [75].

For faces with a bounded number of edges, all of these algorithms run in constant

time, and they can be used to construct sub-faces that can be passed as input to the rest

of the algorithm.

3.4.2 Enumerating Locator Con�gurations

An exhaustive search of all possible grid coordinates would be extremely expensive:

consider an object of diameter D (measured in units equal to the distance between

successive plate holes); there are O(D8) type II possible con�gurations: one locator is at
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the origin with zero length, two locators have three integer coordinates, the last locator

has only two. A similar line of reasoning also applies to type I con�gurations, and it

yields the same order of complexity.

This has prompted us, like Wallack and Canny [102, 103] and Brost and Goldberg [10]

in the two-dimensional case, to use bounds on the distance between two faces to restrict

the set of grid coordinates under consideration. The minimum and maximum distances

between pairs of points belonging to two given faces can be computed in constant time as

follows: the maximum distance between two faces is always achieved for a pair of vertices.

The minimum distance, on the other hand, may be achieved for any pair of face, edge,

or vertex points (Figure 3.4). The �rst two cases shown in Figure 3.4 (face-face and

edge-face pairs) only occur when two faces are parallel or when one edge is parallel to

a face, and they reduce to computing the distance between a vertex and a face. Thus,

there are only three non-trivial cases: the vertex-face, edge-edge, and vertex-edge pairs,

and the corresponding distances are easily computed by constructing the unique straight

line orthogonal to the pair of features of interest.

face

face

face

edge

face

vertex

vertex

vertex

vertex

edgeedge

edge

Figure 3.4 A list of the feature combinations yielding the minimum distance between
two faces.

Let us position the �rst locator at the origin with zero length. The integer point

corresponding to the second locator is then constrained to lie within the spherical shell

centered at the origin with inner radius equal to the minimum distance between the two

corresponding faces and outer radius equal to the maximum distance. Given the position

of the second locator, the third locator is now constrained to lie within the region formed
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by the intersection of the two shells associated with the �rst and second locator. Finally,

given the position of the third locator, the fourth locator is constrained to lie within a

region formed by the intersection of three shells. The projection of this region onto the

�rst plate yields the set of integer coordinates of the locator. Its last coordinate � is

determined at the next stage of the algorithm.

3.4.3 Computing the Pose Associated with a Given Locator

Con�guration

To avoid imposing a particular parameterization of the object's pose, we take advan-

tage of the fact that a tetrahedron is completely determined by the lengths of its six

edges.

We de�ne the tetrahedron whose vertices are the four contacts by six quadratic equal-

ity constraints of the form

jpi � pjj2 = l2ij; with i = 1; 2; 3 and i < j � 4; (3.7)

which specify the lengths of the tetrahedron's edges.

At this point, the integer grid coordinates of the locators are �xed, and the coe�cients

lij are only functions of the variable �. Thus the equalities (3.5) and (3.7) form a system

of nine equations in the nine unknowns ui; vi (i = 1; ::; 4) and �. Since three of these

equations are linear, and the remaining six are quadratic, this system admits at most

26 = 64 solutions which can easily be computed using homotopy continuation [61] or the

toolkit for algebraic computation described in [50].

Once the solutions have been found, we can check whether they satisfy the linear

inequalities (3.6) de�ning the contact faces, then check whether they achieve immobi-

lization. Note that the object pose corresponding to a given locator con�guration and

plate distance is easily computed: since one of the locators is at the origin, we only need

to compute the rotation mapping the �xturing device's coordinate frame onto the ob-

ject's coordinate frame. Since we know the positions of the contacts in both coordinate

systems, it is a simple matter to compute the corresponding rotation.

27



3.4.4 Algorithm Analysis.

For each quadruple of faces, enumerating the locator con�gurations amounts to de-

termining the integer positions falling in regions de�ned by the intersection of two, four,

or six half-spaces bounded by spheres. A naive approach to that problem is to test every

grid point against the constraints de�ning the regions of interest with cost O(D8), where

D is as before the diameter of the object measured in units equal to the distance between

two successive holes.

A better approach is to use a three-dimensional scan-line conversion algorithm to

determine the integer points within a region in (optimal) time proportional to the number

V of these points: scan-line conversion algorithms are used in computer graphics to

render polygonal and curved shapes by enumerating pixels within these shapes one row

at a time; they only require the ability to trace the shape boundaries and �nd their

extrema in the horizontal and vertical dimension, and they have a time complexity linear

in the size of their output. It is relatively straightforward to generalize these algorithms

to the three-dimensional case: we can construct an explicit representation of the region

boundaries by a procedure akin to boundary evaluation in constructive solid geometry.

This process is simpli�ed by the fact that in our case the boundary elements are sphere

patches, circular arcs (intersections of two spheres), and vertices (intersections of three

spheres). Constructing the boundary representation and its extrema in any direction

can be done in constant time (given our bounded number of half-spaces), and scan-line

conversion can then proceed, one plane at a time, in time proportional to V (Figure 3.5).

Thus, the time complexity of our overall algorithm is O(N4V ) where N is the number of

faces of the polyhedron. Of course, V is still, in the worst case, O(D8).

We can assume without loss of generality that each face can be inscribed in a disc of

diameter d (note that d � D and that in practice, we may have d � D). The volume

of a spherical shell is then O(D2d), and the area of the intersection of two such shells

is also at worse O(D2d). The area of the projection of the intersection of three shells is

itself O(Dd). Thus the total complexity of the algorithm is O(N4D5d3).
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vertex

circular
arc

scan line

Figure 3.5 Illustration of scan-line conversion in the 2D case: spans between consecutive
boundary elements are �lled one scan-line at a time.

To obtain a more realistic estimate of the algorithm's behavior, let us further assume

that the polyhedron under consideration has total area A with faces all having the same

area, so d2 = O(D2=N) = O(A=N). Under this assumption, the complexity of the

algorithm becomes O(N2
p
NA4). It should also be noted that, in practice, we will often

have d� D, so the volume of the intersection of two shells will be proportional to Dd2

instead of D2d, and the area of the projection of the intersection of three shells will often

be d2 instead of Dd (Figure 3.6). More experiments will allow us to conduct an empirical

evaluation of this model.

(a) (b) (c)

Figure 3.6 The regions shown in grey correspond to the position of: (a) the second
locator, (b) the third locator, (c) the fourth locator.

3.5 Implementation and Results

We have fully implemented the proposed �xturing algorithm. The implementation

has been written in C, and it includes the two pruning stages proposed in Section 3.4:

the subsets of the faces that may participate in an immobilizing grasp are �rst found
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by projecting the polytope de�ned by the equilibrium constraints (3.5) and (3.6) onto

the parameter space of the faces. Candidate con�gurations that satisfy the distance con-

straints associated with these subsets of the faces are then enumerated by scan-converting

the volumes bounded by the corresponding spherical shells.

Figure 3.7 shows some simulation results. The test object is a tetrahedron, and each

result is shown from two di�erent viewpoints. As shown in Figure 3.2, we have also con-

structed the proposed four-locator �xturing device using modular �xturing elements from

the QU CO kit. We have used an aluminum base plate with an array of threaded holes,

compatible threaded bolts and nuts, removable spherical locator tips, and a horizontal

beam. The bolts and spherical tips are used as locators, and di�erent locator heights

are implemented by attaching di�erent number of nuts to the bolts before screwing them

through the threaded holes of the base plate. The horizontal beam is used as a support

for the top locators.

Table 3.1 shows some quantitative results for di�erent grid resolutions. In our exper-

iments we have used a K � K grid with various values of K, as well as locators whose

height may take ten discrete values. Table 3.1 shows the results obtained without any

pruning (N), using spherical shell pruning only (S), and combining the projection- and

shell-pruning stages (P+S).

K # Candidates
N S P+S

3 6,377,292 267,868 223,224
4 63,700,992 4,429,772 3,601,440
5 379,687,500 20,720,018 17,709,408
6 1,632,586,752 297,104,432 237,683,544

Table 3.1 Quantitative results using a tetrahedron as a test object.

We have used homotopy continuation [61] to solve the polynomial system of degree 64

that determines the poses of an object compatible with a given locator con�guration. Our

distributed implementation of continuation takes roughly 2.5 seconds on two networked

four-processor SUN SPARCstations 10 to solve this system. Thus we have not been able
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a)

b)

c)

d)
Figure 3.7 Some solutions for the four-locator �xturing device.
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(a) (b)

Figure 3.8 The �xturing device immobilizing a tetrahedron.

in our actual experiments with moderate grid resolutions to compute in a reasonable

time all of the achievable �xtures. Instead, we have stopped the computation once a

few immobilizing �xtures had been found. The statistics given in Table 3.1 have been

obtained by running only the part of the algorithm that enumerates all possible locator

con�gurations.

3.6 Conclusions

We have given su�cient conditions for the immobility and stability of modular �x-

tures, and proposed and implemented an algorithm for �xturing three-dimensional poly-

hedra. To the best of our knowledge, this algorithm is the �rst ever proposed for �xturing

true three-dimensional objects with arbitrary pose (see [101, 11] for related work using

prismatic �xturing elements and three-dimensional objects with pre-speci�ed pose). In-
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teresting future research includes �nding a lower-degree to pose computation in the �xture

planning and considering a wider, more realistic class of �xturing situations.

Fixturing and grasping are two problems with the same objective, which is immo-

bilizing objects. It is therefore an obvious step to modify the �xturing rig presented in

this chapter for grasping purpose. In the next chapter, we propose a new recon�gurable

gripper which is a motorized version of the �xture.
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CHAPTER 4

A RECONFIGURABLE GRIPPER

4.1 Introduction

Classical parallel-jaw grippers are unable to adapt to a wide variety of workpiece

geometries; although dextrous hands have been proposed by the academic robotics com-

munity [40, 87], they are too expensive and cumbersome for typical manufacturing appli-

cations. Thus di�erent grippers are used for di�erent parts (hundreds of di�erent models

are indeed listed by gripper manufacturers). This calls for the design of recon�gurable

grippers which combine the 
exibility of dextrous hands with the cost-e�ectiveness and

simplicity of parallel-jaw grippers, and for the development of accompanying software

to recon�gure these grippers according to part geometry. We propose a new recon�g-

urable gripper which is simply a motorized version of the �xture presented in the previous

chapter.

We address in this chapter the problem of grasping and manipulating three-dimensional

polyhedral objects using the new recon�gurable gripper. The gripper consists of two par-

allel plates whose distance can be adjusted by a computer-controlled actuator (Figure

4.1). The bottom plate is a bare plane, and the top plate carries a rectangular grid of

actuated pins that can translate in discrete increments under computer control.

As part of this thesis work, we have completed the construction of a prototype of this

gripper. Figure 4.1(b)-(d) shows some pictures of our prototype: it is equipped with a

grid of twenty �ve �ngers, each one of them being mounted on the lead screw of a separate
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linear actuator. The top and lower plate assemblies can be moved relative to each other

using a large linear actuator. To avoid friction as much as possible, the bottom plate

is covered with a series of strings of metal beads, which lets the manipulated part roll

with minimal resistance. We should stress that designs that are simpler, more reliable

and more accurate, are of course possible: for example, we only need three pins to move

at any time, which does not require one actuator per pin. Our main goal here is to

demonstrate that manipulation tasks can actually be performed using our approach.

(a) (b)

(c) (d)

Figure 4.1 A recon�gurable gripper: (a) conceptual design and (b)-(d) actual prototype.

We propose to use this gripper to immobilize objects through frictionless contacts

with three of the pins and the bottom plate, and to manipulate an object within a grasp
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by planning the sequence of pin con�gurations that will bring this object to a desired

position and orientation.

Our approach is based on the notion of second-order immobility introduced by Rimon

and Burdick [81] and on a detailed analysis of the geometry of the joint object/gripper

con�guration space. Characterizing the range of possible object motions associated with

a grasp con�guration allows us to identify the \minimal" con�gurations for which the

object is totally immobilized as well as the \maximal" ones for which there is a non-

empty open set of object motions within the grasp, but no escape path to in�nity. The

minimal con�gurations are the basis for grasping, and the maximal ones are the basis for

in-hand manipulation. In addition, our analysis decouples the continuous and discrete

degrees of freedom of the gripper, which allows us to devise e�cient algorithms for grasp

and manipulation planning.

The rest of this chapter is organized as follows. Previous work on grasp and manip-

ulation planning is brie
y reviewed in Section 4.2. We attack the problem of planning

immobilizing grasps with our recon�gurable gripper in Section 4.3 by �rst studying the

contact geometry in con�guration space (Section 4.3.1) then using the results of this

study to devise an e�cient grasp planning algorithm (Section 4.3.2). Simulation results

are presented in Section 4.3.3. We turn in Section 4.4 to the problem of planning in-hand

manipulation sequences, and again study the geometry of the problem (Section 4.4.1) be-

fore presenting an e�cient manipulation planning algorithm (Section 4.4.2). Simulation

results are presented in Section 4.4.3. Section 4.5 generalizes our in-hand manipulation

approach to the case of continuous �nger motions, and Section 4.7 concludes the chapter.

4.2 Related Work

The notions of form and force closure are the traditional theoretical basis for grasp

planning algorithms. Mishra, Schwartz, and Sharir [59] have proposed linear-time algo-

rithms for computing a �nger con�guration achieving force closure for frictionless poly-

hedral objects. Markensco� and Papadimitriou [53] and Mirtich and Canny [57] have
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proposed algorithms for planning grasps which are optimal according to various criteria

[27]. In each of these works, the grasp-planning algorithm outputs a single grasp for a

given set of contact faces. Assuming Coulomb friction [63], Nguyen has proposed instead

a geometric method for computing maximal independent two-�nger grasps of polygons,

i.e., segments of the polygonal boundary where the two �ngers can be positioned inde-

pendently while maintaining force closure, requiring as little positional accuracy from

the robot as possible. This approach has been generalized to handle various numbers of

�ngers and di�erent object geometries in [7, 15, 68, 71, 72, 75]

Robotic grasping and �xture planning are related problems (in both cases, the object

grasped or �xtured must, after all, be held securely), but their functional requirements

are not the same: as remarked by Chou, Chandru, and Barash [16], machining a part

requires much better positional accuracy than simply picking it up, and the range of forces

exerted on the parts are very di�erent. The role of friction forces is also di�erent: in

the grasping context, where �ngers are often covered with rubber or other soft materials,

friction e�ects can be used to lower the number of �ngers required to achieve form

closure from seven to four; in the �xturing context, on the other hand, it is customary

to assume frictionless contact, partly due to the large magnitude and inherent dynamic

nature of the forces involved [16] (see, however [47] for an approach to �xture planning

with friction). Finally, the kinematic constraints on the positions of the contacts are

also quite di�erent: in particular, dextrous grippers have continuous degrees of freedom,

corresponding to the various �nger joints, while modular �xtures have mostly discrete

degrees of freedom, corresponding for example to the position of pins on an integer grid

attached to a �xturing plate.

In Chapter 3, we introduced a new approach to modular �xture planning, based on

the notion of second-order immobility. In this chapter, we propose to bridge the gap

between �xture and grasp planning by considering a new class of recon�gurable grippers

with mostly discrete degrees of freedom, which have the potential of achieving the same

level of 
exibility as dextrous robotic hands for a fraction of the cost. We also give an

algorithm for grasp planning and introduce a new approach to in-hand manipulation.
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Unlike previous approaches to similar problems, this approach does not require strong

(and a priori unveri�able) assumptions on contact dynamics [1, 26, 33, 49, 55].

4.3 Grasp Planning

In this section, we consider the problem of grasping a three-dimensional polyhedral

object with our gripper and derive geometric conditions for contact, equilibrium, and

immobility. We then use these conditions in an e�cient algorithm for enumerating all

immobilizing grasps of a polyhedral object.

4.3.1 Geometry of the Problem

Although we consider manipulating objects in the plane, the contact constraints are

very similar to those in the previous chapter. More precisely, our gripper can be used to

hold a polyhedral object through contacts with three of the top plate pins, and either a

face, an edge-and-vertex, or a three-vertex contact with the bottom plate. Let us assume

for the sake of simplicity that the faces of the polyhedron are triangular (convex faces

can be handled in similar ways, see [16] for a related approach). Any wrench exerted

at a contact point between a face and the bottom plate can be written as a positive

combination of wrenches at the vertices. Likewise, the wrenches corresponding to an

edge-and-vertex contact are positive combinations of wrenches exerted at the end-points

of the line segment and at the vertex. Thus equilibrium con�gurations can be found, in

general, by writing the equilibrium equation (3.1) for six elementary wrenches.

We detail the case of a contact between the bottom plate and a triangular face f

with inward unit normal n and vertices vi (i = 1; 2; 3), and assume in all the sequel that

the remaining faces fi (i = 1; 2; 3) are convex, with inward unit normals ni (Figure 4.2).

We also assume without loss of generality that the four vectors n and ni (i = 1; 2; 3)

positively span IR3, i.e., that a strictly positive linear combination of these vectors is

equal to zero (this is a necessary condition for essential equilibrium). Finally, given the

physical layout of our gripper, contact between the upper-jaw pins and faces such that
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n � ni > 0 is of course impossible, and we further assume without loss of generality that

n � ni < 0 for i = 1; 2; 3.
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Figure 4.2 The four faces involved in a grasp.

Under these assumptions, we can choose a coordinate system (u; v; w) attached to the

object with w axis parallel to n, and write in this coordinate system

n =

0
BBB@

0

0

1

1
CCCA and ni =

1

li

0
BBB@

ai

bi

�1

1
CCCA ; where li =

q
1 + a2i + b2i :

Likewise, since the vectors n and ni (i = 1; 2; 3) positively span IR3, we can write

n = �P3
i=1 �ini, where �i > 0 for i = 1; 2; 3. To complete the speci�cation of the faces

fi (i = 1; 2; 3), we will denote by ci the height of fi at the origin, so the plane of this face

can be parameterized by wi = aiui + bivi + ci. Finally, since we assume convex faces, we

will express the fact that the point associated with the parameters ui; vi actually belongs

to fi by a set of linear inequalities on ui; vi:

aijui + bijvi + cij � 0; j = 1; ::; ki; (4.1)

where ki is the number of edges that bound face number i.
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4.3.1.1 Contact

We reduce the problem of achieving contact between a spherical pin and a plane to the

problem of achieving point contact with a plane. This is done without loss of generality

by growing the object to be �xtured by the pin radius and shrinking the spherical end

of the pin into its center. We attach a coordinate system (q; r; w) to the gripper, and

denote by R and t the rotation of angle � about n and the translation (x; y) in the plane

orthogonal to n that map the (q; r; w) coordinate system onto the (u; v; w) coordinate

system.

If pi and qi denote respectively the positions of the tip of pin number i in the object's

and gripper's coordinate frames, we can write

pi =

0
BBB@

ui

vi

aiui + bivi + ci

1
CCCA ; qi =

0
BBB@

qi

ri

� � hi

1
CCCA and qi = Rpi + t; (4.2)

where qi, ri and hi denote respectively the integer pin position on the bottom plate grid

and its height, and � is the jaw separation.

Equation (4.2) is a condition for contact between pin number i and the corresponding

face. It can be rewritten as Ci(x; y; �; �) = 0, where

Ci(x; y; �; �) def
= (x� qi) cos(� + �i) + (y � ri) sin(� + �i) + di� � ei = 0; (4.3)

and �i = Arg(ai; bi) and di = 1=
q
a2i + b2i , and ei = di(ci + hi).

1 Note that �i is simply

the angle between the u axis and the projection of ni onto the u; v plane (Figure 4.3(a)).

For a given jaw separation �, the set Si(�) of object con�gurations (x; y; �) for which

Ci(x; y; �; �) = 0 forms a ruled surface: indeed, its intersection with a plane � = constant

is a line Li(�; �) at distance ei� di� from the �xed point (qi; ri) of the x; y plane, and the

angle between the x axis and the normal to this line is �+ �i (Figure 4.3(b)). Changing

� corresponds to rotating the line about the point (qi; ri), while changing � corresponds

to translating the line.

1Here, abusing the usual mathematical notation, Arg(c; s) is the angle a such that cos(a) = c=
p
c2 + s2

and sin(a) = s=
p
c2 + s2.
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Figure 4.3 Contact between a pin and a face: (a) in workspace; (b) in x; y con�guration
space.

The three pins will be in contact with the corresponding faces when (4.3) is satis�ed

for i = 1; 2; 3. In particular, if

E(�; �) def
=

3X
i=1

�i

dili

Ci(x; y; �; �);

then E(�; �) = 0 whenever the three contacts are achieved simultaneously. A simple

calculation exploiting the relation n = �P3
i=1 �ini shows that

E(�; �) = � � A cos(� � �)� B; (4.4)

where 8>>>>>>>>><
>>>>>>>>>:

A =
p
C2 + S2; � = Arg(C; S); B =

P3
i=1

�i

li
(ci + hi)

C =
P3

i=1

�i

li
(aiqi + biri); and S =

P3
i=1

�i

li
(�biqi + airi):

Note that (4.4) justi�es the notation E(�; �) since the value of E is independent of x

and y. More importantly, it is now clear that a necessary condition for the existence of

an object position achieving contact with the three pins is that the point (�; �) lies on

the contact sinusoid de�ned by E(�; �) = 0. This condition is also su�cient: for given

values of � and � on this sinusoid, the three linear equations Ci(x; y; �; �) (i = 1; 2; 3) in

the two unknowns x and y are linearly dependent, and thus admit a common solution.
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4.3.1.2 Equilibrium

Here we take advantage of the fact that the overall scale of the wrenches is irrelevant

to rewrite the equilibrium equation (3.1) as

8>>><
>>>:

P3
i=1 �i

0
@ n

vi � n

1
A+

P3
i=1 �i

0
@ ni

pi � ni

1
A = 0;

�1 + �2 + �3 = 1;

(4.5)

where �i � 0 (i = 1; 2; 3).

In turn, using the fact that n = �P3
i=1 �ini, forming the dot product of the above

expression with n, and using elementary properties of triple products yields

3X
i=1

�i[(R�1qi)� n] � ni = 0;

which can be rewritten in the coordinate system (q; r; w) as

3X
i=1

�i

li

[(�biqi + airi) cos � � (aiqi + biri) sin �] = 0() sin(� � �) = 0:

It follows that a necessary and su�cient condition for three pins in contact with the

corresponding faces of the object to achieve equilibrium is that � = � or � = � + �.

Note that these values of � are independent of the heights of the pins, which will prove

extremely important in the grasp planning algorithm presented in Section 4.3.2.

4.3.1.3 Immobility

We now examine the su�cient condition for immobility derived in Chapter 3 in the

case of our gripper. Since the radii corresponding to the planar contacts are e�ectively

in�nite, it is obvious that !TK! is negative for any vector ! which is not parallel to n.

Thus we must determine the sign of

nTKn = M
3X
i=1

�i[(ni � n) � (P i � n)� rjni � nj2]; (4.6)

where r is the common radius of the pins andM = 1=(1+
P3

i=1 �i) is a scale factor used to

balance the fact that we have chosen �1 + �2 + �3 = 1 in our formulation of equilibrium.
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Note that we have used P i instead of pi to denote the position of the contact point

because (4.6) is valid in the coordinate system of the original object: as noted earlier,

we assume in the rest of this paper that the object has been grown by the pin radius,

while the spherical end of the pin has been shrunk into its center. This implies that

P i = pi + rni. In turn, using (4.2) allows us to rewrite (4.6) as

nTKn = M
3X
i=1

�i(ni � n) � [(R�1(qi � t))� n];

or equivalently

nTKn =M
3X
i=1

�i

li

[(aiqi + biri) cos � + (�biqi + airi) sin �] = AM cos(� � �);

and it follows that K is negative de�nite if and only if � = � + �.

4.3.1.4 Main Results

We can now summarize the results obtained in this section with the following lemma.

Lemma 1: For given integer pin positions and heights qi, ri and hi (i = 1; 2; 3), a

su�cient condition for an object at con�guration (x0; y0; �0) to be immobilized by a

grasp with jaw separation �0 is that:

(1) �0 = � + �,

(2) Ci(x0; y0; �0; �0) = 0 for i = 1; 2; 3, and

(3) aij[(qi� x0) cos �0 +(ri� y0) sin �0] + bij[�(qi� x0) sin �0 +(ri� y0) cos �0] + cij � 0

for i = 1; 2; 3 and j = 1; ::; ki.

This lemma is an obvious corollary of the results obtained in Sections 4.3.1.1, 4.3.1.2

and 4.3.1.3, the third condition simply expressing the fact that the contacts must occur

within the faces.
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4.3.2 Algorithm

According to Lemma 1, all continuous degrees of freedom of a grasp (object orien-

tation, jaw separation and object position) can be computed once the grasp's discrete

degrees of freedom (pin positions and heights) have been set. This yields the following

naive algorithm for grasp planning: for each quadruple of faces, enumerate all grid po-

sitions and heights of the three pins, then compute the remaining grasp parameters and

check whether they satisfy condition (3) of Lemma 1. This algorithm is similar to the

�xture planning technique, and its complexity is O(N4D6), where N is the number of

faces of the grasped polyhedron, and D is its diameter measured in units equal to the

distance between successive grid points.

A better approach is the following algorithm, which has the same overall structure as

the naive one, but limits the number of faces and gripper con�gurations under consid-

eration by exploiting a number of geometric constraints, most notably the fact that the

orientation of an object held in an immobilizing grasp depends only on the pins' positions

and not on their heights:

For each quadruple of faces do

1. Test whether they can be held in equilibrium.

2. Enumerate all pin positions that may immobilize the object and compute the cor-

responding object orientation.

3. For each such position, enumerate the pin lengths that immobilize the object and

compute the remaining grasp parameters.

The �rst step of the algorithm uses linear programming and polytope projection

techniques [29, 45, 44, 75] to prune gripper con�gurations that cannot achieve equilibrium.

The second step uses distance constraints to reduce the enumeration of the pin positions

that may yield equilibrium grasps to the scan-line conversion of circular shells (see [102,

103, 10] for related approaches to �xture planning for two-dimensional objects). Finally,
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the third step of the algorithm uses condition (3) of Lemma 1 to reduce the enumeration

of pin heights that yield immobilizing grasps to polygon scan conversion.

The three steps of the algorithm are detailed in Sections 4.3.2.1 to 4.3.2.3. Section

4.3.2.4 shows that its complexity is O(N4D2d4) where d is the maximum diameter of the

object's faces. Empirical results are presented in Section 4.3.3.

4.3.2.1 Testing the Existence of Equilibrium Con�gurations

We �rst check that the four surface normals positively span IR3. This is easily done by

checking that any three of the normals are linearly independent, then using the equation

n = �P3
i=1 �ini to compute the coe�cients �i and check whether they have the same

sign. If they do not, the quadruple of faces under consideration is rejected. If they do,

the normals positively span IR3, and (4.5) provides four linear equations in the the nine

unknowns �i; ui; vi (i = 1; 2; 3).

We can now test the existence of equilibrium con�gurations by using linear pro-

gramming to determine whether the �ve-dimensional polytope de�ned by (4.5) and the

inequality constraints (4.1) and �i � 0 is empty. When this polytope is not empty, there

is only (in general) a subset of each face that can participate in an equilibrium con�gu-

ration. As in the �xturing case, the subset corresponding to face number i is determined

by projecting the polytope de�ned onto the plane (ui; vi) [29, 45, 44, 75].

4.3.2.2 Enumerating Pin Positions

As shown by Lemma 1, given a quadruple of faces, we can �rst enumerate all possible

pin locations on the lower plate and compute the corresponding rotations, then enumerate

the corresponding pin heights and compute the corresponding jaw separation and object

pose.

An exhaustive search of all possible grid coordinates would be extremely expensive:

consider an object of diameter D (measured in units equal to the distance between

successive grid points); there are a priori O(D4) di�erent pin locations, since we can

position one pin at the origin and the other two pins at arbitrary locations on the grid.
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Instead, we use an approach similar to the algorithms presented by Wallack and Canny

[102, 103] and Brost and Goldberg [10], using bounds on the distance between two faces to

restrict the set of grid coordinates under consideration. Clearly, each pin must lie within

the horizontal projection of each face. Thus if we position the �rst pin at the origin,

the integer point corresponding to the second pin is constrained to lie within the circular

shell centered at the origin with inner radius equal to the minimum distance between

the projections of the two corresponding faces and outer radius equal to the maximum

distance. Given the position of the second pin, the third pin is now constrained to lie

within the region formed by the intersection of the two shells associated with the �rst

and second pin.

Enumerating the pin locations thus amounts to determining the integer positions

falling in planar regions de�ned by a circular shell or the intersection of two such shells.

This can be done as before in optimal time proportional to the number V of these points

by using a scan-line conversion algorithm.

4.3.2.3 Enumerating Pin Lengths

Once the position of the pins has been chosen and the corresponding rotation has

been computed, we can align the gripper's and object's coordinate systems so they are

only separated by the horizontal translation (x; y). This allows us to rewrite the contact

equations as

ai(x� qi) + bi(y � ri) + � � ci � hi = 0 for i = 1; 2; 3: (4.7)

Equation (4.7) holds whenever the three pins are in the planes of the faces fi of the

grasped object. Writing that the pins actually lie within the faces constrains the possible

values of the translation t between the gripper and object coordinate frames: let us

denote by by f 0i the convex polygon f(x; y)jaij(x � qi) + bij(y � ri) � cij � 0 for j =

1; ::; kig (geometrically, f 0i can be constructed by projecting fi onto the (ui; vi) plane,

then applying to the projection a symmetry with respect to the origin and a translation

by (qi; ri)). Using once again (4.2) shows that the point (x; y) is restricted to lie within
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the polygon F 0 = f 01 \ f 02 \ f 03 (Figure 4.4(a)). Substituting into (4.7) and using the fact

that we can choose q1 = r1 = h1 = 0 now yields
0
@h2
h3

1
A 2 fA

0
@x
y

1
A+ bj

0
@ x
y

1
A 2 F 0g

where

A =

0
@ a2 � a1 b2 � b1

a3 � a1 b3 � b1

1
A ; b =

0
@ c1 � (a2q2 + b2r2 + c2)

c1 � (a3q3 + b3r3 + c3)

1
A :

F’

f1’

f2’f3’

x

y h3

h2
(a) (b)

Figure 4.4 Enumerating pin lengths: (a) the polygon F 0 de�ned in the x; y plane by
the intersection of the faces f 0i , and (b) the corresponding convex polygon in the h2; h3
plane, along with the integer points inside it.

In other words, the possible values of (h2; h3) are simply the integer points that lie

in the polygon de�ned by the above equation, which is obtained from F 0 by an a�ne

transformation (Figure 4.4(b)). These points can once again be determined in optimal

time proportional to their actual number using a polygon scan-line conversion algorithm.

Now, for a given con�guration (location plus length) of the pins, (4.7) forms a system

of three linear equations in the three variables x, y, and �. This system is readily solved

to yield the pose of the object and the separation of the plates. Note that the values of

the coe�cients �i are easily computed from (4.5) if required.

Note that the gripper con�gurations found by our algorithm will automatically ensure

that the contacts between the three pins and the planes of the corresponding faces occur

within the faces.
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4.3.2.4 Algorithm Analysis

Without any assumption on the geometry of the grasped object, the complexity of

our algorithm is clearly O(N4D6). To obtain a more realistic estimate of the algorithm

behavior, let us assume without loss of generality that each face can be inscribed in a

disc of diameter d (note that d � D and that in practice, we may have d� D). The area

of a circular shell is then O(Dd), and the area of the intersection of two such shells is also

at worse O(Dd). Finally, the area of the polygon F is O(d2). Thus the total complexity

of the algorithm is O(N4D2d4). As noted in the Introduction, this is an improvement

over the algorithm proposed in [69, 94], whose complexity is O(N4D4d2) since it does

not decouple the enumeration of the pin positions and pin lengths.

For polyhedra with total area A whose faces all have approximately the same area,

we have d2 = O(D2=N) = O(A=N), and it follows that the complexity of our algorithm

is O(N2A3).

Note that if we assume that d� D, the area of the intersection of two shells will in

general be proportional to d2 instead of dD. More experiments will allow us to conduct

an empirical evaluation of this model.

4.3.3 Implementation and Results

In this section, we present some simulation results. Some results of the experiments

with the gripper prototype is presented in Section 4.6. The implementation has been

written in C. Figures 4.5 and 4.6 show some of the grasps of a tetrahedron and of a

polyhedron with 10 faces that our algorithm has found using a 5� 5 grid.

Table 4.1 gives some quantitative results. We have used a K �K grid with various

values of K, as well as pins whose height may take ten discrete values. The table shows

the results obtained without any pruning (N), using circular shell pruning only (S),

and combining the projection- and shell-pruning stages (P+S). All run times have been

measured on a SUN SPARCstation 10. The table shows that, as could be expected,

pruning eliminates a much larger percentage of the possible con�gurations in the case
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Figure 4.5 Grasping a tetrahedron: some solutions for a 5� 5 grid.
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Figure 4.6 Grasping a 10-face polyhedron: some solutions for a 5� 5 grid.
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of the polyhedron with 10 faces than in the case of the tetrahedron, corresponding to

the fact that, for most choices of faces, the range between the minimum and maximum

distances is smaller for the polyhedron with 10 faces.

Tetrahedron
K Number of Run Time (s) # Candidates

Solutions N S P+S N S P+S
3 0 1 1 1 33 10 10
4 160 1 1 1 141 42 40
5 704 2 1 2 411 145 135
6 1,963 4 2 2 927 391 378
7 4,263 8 4 4 1,839 795 751

Polyhedron with 10 Faces
K Number of Run Time (s) # Candidates

Solutions N S P+S N S P+S
3 0 20 1 2 2,772 750 712
4 189 47 3 4 11,844 2,213 2,102
5 794 72 9 9 34,524 3,819 3,537
6 2,326 142 20 20 77,868 7,811 7,125
7 5,046 341 43 41 154,476 16,259 14,951

Table 4.1 Quantitative results for two test objects.

4.4 In-Hand Manipulation

We present a new approach to in-hand manipulation based on the concept of in-

escapable con�guration space region, i.e., on the idea of characterizing the regions of

con�guration space for which the object is not immobilized but is constrained to lie

within a closed region of the free con�guration space (see [80] for related work in the

two-dimensional, two-�nger case). This allows us to plan in-hand planar motions as se-

quences of gripper con�gurations: as the gripper's jaws open from an initial immobilized

con�guration, the object stays in place under the action of gravity; then as the jaws

close, starting in some inescapable region of con�guration space, the object is moved to
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a new immobilizing position and orientation. Note that this approach does not require

modeling what happens when contact occurs, but it indeed requires frictionless contacts

to avoid wedging.

4.4.1 Geometry of the Problem

4.4.1.1 Free Con�guration Space Regions

Let us consider an immobilizing con�guration of the gripper, de�ned by the position

qi; ri and height hi of the pins (i = 1; 2; 3), by the position x0; y0 and orientation �0 of

the object in the gripper's coordinate system, and by the jaw separation �0. We assume

that the values of qi, ri and hi are held constant and examine what happens when the

separation of the jaws changes.

Note that for a given jaw separation � � 0, the ruled surface Si(�) de�ned in Section

4.3.1.1 splits the three-dimensional space IR2 � S1 of con�gurations x; y; � into a \free"

half-space Vi(�) and a \forbidden" half-space Wi(�) where pin number i penetrates the

plane of fi. Furthermore, Vi(�) (resp. Wi(�)) is characterized by Ci(x; y; �; �) � 0 (resp.

� 0).

Now let us consider the volume V (�) = V1(�) \ V2(�) \ V3(�). Given the form of

Ci(x; y; �; �), it is obvious that if a con�guration lies in free space for some value �1 of

�, it also lies in free space for any other value �2 � �1. In other words, V (�1) � V (�2)

when �2 � �1 (this is also intuitively obvious since increasing � corresponds to opening

the jaws). In particular, the immobilizing con�guration (x0; y0; �0) is always in free space

for � � �0.

The intersection of V (�) with a plane � = constant forms a triangular region T (�; �).

Note that the triangles corresponding to various values of � are all homothetic since

their edges make constant angles with each other. However, their size, position, and

orientation varies with �. Note also that these triangles, although possibly empty, are

not degenerate: indeed, it is easy to verify that a necessary and su�cient for two edges

of T (�; �) to be parallel is that the normals to the corresponding faces be either equal
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or symmetric with respect to the vector n, which contradicts the assumption that the

directions ni (i = 1; 2; 3) and n positively span IR3.

As shown in Figure 4.7, the region T (�; �) may contain an open subset (Figure 4.7(a)),

be reduced to a single point (Figure 4.7(b)), or be empty (Figure 4.7(c)).

(a)

(q1,r1)

(q2,r2)(q3,r3)
Free
Space

(b)

(q2,r2)(q3,r3)

(q1,r1)

(c)

(q2,r2)

(q3,r3)

(q1,r1)

Figure 4.7 Possible con�gurations of the intersection T (�; �) of V (�) with a plane � =
constant: (a) T (�; �) contains an open neighborhood; (b) it is reduced to an isolated
point of the x; y plane; (c) it is empty.

In the second case (Figure 4.7(b)), the three pins simultaneously touch the corre-

sponding faces, and E(�; �) = 0. In fact, it is easy to show that a necessary and su�cient

condition for T (�; �) to contain at least one point is that E(�; �) � 0: the condition

is clearly necessary: since E(�; �) is by construction a convex combination of the func-

tions Ci(x; y; �; �), the fact that E(�; �) < 0 implies that, for any x; y, there exists some

i 2 f1; 2; 3g such that Ci(x; y; �; �) < 0. To show that the condition is also su�cient,

let us assume that T (�; �) is empty. This implies that, for any x; y, there exists some

i 2 f1; 2; 3g such that Ci(x; y; �; �) < 0. In particular, if (x12; y12) is the point where the

two lines associated with the faces f1 and f2 intersect (as remarked earlier, these lines

are not parallel), we must have E(�; �) = (�3=l3)C3(x12; y12; �; �) < 0.

This result allows us to characterize qualitatively the range of orientations � for which

T (�; �) is not empty (Figure 4.8): for a given �, the condition E(�; �) = 0 is an equation

in � that may have zero, one, or two real solutions: a double root occurs at the minimum

� = �0 or at the maximum � = �max of the sinusoid. In the former case, E is strictly

positive everywhere except at � = � where it is equal to zero, and the range of orientations

is S1. In the latter case, the range of orientations reduces to a single point �0 = � + �.
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For any value �1 in the open interval ]�0; �max[, there are two distinct roots �0; �00, and

the range of orientations is the arc bounded by these roots and containing �0. Finally,

for values of � outside the [�0; �max] interval, there is no solution: either � is strictly

smaller than �0 and the range of orientations is empty (at least one of the pins penetrates

the plane of the corresponding face), or � is strictly larger than �max, and the range of

orientations is S1.

Region where T is never empty

Region where T is always empty

+2

max

+

1

0

Range of orientations

where T is not empty

 Immobilizing
configuration

Figure 4.8 Regions of �; � space delimited by the sinusoid E(�; �) = 0.

In particular, since the volume V (�) is a stack of contiguous triangles T (�; �), it is

clear at this point that, for � � �0, V (�) is a non-empty, connected, compact region of

IR2 � S1. The analysis conducted in this section also gives some geometric insight on

the immobility conditions derived earlier. In particular, it con�rms that the minimum

point (�+�; �0) of the contact sinusoid corresponds to an isolated point of con�guration

space or equivalently to an immobilizing con�guration: indeed, the triangle T (�0; �+ �)

is reduced to a point, and T (�; �) is empty for any � 6= �0. Likewise, although the

maximum (�; �max) of the sinusoid corresponds to an equilibrium grasp, it does not yield

an immobilizing grasp since the object is free to undergo arbitrary rotations.
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4.4.1.2 Inescapable Con�guration Space Regions

The discussion so far has characterized the contacts between the pins and the planes

of the corresponding faces, ignoring the fact that each face is in fact a convex polygon in

its plane. Let us construct a parameterization of the set Ei(�; �) of con�gurations (x; y)

for which the tip of pin number i belongs to the corresponding face. Obviously, Ei(�; �)

is a subset of Li(�; �). This line is at distance �di� + ei from the point (qi; ri), with a

normal whose orientation is � + �i; hence, it can be parameterized by

0
@x
y

1
A =

0
@ qi
ri

1
A+ (�di� + ei)

0
@ cos(� + �i)

sin(� + �i)

1
A+ �

0
@� sin(� + �i)

cos(� + �i)

1
A ; � 2 IR:

Using this parameterization and (4.2) yields

0
@ui
vi

1
A = (di� � ei)

0
@ cos�i

sin�i

1
A� �

0
@� sin�i

cos�i

1
A :

In turn, substituting these values in the inequalities (4.1) de�ning fi yields a set of

linear inequalities in � and �. Actual contact occurs for pairs (�; �) lying in the convex

polygon de�ned by these constraints. It follows that for given values of � and �, Ei(�; �) is

a line segment, and the parameters �0 and �00 associated with its endpoints are piecewise-

linear functions of �.

Now let us consider the three segments Ei(�; �) (i = 1; 2; 3) together (Figure 4.9): if

Ei(�; �) and Ej(�; �) intersect for all i 6= j, then the three segments completely enclose

the triangle T (�; �) (Figure 4.9(a)). We say that the corresponding con�guration satis�es

the enclosure condition since there is no escape path for the object in the x; y plane with

the corresponding orientation �. More generally, when all triples of segments in the range

of orientations associated with a given jaw separation � satisfy the enclosure condition,

V (�) itself is an inescapable con�guration space (ICS) region: in other words, the object

is free to move within the region V (�), but remains imprisoned by the grasp and cannot

escape to in�nity.
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(a)

(q1,r1)

(q2,r2)(q3,r3)
Free
Space

(b)

(q1,r1)

(q2,r2)(q3,r3)

(c)

(q1,r1)

(q2,r2)(q3,r3)

Figure 4.9 Triangle con�gurations: (a) three segments enclosing a triangle; (b) a critical
con�guration; (c) an opened triangle and an escape path.

4.4.1.3 Maximum ICS Regions

Here we address the problem of characterizing the maximum value �� for which V (�)

forms an ICS region for any � in the [�0; �
�] interval. We know that at � = �0 the three

segments intersect at the immobilizing con�guration, forming an ICS region reduced to

a single point. Thus the enclosure condition holds at � = �0. On the other hand, as

� ! +1, the whole con�guration space becomes free of obstacles, thus there must exist

a critical point for some minimal value of � greater than �0. This guarantees that �
� has

a �nite value.

As shown by Figure 4.9(b), a critical event occurs when one of the endpoints of a

segment lies on the line supporting another segment. After this event, the line segments

fail to enclose the triangle T (�; �) and the object can escape the grasp (Figure 4.9(c)).

According to the results established in the previous section, we can parameterize the

coordinates of one of the endpoints of the segment Ei(�; �) by
0
@x
y

1
A =

0
@ qi
ri

1
A+ (�di� + ei)

0
@ cos(� + �i)

sin(� + �i)

1
A+ (fi� + gi)

0
@� sin(� + �i)

cos(� + �i)

1
A ; (4.8)

on the appropriate � interval, with constants fi and gi determined by the coe�cients aij,

bij and cij of (4.1).

A critical event occurs when the endpoint under consideration is on the line Lj(�; �) for

some j 6= i. Substituting (4.8) into (4.3) yields, after some simple algebraic manipulation

Aij cos(� + �ij) +Bij� + Cij = 0; (4.9)
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where 8>>>>>>>><
>>>>>>>>:

Aij =
q
(qi � qj)2 + (ri � rj)2;

�ij = �j � Arg(qi � qj; ri � rj);

Bij = dj � di cos(�j � �i) + fi sin(�j � �i);

Cij = �ej + ei cos(�j � �i) + gi sin(�j � �i):

In other words, critical con�gurations form a second sinusoid in �; � space, called the

critical sinusoid in the rest of this presentation.

We seek the minimum value of �� > �0 for which the range of orientations includes one

of the critical orientations. As discussed above, we know that �� exists. Let us suppose

�rst that a critical value lies in the interior of the range of orientations associated with

some �1 � �0, and denote by �min the minimum value of � on the critical sinusoid. By

de�nition, we have �1 � �min. Suppose that �1 > �min. Then by continuity, there exists

some �2 such that �min < �2 < �1 and the corresponding range of orientations also contains

a critical orientation (Figure 4.10). The argument holds for any value of � > �min. In

other words, either the range of orientations of �min contains a critical orientation, in

which case �� = �min (Figure 4.10(a)), or it does not, in which case the critical value

associated with �� must be one of its range's endpoints (Figure 4.10(b)). This is checked

by intersecting the contact sinusoid and the critical one. Note that this process must be

repeated for each segment/vertex pair to select the minimum value of ��.

4.4.1.4 Main Result

The following lemma follows immediately from the results established in Sections

4.4.1.1, 4.4.1.2 and 4.4.1.3 and summarizes the �ndings of these sections.

Lemma 2: For given integer pin positions and heights qi, ri and hi (i = 1; 2; 3) and an

immobilizing con�guration (x0; y0; �0; �0), there exists a critical jaw separation �� such

that:

(1) for any � > ��, there exists a path allowing the object to escape the grasp,
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Figure 4.10 Critical con�gurations: (a) the critical con�guration is the minimum of
the critical sinusoid (shown as the thicker curve); (b) the critical con�guration is the
minimum intersection of the critical sinusoid and the contact sinusoid.

(2) for any � in the interval [�0; �
�], the volume V (�) is an inescapable region of con�g-

uration space,

(3) for any �0 � �00 in the interval [�0; �
�], V (�0) � V (�00), and

(4) �� can be computed in closed form as the minimum of a sinusoid or the intersection

of two sinusoids.

4.4.2 Algorithm

Lemma 2 can be used as a basis for in-hand manipulation by remarking that an object

anywhere in the ICS region associated with some gripper con�guration can be moved to

the corresponding immobilized position and orientation by closing the gripper jaws (this

follows immediately from properties (2) and (3) in Lemma 2). Thus we can plan manip-

ulation sequences from one immobilized con�guration to another by using the following

algorithm:

O�-line:

(1) Compute the set S of all immobilizing con�gurations of the object.
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(2) Construct a directed graph G whose vertices are the elements of S and whose edges

are the pairs (s; s0) of elements of S such that s belongs to the maximum ICS region

ICS(s0) associated with s0.

On-line:

(3) Given two con�gurations i and g in S, search the graph G for the shortest path going

from the initial con�guration i to the goal con�guration g.

Once a path has been found, the corresponding manipulation sequence can be exe-

cuted: starting from the con�guration i, each edge (s; s0) in the path allows us to move

the object from s to s0 by opening the jaws and retracting the pins associated with s,

then lowering the pins associated with s0 and closing the jaws.

4.4.2.1 Triples of Pins: Prototypes and Shifts

The grasp planning algorithm of Section 4.3.2 can be used to enumerate all immobiliz-

ing object/gripper con�gurations and implement Step (1). There is however a di�erence

between grasping and manipulation applications: during grasp planning, one can always

assume that the �rst pin is at the origin with zero height. Of course, when a grasp is

actually executed, the pin positions and heights, along with the jaw separation, all have

to be shifted so that the corresponding variables are all positive and the pin positions

remain within the extent of the top plate. Nonetheless, gripper con�gurations that only

di�er by a shift of the three pin positions are equivalent for grasping purposes. This is not

the case for in-hand manipulation, where the goal is to move the object held by the grip-

per across the bottom plate: this forces us to take into account all shifted con�gurations

of a grasp.

We will say that a triple of pin positions with the �rst pin located at the origin is a

prototype, and that all positions of the triple within the bottom plate are the shifts of this

prototype. For each prototype, we can de�ne the minimum rectangle aligned with the

(p; q) coordinate axes and enclosing the pins. If W and H denote the width and height

of this rectangle, and K2 is the total number of grid elements, the prototype admits
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(K �W )(K �H) di�erent shifts, which can trivially be computed in time proportional

to their number. As shown in Section 4.3.2.4, there are O(D2d2) immobilizing prototypes,

to which correspond O(D2d4K2) shifted object/gripper con�gurations. If we assume that

the manipulated object �ts completely on the gripper's bottom plate, note that we will

have d � D � K.

4.4.2.2 Constructing the Graph

Constructing the graph G requires the ability to decide whether an immobilizing

con�guration sa lies in the region ICS(sb) associated with another con�guration sb. Let

�a denote the orientation of the con�guration sa, and �
�

b denote the critical jaw separation

associated with sb. A necessary condition for sa to belong to ICS(sb) is of course that sa

belongs to the range of orientations associated with ��b .

When this necessary condition is ful�lled, let T (��b ; �a) denote the slice of ICS(sb) at

� = �a. Then sa will belong to ICS(sb) if and only if sa is inside T (��b ; �a). Note that

constructing T (��b ; �a) does not require constructing an explicit boundary representation

of ICS(sb) then intersecting it with the plane � = �a: instead, we construct the triangle

directly from the lines Li(�
�

b ; �a) as explained in Section 4.4.1.1.

Thus constructing the graph only requires the ability of computing �� and the cor-

responding range or orientations, constructing the triangles T (��; �) for discrete values

of �, and testing whether a point belongs to one of these triangles. Each one of these

computations can be done in constant time.

From Section 4.3.1.2, we know that for a given triple of pins, all immobilizing con�g-

urations of a given object will have the same orientation, independent of the pin heights.

Of course, the immobilized orientation of the object remains the same when the triple

of pins is arbitrarily shifted on the grid. Thus we can associate to each immobilizing

prototype a plane � =constant of the object's con�guration space, and all the corre-

sponding immobilizing con�gurations will lie in that plane. In other words, the vertices

of the graph G will form layers of immobilized con�gurations corresponding to as many

prototypes.
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We now give an e�cient algorithm for constructing the edges of the graph G. Let Sa

and Sb be the sets of immobilized con�gurations corresponding to the layers � = �a and

� = �b of the con�guration space. We want to �nd all pairs of con�gurations sa in Sa

and sb in Sb such that sa lies within ICS(sb) or equivalently within T (�
�

b ; �a). This can of

course be achieved by testing for each point-triangle pair whether the point belongs to the

corresponding triangle. Instead, we observe that, following Section 4.4.1.1, the triangles

T (��b ; �a) associated with all the elements of Sb are homothetic and, since � is �xed, they

also have the same orientation. This allows us to derive a more e�cient method.

Let us restate the problem: given a set of points P = fp1; p2; ::; png, and a set T =

ft1; t2; ::; tmg of homothetic triangles having the same orientation, �nd all pairs (pi; tj)

(i = 1; ::; n, j = 1; ::; m) such that the point pi is inside the triangle tj (Figure 4.11).

This type of query is common in computational geometry: for example, Chazelle gave

an optimal O(logm + r) algorithm for the related problem of �nding the subset of m

isothetic rectangles which contain a query point, where r is the number of rectangles

returned [14].

x

y

Figure 4.11 Points and triangles within the same layer.

This problem can be mapped onto another classical one through the following trans-

formation: let ui (i = 1; 2; 3) denote the inward unit normals to the edges of the triangles.

Given some choice of origin in the plane, we can associate with any point p its coordi-

nates (x1; x2; x3) along the vectors ui (Figure 4.12). Likewise, we can associate with
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each triangle t the signed distances (y1; y2; y3) between the origin and its edges along the

vectors ui. Obviously p is inside t if and only if xi � yi for i = 1; 2; 3. If we de�ne the

partial order � over IR3 by (x1; x2; x3) � (y1; y2; y3) if and only if xi � yi for i = 1; 2; 3,

we have reduced our initial problem to the problem of �nding the pairs of points p0i in P
0

and t0j in T
0 such that p0i � t0j, where P

0 and T 0 are subsets of IR3 containing respectively

n and m points. This is the problem called \3D Merge Dominance" by Preparata and

Shamos [76, pp. 357{363], who give a simple divide-and-conquer algorithm for solving

this problem in O((m + n) log(m + n) + s) time and O(m + n) space, where s is the

number of pairs found by the algorithm.

O
u1

u2

u3

x2

y2

x3

y3

y1
x1

p

t

Figure 4.12 Three-dimensional coordinates associated with a point p and a triangle t.

It is not clear whether the time complexity of this algorithm is optimal in the three-

dimensional case: indeed, the 1D Merge Dominance problem can be solved in O((m +

n) log(min(m;n)) + s) as follows: if the number m of elements of T 0 is smaller than the

number n of elements of P 0, sort the elements of T 0, then, for each p0 element of P 0, insert

this element in the sorted list, returning all the elements of t0 � p0, then delete p0 from

the sorted list. If n < m, sort P 0 instead and use the same process with the relation �.
This algorithm is more e�cient than the 3D algorithm.
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4.4.2.3 Algorithm Analysis

The cost of the algorithm is dominated by the construction of the graph. Let V

denote the number of immobilizing gripper con�gurations (or equivalently the number

of vertices of G), and let P denote the number of prototypes associated with these

con�gurations. Note that P = O(D2d2) and V = O(Pd2K2) according to the analysis

of Section 4.3.2.4. Let E denote the number of edges of G. Since each prototype yields

O(d2K2) shifted con�gurations and d � K, it follows from the analysis of the dominance

algorithm that the construction of the graph takes O(P 2d2K2 logK + V + E) time. Of

course, E = O(V 2).

4.4.3 Implementation and Results

In this section, we present extensive simulation results. Some result of the exper-

iments with the gripper prototype is presented in Section 4.6. We have implemented

the manipulation planning algorithm, including its 3D dominance part, and tested our

implementation using a 5 � 5 grid resolution. The program has been written in C, and

all run times have been measured on a SUN SPARCstation 10.

Figure 4.13 shows an example of maximum ICS region in the con�guration space

(x; y; �) for one of the immobilized con�gurations of a tetrahedron. Note that this graph-

ical representation is for display only: our algorithm does not construct an explicit bound-

ary representation of the ICS. Instead, we compute the corresponding �� value and the

associated range of orientations. Our grasp planning program �nds 208 prototypes and

33,868 shifted immobilizing con�gurations, and the corresponding ICS computation takes

13 seconds. The graphG contains 1,247,374 edges, and its construction takes 156 seconds.

Once the graph has been constructed, the search for sequences of gripper con�gura-

tions is quite e�cient: a simple breadth-�rst approach has been used in our experiments

to search the graph G, and the search time is below 1 second in all cases.

Figures 4.14 and 4.15 show two examples. In the �rst one, the program �nds a 4-step

sequence to move the object from the con�guration shown in Figure 4.14(a) to the one
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Figure 4.13 An ICS in con�guration space: (a)-(b) two views of an immobilized con�g-
uration of a tetrahedron; (c) the corresponding ICS.

shown in Figure 4.14(b). Note that, although the pin con�gurations are the same in

Figures 4.14(c) and 4.14(d), the pin lengths are actually di�erent.

(a) (b)

(c) (d)

Figure 4.14 The four steps of a manipulation for moving a tetrahedron from con�gura-
tion (a) to con�guration (d).

Figure 4.15 shows a more complicated example, where the program �nds a 72-step

sequence of gripper con�gurations to move the object from the con�guration shown in

Figure 4.15(a) to the one shown in Figure 4.15(b).
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(a) (b)

(c)

Figure 4.15 Another example: (a) initial con�guration, (b) goal con�guration, (c) se-
quence of motions.
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4.5 Toward In-Hand Manipulation with Continuous

Finger Motions

The pins of our prototype are actuated by high-resolution stepper motors, and there-

fore capable of virtually continuous motion. Taking this capability into account in the

manipulation planning may be complicated but clearly will increase the dexterity of the

gripper. In this section, we take the �rst steps toward solving this problem by introducing

the concept of ICS union (or ICSU).

For a triple of pins t = (t1; t2; t3) and an orientation �, we de�ne ICSU T�;t to be the
set of all object con�gurations (x; y; �) that are contained in a maximum ICS region for

the triple t at some pin height con�guration (h2; h3) (as before, without loss of generality,

h1 can be set to zero). Because at an orientation �, the maximum ICS of a triple of pins

t at a pin height con�guration (h2; h3) is a triangle, therefore T�;t is basically the union

of such triangles for all admissible pin height con�gurations (h2; h3).

From the de�nition above, for an object con�guration q, when q 2 T�;t, there exists
some pin con�guration (h2; h3) of the pin triple t by which the object can be immobilized.

This leads us to another way for planing a manipulation sequence. Consider ICSU T�1;t1
and T�2;t2 where �1 and �2 are the immobilizing orientations for pin triples t1 and t2

correspondingly. Let q1 2 T�1;t1 and q2 2 T�2;t2 be two con�gurations of the object.

We can bring the object from con�guration q1 to q2 using the following steps: (1) use

some pin height con�gurations of pin triple t1 to translate the object to a con�guration

in T�1;t1 \T�1;t2 , and (2) switch to pin triple t2 and appropriate pin height to change the

orientation of the object to �2, and (3) translate the object using appropriate sequence

of pin height con�guration to bring the object to q2.

We can again reduce in-hand manipulation planning to graph search. Because there

we need only one node to represent a pin triple (instead of one node per each pin height

con�guration in the discrete case), the graph in this case is much smaller than for the

discrete case, and hopefully we will have a more e�cient planner. In this section, we will
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show how to construct an approximation of the ICSU. This is the �rst step toward the

full geometric characterization of the ICSU

Following discussion is for a �xed triple of pins t. By considering h1, h2 and h3 as

variables, we can parameterize the segment Ei(�; �) as follows:

0
B@
x

y

1
CA =

0
B@

qi

ri

1
CA+ (�di(�i � hi) + ei)

0
B@

cos(� + �i)

sin(� + �i)

1
CA+ �

0
B@

cos(� + �i)

sin(� + �i)

1
CA ; (4.10)

where di and ei are appropriate constants.

When the enclosure condition is satis�ed, the line Lj(�; �) (j 6= i) intersects the

segment Ei(�; �). Substituting the parameterization of x and y in (4.10) into the equation

de�ning the line Lj(�; �) yields, after some simple algebraic manipulation

� = Aij cos(� + �ij) +Bij(� � hi) + Cij; (4.11)

where Aij; Bij and Cij are appropriate constants.

Similar to Section 4.4.1.2, we can easily show that the pair (�; ��hi) is constrained to
lie in a polygon de�ned by a set of linear inequalities in � and � � hi and any inequality

in this set can be written in one of the following forms:

1. � � ck(� � hi) + c0k,

2. � � ck(� � hi) + c0k,

3. � � hi � ck,

4. � � hi � ck,

where ck and c0k are appropriate constants.

For all inequalities of types 1 and 2, substituting � into (4.11) yields inequalities

in �; �; h2 and h3. For given values of h2 and h3, these inequalities, together with the

remaining constraints of types 3 and 4, de�ne a region in the (�; �) plane for which the

enclosure condition is satis�ed. By construction, the constraints de�ning this region can

be written in one of the following forms:
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(a) � � A0 cos(� + �ij) +B0(h2; h3),

(b) � � A0 cos(� + �ij) +B0(h2; h3),

(c) � � ck + hi,

(d) � � ck + hi,

where A0 is a constant and B0 is an appropriate linear function of h2 and h3.

Let us suppose for a moment that there is only one inequality, and that it is of type (a).

Let L denote the upper boundary curve of the region de�ned by this inequality. Recall

that the equation of the contact sinusoid E can be written as � = A cos(�+�)+B(h2; h3),

where B is a linear function of h2 and h3. As h2 and h3 change, the two curves L and

E translate in the � direction of the (�; �) plane, with an o�set linear in h2 and h3.

Subtracting B(h2; h3) from the equations de�ning E and L yields two new curves: E 0,
which is now �xed in the (�; �) plane, and L0 which can translate in the � direction as a

function of G(h2; h3) = B0(h2; h3)� B(h2; h3).

For given values of h2 and h3, we call the region above E 0 the allowable region, and

the region below L0 the valid region. (The region below E 0 is not allowable because

it corresponds to con�gurations for which the object is penetrated by the pins, and

the region above L0 is not valid, because it corresponds to con�gurations for which the

enclosure condition is violated.) There are three situations to consider, depending on the

value g = G(h2; h3) (Figure 4.16).

1. In the �rst case, shown in Figure 4.16(1), g is not su�ciently large for the minimum

of E 0 (corresponding to the immobilizing con�guration) to be contained in the valid

region. As a result, the object cannot be immobilized.

2. In the case shown in Figure 4.16(2), g is su�ciently large for the valid region

to contain the minimum of E 0. The maximum ICS is associated with the lower

intersection of the two curves, and the corresponding range of orientations is the �

interval R shown in the �gure.
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Figure 4.16 The three possible relationships between the curves E 0 and L0 (type (a)
constraints). See text for details.
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3. Finally, in the case shown in Figure 4.16(3), g is also su�ciently large for the

allowable region to contain the minimum of L0. The maximum ICS is associated

with the minimum of L0, and the corresponding range of orientations is the �

interval R shown in the �gure.

We know the range of orientations of the maximum ICS for given h2 and h3 values.

Let us now draw a diagram of this range as a function of g = G(h2; h3). We denote

by Rg = [��g; �g] the range of orientations associated with the value g. Clearly, as g

increases, L0 moves up in the (�; �) plane, and Rg monotonically expands. In particular,

RG(h2;h3) contains �g when G(h2; h3) � g (Figure 4.17). This condition de�nes a half-plane

in (h2; h3) space, and any point in this half-plane yields an immobilizing con�guration

(x; y) whose maximum ICS is not empty at � = �g.

g

�g

�

Rg

Figure 4.17 The range of orientations of the maximum ICS as a function of g.

So far, we have considered only one inequality of type (a). Of course, we must consider

all inequalities (for all possible i; j and k). Together, they de�ne a set of half-planes whose

intersection is a convex polygon P(�g) in the (h2; h3) plane. Any point in this polygon

determines an immobilizing con�guration (x; y) whose maximum ICS is not empty at

� = �g.

Note that inequalities of di�erent types yield range diagrams of di�erent shapes.

However, it is easy to verify that they all have the same range monotonicity property.
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Let us take a moment to examine a type (b) inequality. This time, we denote by L the

lower boundary of the region de�ned by this inequality. We can de�ne as before a new

curve L0 by � = A0 cos(� + �ij) + G(h2; h3), where G(h2; h3) = B0(h2; h3) � B(h2; h3).

This curve translates in the � direction as a function of G(h2; h3). This time, however,

the valid region is above L0.
Now, let us show how to draw the diagram of the range of orientations of the maximum

ICS in this case (Figure 4.18). At g = g�1 (Figure 4.18(1)), the valid region does not

include the minimum of the contact sinusoid, and the object cannot be immobilized. As a

result, the range of orientations is empty. As g decreases to g0, as shown in Figure 4.18(2),

both curves intersect at the minimum of the contact sinusoid. That is, the maximum

ICS contains only the immobilizing con�guration, and the range of orientations contains

only the immobilizing orientation �0. As g continues decreasing, the lower intersection

of both curves moves up, and the range of orientations expands. As shown in Figures

4.18(3) and 4.18(4), the range is equal to R1 when g = g1 and to R2 when g = g2. For

g < g2, the curves do not intersect, and the entire allowable region is contained in the

valid region. In other words, the allowable region becomes the maximum ICS, and all

orientations are valid. The diagram shown in Figure 4.19 summarizes this construction,

and we can use this diagram to obtain another linear constraint on h2 and h3 for a given

value of �g.

Let us go back to the polygon P(�g) again. Remember that a pair (h2; h3) in this

polygon determines an immobilizing con�guration (x; y) such that the triangular section

of the associated maximum ICS by the � = �g plane is not empty.

Suppose �� is the value of � associated with the maximum ICS. As we decrease the

value of � from �, at some point, the ICS triangle in the plane � = �g will shrink to

a point. This point is contained in the original ICS triangle (when � = ��) and it

corresponds to a con�guration where the three pins are simultaneously in contact with

the object, and the object is lying at the orientation �g (of course, the object is not

immobilized unless �g = �0). Similar to Section 4.3.2.3 (actually, in the reverse direction),

we can compute the position (x; y) associated with this con�guration by applying an a�ne
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Figure 4.18 The curves E 0 and L0 for di�erent values of g (type (b) constraints).
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Figure 4.19 The diagram of the range of orientations of maximum ICS with respect to
g.

transform to (h2; h3). Therefore, we can apply the transform to map P(�g) in the (h2; h3)
space to a polygon Pxy(�g) in the plane � = �g of the object con�guration space. Also,

from the construction, it is clear that Pxy(�g) � T�g ;t. We can thus construct a simple

approximation of the ICSU. Interestingly, in many cases, Pxy(�g) = T�g ;t.
We have not implemented any manipulation planning algorithm based on this ap-

proximation. The main objective of this section is to illustrate an interesting extension

of ICS to problems with higher continuous degrees of freedom.

4.6 Experiments with the Prototype

Using the algorithms presented in previous sections, we present here experiments with

the gripper prototype. For the experiments given here, it takes 3 seconds to compute all

grasps, and 147 seconds to construct the graph for manipulation planning.
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4.6.1 Friction

All contacts must be kept as close to frictionless as possible. Strands of metal beads

are used to lessen the frictional resistance between the bottom plate and the object. The

friction between the pin tips and the object also need to be considered, and we smoothed

the surface of the pin tips. This is important because jamming may cause the pins to

bend instead of letting the object reach the desired con�guration.

4.6.2 Gripper Calibration

To correctly operate, the gripper requires calibration. The calibration has two parts.

First, we need to calibrate the large actuator that controls the height of the plate. This

is currently performed by manually measuring the actual height of the plate, and passing

this parameter to the computer that will command the actuator to a prespeci�ed home

position. Once the plate is at the correct home position, we continue with the second part

of the calibration. We place a level metal board under the top plate, and keep actuating

all the small motors that control the pins until the tips hit the board. Clearly, the height

of all pins are now equal at a known value, so we can then send a command to actuate

all pins to a desired home position. Note that the actuating power for the calibration of

the small actuators must be su�ciently low so that the actuators are not damaged when

the pins are stopped when they hit the metal plate while the actuators are still active.

4.6.3 Grasping

In our experiments, a regular tetrahedron is used as a test object. Figure 4.20 and 4.21

show two grasps of this object. The desired con�guration viewed from the top is shown

in Figure 4.20(a) and 4.21(a). This target con�guration is also marked on the lower plate

to help verify the successful execution of the task. In Figure 4.20(b) and 4.21(b), the

tetrahedron is placed in some arbitrary con�guration in the vicinity of the target. When

the corresponding grasping operation is executed, we can see that the tetrahedron is

moved to and immobilized at the target con�guration (Figure 4.20(c) and 4.21(c)). Now
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we command the gripper to lift the top plate to the height associated with the maximum

ICS of the grasp. We can verify that the tetrahedron is inescapable by trying to move

it out of the capture. In this two example, we cannot take the tetrahedron out of the

capture without bending the pins. Figure 4.20(d) and 4.21(d) show the most clockwise

orientation in the capture, and Figure 4.20(e) and 4.21(e) show the most counterclockwise

orientation in the capture. Trying to lower the top plate to the immobilizing height again

from these extreme con�gurations, the tetrahedron again is immobilized exactly at the

target con�guration (Figure 4.20(f) and 4.21(f)).

4.6.4 In-Hand Manipulation

The �rst demonstration is a short manipulation sequence. See Figure 4.22. This

manipulation has three steps and basically rotates the tetrahedron clockwise about 30

degrees. The targets for the three steps are marked on the board as shown in Figure

4.22(a). First, we place the tetrahedron in some con�guration close to the target mark

of the �rst step (Figure 4.22(b)) and execute the manipulation sequence. We can see

that for each step in the sequence, the tetrahedron is successfully moved to the desired

con�guration (Figure 4.22(c)-(e)).

The second demonstration shows a longer manipulation sequence. This sequence

contains 39 manipulation steps. All steps are shown in Figure 4.23(a). In the illustration

shown in Figure 4.24, the lower plate are marked with initial, �nal, and three intermediate

con�gurations (Figure 4.23(b)). Again, as shown in Figure 4.24(c)-(e), the tetrahedron

successfully reaches the �nal con�guration when the manipulation sequence is executed.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.20 A grasp.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.21 Another grasp.

77



(a) (b)

(c) (d)

(e)

Figure 4.22 A short manipulation sequence.
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(a)

(b)

Figure 4.23 Steps in a manipulation.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.24 Another manipulation sequence.
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4.7 Conclusions

We have presented a new recon�gurable gripper. As part of this thesis work, we have

also completed the construction of a prototype of this gripper. We proposed to use this

gripper to immobilize and manipulate polyhedral objects. We have studied the geometry

of these tasks in con�guration space, presented e�cient grasp and in-hand manipulation

planning algorithms, and reported the results from both simulation and experiments with

the prototype.

Besides the gripper design and construction, the main contribution of this chapter

is the concept of ICS (inescapable con�guration space) region which we will use as a

framework for object manipulation. In this chapter, we have applied this concept to a

manipulation problem with one continuous degree of freedom. In the next chapter, we

will show an application of this concept in a manipulation problem with two degrees of

freedom.
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CHAPTER 5

MOBILE ROBOTS

5.1 Introduction

In this chapter, we apply the concept of ICS presented in Chapter 4 to another

problem. We address the problem of manipulating a planar polygonal object with three

disc-shaped robots capable of arbitrary straight line and circular arc motions in the plane.

In practice, the discs may be the �ngertips of a robot hand or mobile platforms.

We propose an algorithm for grasping the object and bringing it to a desired position

and orientation through sequences of atomic motions of each robot. This algorithm

guarantees that the object will never escape from the robots' grasp, even when contact

is broken during the initial grasping phase or the subsequent manipulation stage. It does

not require synchronizing the motion of the discs, and only assumes that each one of

them can be moved in turn to follow a given straight line or circular arc.

The proposed approach is based on a detailed analysis of the geometry of the joint

object/robot con�guration space which is along the line of the ICS concept presented

in Chapter 4 [95] . Instead of trying to predict the exact motion of the object, we

characterize the range of possible motions associated with each position of the robots and

identify the \minimal" robot con�gurations for which the object is totally immobilized

as well as the \maximal" ones for which there is a non-empty open set of object motions

within the grasp, but no escape path to in�nity.
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A simulation-based implementation of this general approach was �rst applied in [93]

to the case where the three robots are only allowed to move along straight lines with �xed

directions. In this case, individual robot motions have only one degree of freedom, and

planning amounts to determining the maximum extent of the translation of each robot

along the associated line segment. The new technique proposed in this chapter allows the

robots to move in the plane with two degrees of freedom. In turn, this simpli�es planning

and allows us to construct complex motion plans from many fewer elementary steps. The

proposed approach is validated by simulation examples and preliminary experiments with

Nomadic Scout robots (Section 5.5).

5.1.1 Related Work

In [93], we showed that ICS regions can be used to manipulate an object by pushing it

with three disc-shaped robots moving along straight lines with �xed directions: starting

from some immobilizing con�guration, we move the robots one at a time in the direction

associated with the lead robot, then choose another direction etc.. to achieve the desired

translation and/or rotation. The object remains at all times in the ICS region associated

with the discs, and the planned manipulation is guaranteed to succeed as long as the

friction forces associated with contacts between the robots, the object and its supporting

plane are not large enough to cause jamming. In particular, unlike other approaches to

manipulation planning (e.g., [1, 26, 33, 49, 55, 67]), this approach does not require that

�nger/object contact be maintained during grasping or manipulation, nor does it rely on

any particular model of friction or contact dynamics.

A limitation of the method presented in [93] (and the related grasp planning tech-

niques of [20, 80]) is that the individual robot motions only have one degree of freedom:

each robot can only translate along a straight line with a �xed direction. This severely

limits the extent of the translation and forces any complex motion to be decomposed

into a large number of atomic elements. The new approach presented in this chapter

addresses this di�culty by allowing the robots to move within two-dimensional regions
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of the plane. This allows us to construct much larger atomic motions and simpli�es

planning.

5.2 1-DOF ICS Regions

We apply in this section the concept of an inescapable con�guration space region.

The analysis proceeds along the lines of Chapter 4 [94] by identifying the constraints

imposed by the robots in the con�guration space of the polygon. The general approach

is the same as in [94] but the setting and the corresponding constraints are of course

di�erent.

5.2.1 Contact

We reduce the problem of achieving contact between a disc and a line to the problem

of achieving point contact with a line. This is done without loss of generality by growing

the object to be grasped by the disc radius and shrinking each disc into its center.

We attach a coordinate system (u; v) to the polygon, and write in this coordinate

system the equations of the line supporting the edge ei (i = 1; 2; 3) as u cos�i+v sin�i�
di = 0, where �i is the angle between the u axis and the internal normal ni to the edge,

and di is the distance between the origin of the (u; v) coordinate system and the edge.

Without loss of generality, we also de�ne a world coordinate system (q; r) such that

the r axis is parallel to the motion direction v and goes through the center of the �rst

(moving) disc. We denote by qi = (qi; ri)
T the position of the center of disc number i in

this coordinate system. In particular, q1 = 0 and r1 = �.

We can write the condition for contact between disc number i and the corresponding

line as

qi = Rpi + t; (5.1)

where pi = (ui; vi)
T and qi = (qi; ri)

T denote the positions of the contact point in the two

coordinate systems, R is a rotation matrix of angle � and t = (x; y)T is the translation
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between the two coordinate frames. Let ci = cos(� + �i) and si = sin(� + �i), the above

equation can be rewritten as

(x� qi)ci + (y � ri)si + di = 0; (5.2)

When the three contacts are achieved simultaneously, we have

0
BBB@

c1 s1 �s1 � d1

c2 s2 q2c2 + r2s2 � d2

c3 s3 q3c3 + r3s3 � d3

1
CCCA

0
BBB@

x

y

�1

1
CCCA = 0:

For this equation to be satis�ed, the determinant of the 3� 3 matrix must be zero,

which yields (after some simple algebraic manipulation):

� sin(� + �1) + A2 cos(� + �2) + A3 cos(� + �3)� B = 0; (5.3)

where �2; �3 and A2; A3; B are appropriate constants.

This condition de�nes a curve in �; � space, called the contact curve. This curve

is de�ned on the [0; 2�] interval, but an actual contact between the �rst disc and the

corresponding edge can only occur when the angle between v and the internal normal to

the edge is obtuse, i.e., when � + �i 2 [�; 2�]. It follows from the form of its equation

that the contact curve is in fact bounded by two vertical asymptotes on that interval.

5.2.2 Equilibrium

At equilibrium, the various forces and moments exerted at the contacts balance each

other. This can be written in the object's coordinate system as

3X
i=1

�i

0
@ ni

pi � ni

1
A = 0; where

8><
>:

�1; �2; �3 > 0;

�1 + �2 + �3 = 1:

Using the change of coordinates (5.1) and taking advantage of the fact that
P3

i=1 �ini =

0 allows us to rewrite this equation as

3X
i=1

�i

0
@ ni

(R�1qi)� ni

1
A = 0;
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which can be interpreted as a 3�3 homogeneous equation in the coe�cients �1; �2; �3. A

necessary and su�cient condition for this equation to have a non-trivial solution is that

its determinant be zero, i.e.,

n1 n2 n3

(R�1q1)� n1 (R�1q2)� n2 (R�1q3)� n3

= 0:

Expanding the determinant yields, after some additional algebraic manipulation, the

condition

� cos(� + �1)� A2 sin(� + �2)� A3 sin(� + �3) = 0;

and eliminating � between this equation and the contact constraint (5.3) yields an equa-

tion in � only:

cos(� + �1) =
A2

B
cos(�2 � �1) +

A3

B
cos(�3 � �1): (5.4)

There are (at most) two solutions for this equation in the [0; 2�] interval. When they

exist, exactly one of them is in the interval of physically achievable contacts. It is also

easy to show that the corresponding solution is a minimum of the contact curve. As in

[94], this minimum corresponds to an immobilizing con�guration [81].1

Figure 5.1 shows an actual example in the object's and disc's coordinate frames. The

triangle has to rotate 60 degrees counterclockwise to be immobilized by the matching

discs (Fig. 5.1(c)). This is veri�ed on the contact curve shown in Fig. 5.1(e) where the

minimum occurs at 60 degrees in the physically realizable interval. The maximum of the

curve corresponds to the con�guration shown in Fig. 5.1(d), and it cannot be achieved

in reality: the �rst disc would have to lie inside the triangle.

1The object will be immobilized even if there is no friction: although this appears to contradict
classical screw theory, which states that three �ngers are not su�cient to immobilize a two-dimensional
object in that case [43], recall that screw theory is concerned with in�nitesimal motions: there exists an
escape velocity but no �nite escape motion. See [81] for details.

86



(b)

1

2 3
q

r

(a)

u

v

1

3

2

(d)

2 3
q

r

23

1 1

3

1

2

(c)

2 3
q

r

1

1 2 3 4 5 6

-15

-10

-5

5

10

15

Figure 5.1 A grasp and the corresponding contact curve.
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5.2.3 Free Con�guration Space Regions

Let us consider an immobilizing con�guration of the robots, and denote by x0; y0; �0; �0

the corresponding values of x; y; �; �. Let us also assume that the positions of robots 2

and 3 are held constant while the � coordinate of the �rst robot may change.

We denote by Si the set of object con�gurations (x; y; �) for which contact between

disc number i and the corresponding object edge is achieved. From (5.2), this is a ruled

surface in (x; y; �) space, whose intersection with a plane � = constant is a line Li(�) at

distance �di from the �xed point (qi; ri) of the x; y plane, and the angle between the x

axis and the normal to this line is � + �i. Changing � corresponds to rotating each line

about the point (qi; ri). Changing � amounts to translating the line L1(�).

Together, the three ruled surfaces S1, S2 and S3 bound a volume V of free con�gura-

tion space. Given the setup of the robots, it is obvious that if a con�guration lies in free

space for some value �1 of �, it also lies in free space for any other value �2 � �1. In other

words, V (�1) � V (�2) when �2 � �1, and it follows that the immobilizing con�guration

(x0; y0; �0) is always in free space for � � �0.

In addition, the intersection of V with a plane � = constant is a triangle T (�) that

may contain an open subset, be reduced to a point, or be empty. In the second case, the

three contacts are simultaneously achieved, and (5.3) is satis�ed.

It is easy to show that a necessary and su�cient condition for the triangle T (�) to

contain at least one point is that the point (�; �) be above the contact curve. This allows

us to characterize qualitatively the range of orientations � for which T (�) is not empty:

for a given �, the condition (5.3) is an equation in � that may have zero, one, or two

real solutions, with a double root at the minimum � = �0 of the curve. In this case,

the range of orientations reduces to a single point. For any value �1 > �0, there are two

distinct roots �0; �00, and the range of orientations is the arc bounded by these roots and

containing �0.

In particular, since the volume V is a stack of contiguous triangles T (�), it is clear at

this point that, for � � �0, V is a non-empty, connected, compact region of IR2�S1. The

88



analysis con�rms that the minimum point (�0; �0) of the contact curve corresponds to

an isolated point of con�guration space or equivalently to an immobilizing con�guration:

indeed, for � = �0, the triangle T (�0) is reduced to a point, and T (�) is empty for any

� 6= �0.

5.2.4 ICS Regions

The discussion so far has characterized the contacts between the discs and the lines

supporting the corresponding edges, ignoring the fact that each edge is a compact line

segment. For a given value of �, let us construct a parameterization of the set Ei(�) of

con�gurations (x; y) for which disc number i touches the edge ei. Obviously, Ei(�) is

itself a line segment supported by the line Li(�).

We �rst parameterize the corresponding edge ei by

0
@ui
vi

1
A = di

0
@ cos�i

sin�i

1
A+ �i

0
@� sin�i

cos�i

1
A ;

with �i in some interval [�i1; �i2]. The segment Ei(�) can now be parameterized by

0
@x� qi

y � ri

1
A = �di

0
@ ci
si

1
A� �i

0
@�si

ci

1
A : (5.5)

The constraints �i1 � � � �i2 (i = 1; 2; 3) de�ne the regions of con�guration space

where actual contact will occur. When Ei(�) and Ej(�) intersect for all i 6= j, the three

segments completely enclose the triangle T (�), and we will say that the corresponding

con�guration satis�es the enclosure condition since there is no escape path for the object

in the x; y plane with the corresponding orientation �. More generally, when all triples

of segments in the range of orientations associated with a given � satisfy the enclosure

condition, V itself is an inescapable con�guration space (ICS) region: in other words, the

object is free to move within the region V , but remains imprisoned by the grasp and

cannot escape to in�nity.
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5.2.5 Maximum ICS Regions

We now address the problem of characterizing the maximum value �� for which V (�)

forms an ICS region for any � in the [�0; �
�] interval. We know that at � = �0 the three

segments intersect at the immobilizing con�guration, forming an ICS region reduced to

a single point. Thus the enclosure condition holds at � = �0. On the other hand, as

� ! +1, the whole con�guration space becomes free of obstacles, thus there must exist

a critical point for some minimal value of � greater than �0. This guarantees that �
� has

a �nite value.

A critical con�guration occurs when an endpoint of the segment Ei(�) lies on the line

Lj(�), j 6= i. We intersect the lines Li(�) and Lj(�) by substituting the parameterization

(5.5) in the contact equation (5.2). Writing �i = �ik (k = 1; 2) yields

�ik = �dj � di cos(�i � �j) + (qi � qj)cj + (ri � rj)sj
sin(�i � �j)

: (5.6)

It follows that critical points lie on one of the six critical curves of (�; �) space de�ned

by (5.6) for i; j 2 f1; 2; 3g (i 6= j) and k = 1; 2. Note that when i; j 2 f2; 3g, (5.6) is a
function of � only, and the corresponding critical curves are vertical.

We seek the minimum value of �� > �0 for which the range of possible object orien-

tations de�ned by the contact curve includes one of the critical con�gurations. Let us

suppose �rst that a critical value lies in the interior of the orientation range associated

with some �1 � �0, and denote by �min the minimum value of � on the critical curve.

By de�nition, we have �1 � �min. Suppose that �1 > �min. Then by continuity, there

exists some �2 such that �min < �2 < �1 and the corresponding range of orientations also

contains a critical orientation. The argument holds for any value � > �min. In other

words, either the range of orientations of �min contains a critical orientation, in which

case �� = �min, or it does not, in which case the critical value associated with �� must

be one of its range's endpoints. This is checked by intersecting the contact curve and

the critical curve. Note that this process must be repeated six times (once per each

segment/vertex pair) to select the minimum value of ��.
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Figure 5.2 The contact and critical curves for a sample object. The critical range of
orientations is shown as a horizontal line. See text for details.

Figure 5.2 shows an example, where the contact and critical curves have been con-

structed for some sample object (the contact curve is drawn with a thicker brush). In

this case, the minimum of the critical curve occurs just below the contact curve, and the

critical con�guration is the intersection of the two curves, lying at the right endpoint of

the corresponding range of orientations.

Computing the minimum of the critical curve amounts to solving a trigonometric

equation. It is easily shown that intersecting the critical curve and the intersection curve

amounts to solving a quadratic equation in tan(�=2) when i = 2; 3 and j = 1, and a

quartic equation in the same variable when i = 1, j = 2; 3. The intersection can be

computed in closed form in both cases.

5.3 2-DOF ICS Regions

We have characterized the range of translations of the robot R1 along some �xed

direction v that ensures that the polygon grasped by the three robots is unable to escape.

Naturally, the next step is to characterize the two-degrees-of-freedom (2-dof) motions of

R1 that will achieve the same e�ect (Figure 5.3).
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a b

c
d I

Figure 5.3 Can we construct a two-dimensional region I where the �rst robot can roam
while still preventing the object to escape?

a

b

c

d
n1

E1

L3

L2

Figure 5.4 The e�ect of moving R1 from c to d on the con�guration space picture.

Characterizing the set of these motions exactly requires a complex analysis in a gen-

eralized �ve-dimensional (polygon position and orientation (x; y; �) plus robot position

(q1; r1)) con�guration space. Instead, we address here the simpler problem of using the

maximum ICS regions computed in the previous section to construct a conservative ap-

proximation I of this set.

Let us denote by a, b and c the positions of the three robots corresponding to some

maximum ICS con�guration, and let us move the robot R1 from c to a new position

d closer to the associated edge E1 of the polygon under consideration. As shown by

Figures 4.7 and 5.4, this corresponds to translating the line L1(�) parallel to itself, and

the corresponding triangle of free con�guration space will shrink accordingly.
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Figure 5.5 De�ning a 2-dof ICS region. The edge E1 is drawn in a thicker pen.

In particular, placing the three robots in a, b and d will determine an ICS region

as long as the endpoints of the edge E1(�) do not cross the lines L2(�) and L3(�). The

following lemma characterizes a set of points d for which this never happens.

Lemma 1 Let I denote the open triangle bounded by the three lines supporting E1 when

it is immobilized, when it is in its most clockwise orientation, and when it is in its most

counterclockwise orientation (Figure 5.5). When the angle 
 between the edges of the

triangle I adjacent to c is obtuse, there is no position d of the robot R1 in I for which

the polygon can escape the robots' grasp.

Proof: As remarked earlier, it is su�cient to show that, for any point d in I, the
endpoints of the line segment E1(�) can never cross the lines L2(�) and L3(�).

Indeed, such a crossing would correspond to an intersection of the contact curve with

one of the two critical curves associated with the endpoints of E1 and the two lines L2(�)

and L3(�) in con�guration space. As shown in [93], for �xed positions of the robots R2

and R3 these critical curves can be described by equations of the form Ci(p; �) = �i

(i = 2; 3), where p denotes the position of R1, and �i is a constant.

In addition, it is easy to show that

Ci(d; �)� Ci(c; �) = K[(d� c) � n1(�)];
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Figure 5.6 When the angle 
 is obtuse, the angle between the vector d � c and any
normal n1 in the sector S is acute.

where n1(�) denotes the (internal) unit normal to the edge E1 when the polygon itself

is at orientation �, and K is a positive constant. As shown in the previous section and

[93], the critical curve only intersects the contact curve for � > 0. It follows easily that

Ci(c; �)� �i � 0 for i = 2; 3.

Let us now denote by n0

1 and n
00

1 the internal normals to the edge E1 at its extreme

counterclockwise and clockwsise orientations when R1 is at c. By de�nition of the triangle

I, we have (d� c) � n0

1 > 0 and (d� c) �n00

1 > 0 for any point d in this triangle.

The possible orientations of the normal n1 to the edge E1 lie in the sector S bounded

(clockwise) by n00

1 and (counterclockwise) by n00

1 (Figure 5.6). When the angle 
 between

the edges of I adjacent to c is obtuse, the angle between the vectors n0

1 and n
00

1 is acute,

and it follows that (d� c) �n1 > 0 for any vector n1 in S.

In particular, we have, for any orientation of the object in its maximum ICS region:

Ci(d; �)� �i > Ci(c; �)� �i � 0:

In particular, the critical curve and the contact curve associated with d do not inter-

sect for any con�guration of the polygon in the ICS region associated with the position

c of R1, and the lemma follows immediately. 2

It is of course a priori possible that the angle 
 be acute. Note, however, that 


tends toward � as �� tends toward 0. Therefore, even if the angle 
 associated with the

maximum value �� is acute, we can construct a smaller value of �� corresponding to an

obtuse angle using a few bisection steps.
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5.4 Manipulation Planning

In this section, we will assume that an immobilizing grasp has been selected and that

the initial object position and orientation are known, and we will show how to actually

execute the grasp and then manipulate the polygon, moving the three robots one at a

time while guaranteeing that the object will not escape.

First, we follow the strategy proposed in [93] to execute the grasps: if a, b and c

denote the immobilizing positions of R1, R2 and R3, we move the robots one by one from

their home position to a+ 1
2
��v, b� 1

2
��v and c� 1

2
��v. The polygon is now guaranteed

to be in the maximum ICS region associated with the robots. We then translate the �rst

robot by ���v.
Although the object may (and indeed will) move when contact occurs, it will end up in

the planned immobilized con�guration. Note that this approach is robust to uncertainty

in the position of the object, but that it requires precise relative motions of the robots.

In the next two sections, we show how to achieve arbitrary translations and rotations

of the object once it has been grasped. The overall motion will be decomposed into

atomic motions of the three �ngers along appropriate trajectories. The object will remain

imprisoned in the grasp of the three robots during each motion.

5.4.1 Rotating a Polygon

Once the object has been grasped, we construct the triangle I, knowing that the �rst
robot can follow any trajectory inside I without letting the polygon escape. In particular,
let us consider a circular arc pp0 inscribed in the region I (Figure 5.7). This arc joins

the points p and p0 in I with center in a and angle �.

We can move R1 to p while staying in the triangle I since I is convex. Now consider

the following two motions:

1. Move R1 from p to p0 along the arc pp0, keeping R2 and R3 in their nominal

positions a and b (Figure 5.8(a)).
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Figure 5.7 A circular arc centered in a and contained in I.

2. Move R2 from b to a new point b0 along a circular arc centered in a and spanning

an angle �, keeping R1 and R2 at p and a (Figure 5.8(b)).
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Figure 5.8 Two equivalent rotations.

It is easy to see that the triangles formed by the three robots during both motions

only di�er by a rotation. By de�nition of region I, the object cannot escape during

motion 1. This property is of course not changed by rotating the triangle formed by the

robots, and we can conclude that the object is also imprisoned by their grasp during

motion 2.

We can use motion 2 to construct a simple rotation plan. Using the same setup,

consider the steps illustrated in Figure 5.4.1.

1. Apply to R1 a translation from c to p (Figure 5.4.1(b)).
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(a) (b) (c) (d)

Figure 5.9 Rotation steps.

2. Move R3 along the circular arc bb
0 (Figure 5.4.1(c)).

3. Apply toR1 a second translation back to the immobilizing position (Figure 5.4.1(d)).

We can see that the object is rotated with angle � counterclockwise from the starting

immobilizing con�guration. Further, at no point during the entire motion is the object

able to escape the robots' grasp. Clockwise rotations are achieved by swapping the roles

of the robots R2 and R3.

5.4.2 Translating a Polygon

Pure translations are easily decomposed into elementary rotations: let �0 and �00

be the maximum counterclockwise and clockwise rotation angles associated with the

maximum ICS region, and let �0 denote the minimum of these two angles. Applying a

counterclockwise rotation of angle � � �0 about the second robot followed by a clockwise

rotation of angle � about the third robot will result in a pure translation v0 (Figure

5.4.2(left)). Reversing the two rotation steps will result in a pure translation v00 (Figure

5.4.2(right)).

θ θ

θθ

L L

v’’

b

b’ a’’ b’’

a ba

a’

v’’v’ v’

u

Figure 5.10 A pure translation can be decomposed into two opposite rotation steps.

If L denotes the distance between the original positions a and b of the two robots,

and u denotes the counterclockwise normal vector to the line joining a to b, it is easy to
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show that the translation vectors v0 and v00 have the same norm 2L sin �
2
, and that the

angle between u and these two vectors is �
2
.

In particular any translation of norm smaller than 2L sin �0
2
along the vector u can

be achieved in four elementary rotation steps.

So far, we have shown how to translate the polygon in a range of directions centered

on u. We can translate the polygon in arbitrary directions using plans computed for

three directions only by switching the roles of the discs and alternating between the

three directions. If the chosen directions positively span the plane, it is easy to see that

we can arrange a sequence of translations to bring the polygon to any position. One

simple choice for these directions is the outward normals at the contacts.

5.5 Implementation and Results

We have implemented the algorithm for planning manipulation sequences described

in the previous section. Figure 5.11(top) shows the elementary steps involved in a coun-

terclockwise rotation of an equilateral triangle manipulated by three robots, and Figure

5.11(bottom) shows similar steps for a clockwise rotation.

Figure 5.11 Counterclockwise (top) and clockwise (bottom) rotation steps.

More complicated motions can be decomposed into elementary rotation and transla-

tion steps. In particular, Figure 5.12 shows intermediate immobilizing con�gurations in

two manipulation sequences that bring the triangle from some initial con�guration to a
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�nal one. The triangle is �rst rotated to the desired orientation, and then translated to

the desired position.

(a) (b)

Figure 5.12 Manipulation sequences.

Figure 5.13 shows another example where a simple potential-�eld method [42] has

been used to plan a motion avoiding polygonal obstacles. At each step, virtual attractive

and repulsive forces acting on the object are computed to determine the next free-space

con�guration of the object. To move the object from the current con�guration to the

next one, a local plan composed of elementary translation and rotation steps is computed.

If the local plan is collision free, it is used, otherwise a new candidate con�guration is

generated and the corresponding local plan is computed. The process is iterated until a

collision-free global plan is found.

We have also tested the execution of manipulation plans generated by the algorithm

in a real environment. We conduct the experiment with a group of three Scout Nomadic

robots. Scout Nomatic robot is a circular-shaped mobile robot with two active wheels.

The velocity of each wheel can be independently controled, so the robot can be com-

manded to trace any circular arc trajectory or to rotate in-place which is important for

the execution of the plans. The diameter of the robot is about 62 centimeters. The

test object is an equiliteral triangle attached with three passive wheels to reduce the

e�ect of friction with the 
oor. Each side of the triangle is 125 centemeters long. Figure

5.14 shows a grasping and rotating experiment. The robots move from their home posi-

tions (Figure 5.14(a)) to the positions corresponding to the maximum ICS region (Figure

5.14(d). The object is placed in the capture in an arbitrary position (Figure 5.14(e)) and
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Figure 5.13 Obstacle avoidance.

a grasp is executed (Figure 5.14(f)). The object is placed in another random position

in the capture and the grasp is tested again (Figure 5.14(h)). In both trials, the object

successfully reaches the desired position with very small positioning error. In Figure

5.14(i)-(l), the rotation step is executed. Again, the object successfully reaches the tar-

get. In Figure 5.15(a)-(p), we show snapshots of the translation which is composed of

four rotation steps.

We have also experimented with a longer plan that is generated for obstacle avoid-

ance. Figure 5.16 shows snapshot of the intemediate immobilizing con�guration during

the execution of the plan. This plan has 85 steps and requires the object to move about 5

meters. The object reaches the target with position error about 3 centimeters. The error

is mainly caused by a small jamming towards the end of the execution. Note that it is im-

portant to keep fricion at all contact surfaces to be su�ciently low because the execution

is performed without any sensor feedback and it is impossible to recover from losing the

information about the con�guration of the robots. The video clips of all the experiments

may be found at http://www-cvr.ai.uiuc.edu/ponce grp/research/ics.html.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.14 Grasping and rotating experiments.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p)

Figure 5.15 Translation experiment.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.16 An experiment with a longer plan.
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5.6 Discussion and Conclusions

We studied the problem of manipulating a planar polygonal object with three disc-

shaped robots capable of straight line and circular arc motion in the plane. We have

presented an algorithm for grasping the object and bringing it to a desired position

and orientations through sequences of atomic robot motions. The presented method

is based on the ICS concept (Chapter 4) which is the characterization of the range of

possible object motions when two of the robots are �xed and one is allowed to move in

the plane with two degrees of freedom. This technique does not assume that contact

is maintained during the execution of the grasping/manipulation task, nor does it rely

on detailed models of friction or contact dynamics, but it allows the construction of

manipulation plans guaranteed to succeed under the weaker assumption that jamming

does not occur during the task execution. Besides the manipulation task of our custom-

designed recon�gurable gripper, we have shown that the ICS region concept can be

applied to a more general manipulation problem.

Exact computation of ICS regions may be complicated for problems with many de-

grees of freedom. In Section 5.2, a 1-DOF ICS region is exactly derived following the

method presented for the recon�gurable gripper in Chapter 4. Although the maximal

1-DOF ICS region can be computed exactly, the range of motion of the robots is severely

limited which results in planning complexity [93]. This shortcoming is the motivation

to considering problems with higher degree of freedom. We presented in Section 5.3

an extension from 1-DOF to 2-DOF case that provides a su�cient (but not necessary)

condition for the 2-DOF ICS region. Although the 2-DOF ICS region is not computed

exactly as in the 1-DOF case, an additional degree of freedom signi�cantly improves the

range of possible motions of the robots which, in turn, allows simpler planning.

For the planning method with the 2-DOF ICS region presented in this chapter, we

allow only one robot to move at a time. It is desirable to have an ICS region with higher

degrees of freedom so the circular arc trajectory constraint can be dropped and the three

robot can move simultaneously. It is interesting to try to extend the su�cient condition
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of the 2-DOF ICS region presented here to handle more degrees of freedom. Such attempt

may be very di�cult because the condition for the 2-DOF ICS region is closely based

on the computation of the 1-DOF ICS region. Instead, we will attack this problem by

directly reformulating su�cient conditions for ICS regions with higher degrees of freedom.

This approach will be presented in detail in the next chapter.
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CHAPTER 6

MOTION PLANNING

6.1 Introduction

This chapter focuses on the problem of using three disc-shaped robots to manipulate

a polygonal object in the plane in the presence of obstacles. The proposed approach is

based on the concept of 6-DOF ICS region. We characterize the maximal discs (dubbed

maximum independent capture discs, or MICaDs for short) where the robots can move

independently while guaranteeing that the object cannot escape their grasp.

We show that, in the absence of obstacles, there is a neighborhood U of any object

con�guration such that any other con�guration in U can be reached using robot motions

con�ned to the associated MICaDs (a property akin to local controllability). This is

the basis for an approach to manipulation planning where a nominal path is followed by

the three robots by dividing it into maximal segments whose endpoints have overlapping

MICaDs.

This approach is extended to manipulation planning in the presence of obstacles by

devising an e�cient test for collisions between the obstacles and the envelope of all object

con�gurations compatible with a given triple of MICaDs.

The proposed algorithm is guaranteed to generate a plan if there exists a path for the

object grown by the diameter of the robots plus some positive number ". In addition,

it does not assume that contact is maintained during the execution of the manipulation

task, nor does it rely on detailed (and a priori unveri�able) models of friction or contact
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dynamics, but it allows the construction of manipulation plans guaranteed to succeed

under the weaker assumption that jamming does not occur during the task execution.

6.2 Maximum Independent Capture Discs

We will assume from now on that point robots manipulate a polygonal object (this

amounts to shrinking each disc-shaped robot to its center and growing the polygon by

the robot radius). We will denote by qi = (qi; ri) (i = 1; 2; 3) the positions of the robots

B1; B2 and B3. Also, p = (x; y; �) will denote a con�guration of the movable polygonal

object B, E1, E2 and E3 will denote the three edges under consideration, and Ei(�)

(i = 1; 2; 3) will denote the set of con�gurations (x; y) for which the robot Bi touches the

edge Ei when the polygon B is at orientation �.

As mentioned in Section 5.2.4, the robots capture the polygon when the segments

Ei(�) (i = 1; 2; 3) enclose a triangle for all possible orientations of the polygon (we say

that the enclosure condition is satis�ed, Fig. 6.1(a)).

(a)

(q1,r1)

(q2,r2)(q3,r3)
Free
Space

(b)

(q1,r1)

(q2,r2)(q3,r3)

(c)

(q1,r1)

(q2,r2)(q3,r3)

Figure 6.1 Enclosure condition in con�guration space: (a) three segments enclosing a
triangle; (b) a critical con�guration; (c) an opened triangle and an escape path.

Starting from a con�guration where the enclosure condition is satis�ed, the robots will

form an inescapable cage as long as this condition remains satis�ed. When it is violated,

there must exist some value of the orientation � at which the segments Ei(�) no longer

enclose a triangle (Fig. 6.1(c)), allowing the polygon to escape through the opening.

Because of the continuity of the motion of the segments Ei(�), there must exist a critical

orientation � = �c for which an endpoint of segment Ei(�c) lies on segment Ej(�c) right

107



before the condition is violated (Fig. 6.1(b)). If (xc; yc) is the position of this endpoint

along Ej(�c), we say that (xc; yc; �c) is a critical con�guration of the polygon. We also

say that a con�guration of the robots is critical when there exists such a critical object

con�guration. We have just shown that:

Lemma 2 All paths joining a con�guration of the robots that satis�es the enclosure con-

dition to a con�guration that violates this condition must contain a critical con�guration.

Let q = (q1; q2; q3) be a con�guration of the robots for which the enclosure condition

is satis�ed. Consider the largest region in the con�guration space of the robots that is

connected to the con�guration q and is free of critical con�gurations. From Lemma 2, it

is easy to see that all con�gurations in this region must satisfy the enclosure condition

since there exists a path free of critical con�gurations joining q to any con�guration

in the region. We will not attempt to characterize exactly the maximal region in the

joint six-dimensional con�guration space of the robots. Instead, we will give simple

su�cient conditions for computing disc-shaped regions guaranteed to be free of critical

con�gurations and thus satisfying the enclosure condition.

De�nition 3 We will say that three discs 
1;
2 and 
3 are independent capture discs

(or ICaDs for short) when, for any con�guration q in 
1 � 
2 � 
3, the robots capture

the object.

The rest of this section presents a method for constructing a triple of maximum-radius

independent capture discs. The idea is to start from an immobilizing con�guration q of

the robots, move these robots away from their initial position until we �nd a critical

con�guration, and then characterize the maximum discs enclosed in the space between

the two con�guration. When the robots and the polygon are at a critical con�guration,

there exist i 6= j 2 f1; 2; 3g for which an endpoint of the segment Ei(�) lies on the

segment Ej(�). It is easy to show that this event occurs when the robot Bj touches the

edge Ej and the robot Bi is located at the endpoint Ai of the edge Ei that is farthest
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from Ej. In such a con�guration, the object will either touch two of the robots (Fig.

6.2(a)) or all three of them (Fig. 6.2(b)).

(a) (b)

Figure 6.2 The two possible types of critical con�gurations: (a) double contact; (b)
triple contact. In each case, we move from an immobilizing con�guration (white discs)
to a critical one (black discs).

Let us �rst focus on the double-contact case. If di;j denotes the distance between

Ai and the edge Ej, it is obvious that there will be no critical con�guration when the

distance between Bi and Bj is shorter than di;j (Figure 6.3). More precisely, we have the

following result.

E
1

E
3

E
2

d1,3
d 3,1

Figure 6.3 De�nition of d1;3 and d3;1.

Lemma 3 A su�cient condition for the enclosure condition to be satis�ed at the con-

�guration q is that:

jqi � qjj � Ri;j; for 1 � i < j � 3; (6.1)

where Ri;j = Rj;i = min(di;j; dj;i).
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This lemma gives us a method for constructing a set of ICaDs (Fig. 6.4): let p denote

some object con�guration, and consider the discs 
i (i = 1; 2; 3) with center ui = (ui; vi)

and radius ri > 0 that touch the edge Ei of the object. Let us also de�ne Ci;j as the

disc centered in ui with radius Ri;j � ri for i 6= j 2 f1; 2; 3g. The following lemma is an

immediate corollary of Lemma 3.

Ω

Ω

C

C

C

R

R

r

r

r

1

2

3Ω

3

2

1

1,2

2,3

3,1

1,2

2,3

u

u

u

1

2

3

-r

-r

R 3,1-r 3

1

2

Figure 6.4 Construction of independent capture discs.

Lemma 4 When the radii ri (i = 1; 2; 3) are chosen so that 
1 � C3;1, 
2 � C1;2 and


3 � C2;3, the discs 
1, 
2 and 
3 form independent capture discs.

Of course, a set of positive radii satisfying the hypotheses of Lemma 4 may not exist.

We will come back to this point in a minute. In the mean time, let us assume that there

exists a triple r1; r2; r3 satisfying these hypotheses, and let us address the problem of

maximizing the smallest one of the radii.

Lemma 5 The independent capture discs maximizing the smallest of their three radii

satisfy the following conditions: (a) 
1 is tangent to C3;1, 
2 is tangent to C1;2 and 
3 is

tangent to C2;3; (b) the robot con�guration where the discs 
i; i = 1; 2; 3 touch the edge

Ei must immobilize the object; and (c) the three discs must have the same radius.
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Figure 6.5 Computing r.

Essentially, it can be shown geometrically that there will be room for the smallest one

of the discs to grow until the three conditions of the lemma are satis�ed, see Appendix A.1

for a detailed proof. In the following, we show how to compute the maximum independent

capture discs based on the conditions given in Lemma 5.

Let us denote by r the common radius of the discs and by (s; t) the intersection of

the three normals to the object edges at the points where the discs touch them (Figure

6.5). Without loss of generality, we assume that the edge E1 is on the x-axis. Let (e3; 0)
T

be the intersection point of the line supporting E3 and the x-axis, and let (e2; 0)
T be

the intersection point of the line supporting E2 and the x-axis. As before, we denote by

�i; i = 1; 2; 3 the o�set angles of the edges Ei. Writing that the distance between the

centers of 
1 and 
2 is R1;2 � 2r yields:

(t+ r)2 + ((s� e2) cos�2 + t sin�2 + r)2�
2(t+ r)((s� e2) cos�2 + t sin�2 + r) cos(�2 � �1) = (R1;2 � 2r)2:

Likewise, writing that the distance between the centers of 
2 and 
3 is R2;3 � 2r

yields:

((s� e2) cos�2 + t sin�2 + r)2 + ((s� e3) cos�3 + t sin�3 + r)2�
2((s� e2) cos�2 + t sin�2 + r)((s� e3) cos�3 + t sin�3 + r) cos(�3 � �2) = (R2;3 � 2r)2;
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and writing that the distance between the centers of 
3 and 
1 is R3;1 � 2r yields:

((s� e3) cos�3 + t sin�3 + r)2 + (t + r)2�
2((s� e3) cos�3 + t sin�3 + r)(t+ r) cos(�1 � �3) = (R3;1 � 2r)2:

We have three quadratic equations in three unknowns s; t and r. The maximum

capture discs can be found by solving this system of three equations in three unknowns

using homotopy continuation [61] and picking the solution that yields the maximum value

of r. The centers of the corresponding discs are easily determined by the condition that

they must be tangent to the selected object edges.

Now, the system of equations de�ning the MICaDs may have no real solutions, or no

solutions corresponding to physically realizable robot con�gurations (e.g., the maximum

value of r may be negative, or the positions of the MICaD centers may lie outside the ac-

tual extent of the corresponding edges). In this case, however, the critical con�gurations

associated with the contact edges must be three-contact con�gurations (Fig. 6.2(b)), and

another set of MICaDs can be found by picking some immobilizing con�guration of the

three robots, say q0 = (q10; q20; q30), and calculating how far the robots can move away

from each other before a critical con�guration occurs. More precisely, if di;j = jqi0� qj0j
(1 � i < j � 3), we seek � > 0 such that

jqi � qjj = di;j + �; for 1 � i < j � 3; (6.2)

and, say, q1 coincides with the vertex A1 of E1 farthest from the edge E2 while q2 and q3

lie on the edges E2 and E3. This critical con�guration is de�ned by the three equations

(6.2) in three unknowns �, t2 and t3, where t2 and t3 de�ne the positions of q2 and

q3 along the corresponding edges. The solutions can once again easily be found using

homotopy continuation, and the solution yielding the minimum positive value of � is

picked. The process is repeated for each pair Ai; Ej and the solution corresponding to

the minimum overall � value is retained.

In this case, the existence of physically-realizable solutions is guaranteed by the fact

that q0 is an immobilizing con�guration and there must exist some � > 0 such that a
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critical con�guration (necessarily associated with three contacts since there is no two-

contact solution) occurs when the distance between the three robots is increased by �.

The discs of radius �=4 touching the edges of the object in q10; q20; q30 at its immobilizing

con�guration are then easily shown to be independent capture discs.

6.3 Motion Planning without Obstacles

Note that the maximum independent capture discs associated with three edges of a

polygon are rigidly attached to this polygon. We can therefore consider these discs as

a single (if disconnected) rigid object 
. We attach to this object its own coordinate

frame and denote by 
i(p) (i = 1; 2; 3) the region of the workspace occupied by the

disc 
i at con�guration p 2 IR2 � S1. For convenience, we choose the reference frame

of 
 such that it coincides with the frame attached to the object and denote by gi(p)

(i = 1; 2; 3) the points on the disc boundaries that immobilize the object when it is also

at the con�guration p. Clearly, the three robots form an inescapable cage if there exists a

con�guration p of the discs 
 such that qi 2 
i(p) for i = 1; 2; 3. Also, when qi = gi(p)

for i = 1; 2; 3 the robots will immobilize the object at its con�guration p.

Lemma 6 Given some object con�guration p and assuming that the radius r of the

capture discs is positive, there always exists a neighborhood U of p for which 
i(p) \

i(p

0) 6= ; for i = 1; 2; 3 and any con�guration p0 in U .

This result follows directly from the fact that the mapping ui : IR
2 � S1 ! IR2 that

associates with a con�guration p of the object the center of the corresponding disc 
i(p)

is continuous. Thus the preimage of the open ball centered in ui(p) with radius 2r is also

an open set Ui(p), not empty since it contains p. The set U = \3i=1Ui(p) is also open

and nonempty, and it de�nes a neighborhood of p where 
i(p)\
i(p
0) 6= ; for i = 1; 2; 3

and any p0 2 U .

Lemma 7 Given an object con�guration p and any other con�guration p0 in the neigh-

borhood U de�ned in Lemma 6, and some con�guration q in 
1(p) � 
2(p) � 
3(p),
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there exists a trajectory of the three robots starting in q that will bring the object to the

con�guration p0.

The proof of this corollary is constructive: if q = (q1; q2; q3), move each robot from

qi to some point in 
i(p) \ 
i(p
0) for i = 1; 2; 3, then move the robots again to the

immobilizing con�guration q0 = (q01; q
0

2; q
0

3) associated with 
1(p
0)�
2(p

0)�
1(p
0). Of

course, one should make sure that the robots never leave the corresponding discs, but

this is easy since the discs are convex so the motions can be limited to translations. Note

that Lemma 7 states a property akin to local controllability in manipulation planning [49].

Since, in the absence of obstacles, the con�guration space space of the object is connected

and the con�guration p can be arbitrarily chosen, we can iteratively apply this procedure

to bring the object from any initial con�guration to any �nal one.

Let us now address the problem of commanding the robots so that the manipulated

object follows some pre-speci�ed path P parameterized by p : [0; 1] ! IR2 � S1. To

reduce the possibility of jamming due to friction, we will not attempt to immobilize the

object except at its goal con�guration. The three robots can be thought of as a moving

cage along the path. To simplify the notation, we will use 
i(t) for 
i(p(t)) and Ei(t)

for the location of the edge Ei associated with the object con�guration p(t). Suppose

that the robots Bi are at qi 2 
i(t) for i = 1; 2; 3 and thus capture the object. To

progress by � along the path, we command each robot to move from qi to the point

q�i (t; �) in 
i(t) \ 
i(t + �) that is closest to the line Ei(t + �). From Lemma 6, there

always exists some � > 0 for which 
i(t)\
i(t+ �) is not empty (we will see in a minute

how to compute the maximum possible value for �). Note that the three robots can move

simultaneously without any need for synchronization.

It should be noted that other destinations in the intersection of the capture discs could

be chosen as well, but we prefer the proposed choice because it tends to allow smaller

space for the object to move in while being captured. Besides, it is easy to compute

the point in the intersection of the two discs that is closest to a given line outside the

intersection (since Ei(t+�) touches 
i(t+�), it is outside the intersection as well). Figure

6.6 shows the only two possibilities: the closest point can either be at the intersection

114



of the two circular boundaries of the discs (Fig. 6.6(a)) or at the point on a circular

boundary whose tangent is parallel to the line (Fig. 6.6(b)).

(a) (b)

Figure 6.6 The point in the intersection of two circles that is closest to a given line.

To move the object along the chosen path, we �rst command the robots Bi to move to


i(0) for i = 1; 2; 3, so that they can capture the object at the initial con�guration p(0).

The step described above is then repeated until the robots Bi are in 
i(1) and the object

can be immobilized and brought to the goal con�guration p(1). To �nd an e�cient plan,

we must determine the maximum value of � for each step in the sequence. More precisely,

for a given value t, we want to �nd the largest �max for which 
i(t)\
i(t+ �) 6= ; for i =
1; 2; 3 when 0 < � � �max. Because of the continuity of the path P, if 
i(t)\
i(t+�

0) = ;
for some �0 > 0, there must exist ��i 2 [0; �0] for which the boundaries of the discs 
i(t)

and 
i(t + ��i ) touch each other before the two discs no longer intersect. Clearly, the

maximum distance we can travel along the path cannot be greater than ��i . Fortunately,

it is not di�cult to characterize the set of object con�gurations of the object such that

one of the independent capture discs touches a �xed disc with the same radius.

Consider Fig. 6.7, which shows a triangle and the associated MICaDs, one of which

touches the disc C centered in c with radius r. We denote by � the orientation of the line

joining the disc centers, and by Ai(�) the MICaD under consideration, with center ai(�)

and radius r. Since the capture discs and the object are rigidly attached, the position

of the object's reference point can be written as x(�; �) = a(�) + k(�), where � is the

object orientation, k(�) = k(cos �; sin �), and k is an appropriate constant.

It is easy to show that when we keep � constant and rotate Ai(�) about C while

maintaining contact between the two discs, x(�; �) traces a circle E(�) with center e(�) =
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Figure 6.7 Object con�gurations such that one of the MICaDs touches a �xed circle:
(a) general setup; (b) close-up of relevant features.

c + k(�) and radius 2r. Points on this circle correspond to object con�gurations where

the MICaD Ai(�) touches C at some orientation � while the object is at orientation �. If

we allow the orientation of the object to change, the center of the circle E(�) will trace
another circle whose center is at c and radius is k. Therefore, the set of the con�gurations

of the object for which the capture disc is tangent to the disc C forms a helicoidal surface

Ii in the object con�guration space (Figure 6.8). To compute ��i , we take C = 
i(t)

and compute the intersections between P and the surface Ii using a one-dimensional

numerical search method. The arc joining p(t) to the �rst intersection p(t�) determines

��i = t� � t. To compute �max, we repeat this process for i = 1; 2; 3, and return the

smallest of the three ��i values.

6.4 Motion Planning with Obstacles

We can adapt as follows our approach to the case where obstacles are present: �rst,

�nd a path P for the object grown by the diameter of the robots, using some exact

obstacle-avoidance algorithm for polygons (e.g., [4]); second, use the strategy outlined in
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Figure 6.8 A helicoid.

the previous section to follow that path in steps that are as large as possible yet small

enough to avoid collisions. More precisely, if �� denotes the distance to be traveled along

P at each step and qi denotes the current con�guration of the robot Bi (i = 1; 2; 3), we

have the following algorithm whose output is a polygonal path P for the robots:

1 for i 1 to 3 do qi = qi(0);

2 P  f(q1; q2; q3)g; t 0;

3 repeat

4 �max  MAX DELTA(t);

5 use bisection to seek maximum �� 2 [0; �max]

6 for which CLEAR(q1; q2; q3; t; �
�) returns TRUE;

7 for i 1 to 3 do qi  q�i (t; �
�);

8 P  P [ f(q1; q2; q3)g; t t + ��;

9 until t = 1;

10 P  P [ f(g1(1); g2(1); g3(1))g;
11 return P .

Here, the function MAX DELTA(t) implements the calculation of the maximum step

size in the absence of obstacles, as described in the previous section. The function
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CLEAR(q1; q2; q3; t; �
�) returns TRUE if it is not possible for the object to collide with the

obstacles when the robots Bi move from qi to q
�

i (t; �
�) for i = 1; 2; 3 and FALSE otherwise.

The rest of this section shows how to e�ciently implement this boolean function. At

each step in the plan, the three robots move simultaneously and independently from

each other along line segments. Thus, implementing CLEAR requires the ability to test

whether the object may collide with the obstacles for any position of each robot along

the corresponding line segment. The following lemma simpli�es the calculations.

Lemma 8 If ICS(q1; q2; q3) denotes the set of free con�gurations of the object associated

with the robot con�gurations qi (i = 1; 2; 3), then

[

qi 2 q
0

i
q
00

i

i = 1; 2; 3

ICS(q1; q2; q3) =
[

qi 2 fq0

i
; q00

i
g

i = 1; 2; 3

ICS(q1; q2; q3)

for any two con�gurations q0 = (q01; q
0

2; q
0

3) and q00 = (q001; q
00

2; q
00

3) in the same triple of

MICaDs.

The proof of this lemma is elementary and is given in Appendix A.2. Its implications

are clear: despite the fact that each robot can be anywhere on a line segment in the

associated MICaD, Lemma 8 shows that testing whether the object can collide with the

obstacles reduces to performing the collision test at the eight con�gurations where each

robot is �xed at either end of the associated line segment.

Given one of these con�gurations, we want to test for possible collisions of the captured

object with an obstacle. Directly testing the intersection of the ICS with a con�guration

space obstacle is complicated and computationally expensive. Instead, we reformulate

our problem in the workspace of the robots: if we de�ne the envelope of an object as

the region of the plane that it sweeps as its con�guration varies within the ICS, testing

for potential collisions reduces to testing whether the object envelope intersects these

obstacles. Since we deal with polygonal obstacles, this only requires knowing how to test

the intersection between the envelope and a line segment.

When the object is in the ICS associated with three robots and the corresponding

edges, it can only touch the robots along these edges. The boundary of the envelope of
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an object corresponds to its con�gurations for which two of the edges are in contact with

the corresponding robots, and it is therefore composed of three parts associated with

these double contacts (Fig. 6.9). When a line segment intersects the envelope, it must

intersects at least one of these parts.

(c)

(b)
(a)

Figure 6.9 The envelope of a triangle: (a) the triangle and the three robots capturing it;
(b) snapshots of the object rotating while maintaining contact with the two top robots;
(c) the corresponding envelope.

Let us �rst focus on testing the intersection of a line segment with the part of the

envelope boundary associated with the in�nite line supporting one the object edges.

More concretely, let us consider the object con�gurations for which the robots B1 and

B2 touch the edges E1 and E2. Let La be the line supporting some other edge Ea of the

polygon (Figure 6.10). We have the following lemma.

Lemma 9 As the object rotates while maintaining contact with B1 and B2, La rotates

as well and remains tangent to a �xed circle Ca.

The proof of this lemma is relatively straightforward and is given in Appendix A.3. The

object con�gurations that maintain contact with the robots B1 and B2 have a single
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Figure 6.10 Sample object with the line under consideration.

degree of freedom and they can be parameterized by the object orientation �. But since

the object cannot escape, � must be in some range [�L; �H ] where �L and �H correspond

to two con�gurations for which the object touches the three edges. Figure 6.11(a) shows

the region Sa swept by La as the object rotates in the range [�L; �H ].

(b)(a) (c)

S a

S"

aS’

a

Figure 6.11 Regions swept by (a) the line La, (b)-(c) the half spaces bounded by La

Let us pretend for a moment that La is the only edge of the object. The line La

cuts the plane into two halves. The envelope of the object is the region swept by the

object-sided half containing the internal normal na of La. In the case shown in Figure

6.10, na always points to the half plane that contains the circle Ca. This means that

S 0

a is the only boundary of the envelope of the object (of course, if na pointed in the

opposite direction, S 00

a would be the boundary instead). In general, there are two types

of the boundaries:
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� T1: composed of two line segments (for example, S 0

a in Figure 6.11(a)), and

� T2: composed of two line segments and a circular arc (for example, S 00

a in Figure

6.11(a)).

Note that the two line segments in both types are part of the line La of the object at

�L and line La of the object at �H (see the dashed lines in Figure 6.11(b)-(c)).

In general, to classify what type of boundary will result, we compute the circle Ca. If

the internal normal of the line points to the half plane containing the circle then we have

a boundary of type T1, otherwise we have a boundary of type T2. It is easy to see that

when a line intersects the envelop, it must either (1) intersect the line La of the object at

orientation �L, (2) intersect the line La of the object at orientation �H , or (3) intersect

the circular arc part of the boundary of the envelope (for type T2 only).

Of course, the edges bounding the object only have a �nite extent. To take this

into account, we now consider the edge Ea itself instead of its supporting line La. The

region swept by this edge as the object rotates under the double-contact constraint is a

subset of the region Sa swept by the line La. It is bounded by the curves traces by the

endpoints of the edge Ea as it rotates around the circle Ca. In Appendix B, we will show

that computing the intersection of the curve traced by an object vertex and a given line

segment reduces to solving a trigonometric equation in the object orientation � (which

can be done in closed form), then testing whether this orientation is in the range [�L; �H ],

and �nally checking whether the corresponding intersection point is within the extent of

the line segment.

We are now ready to de�ne the routine for testing whether the envelop intersects with

a line segment. The routine is described in the following pseudocode. The input of the

routine includes a given line segment, and the positions of the three robots. We denote

by E the input line segment and by e0 and e00 its endpoints.

1 Compute the most clockwise and counterclockwise orientations �L and �H ;

2 test the intersection of E and the object at orientations �L and �H ;

3 for double contacts with Ei and Ej do
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4 for every vertex v between Ei and Ej do

5 test the intersection of E and the curve traced by the vertex v;

6 for every edge E between Ei and Ej do

7 if E yields type T2 boundary

then compute the circular part boundary and test the intersection with E ;
8 compute the intersection of endpoints of E and E, and

report intersection with orientation � 2 [�L; �H ]:

Note that, by all vertices between Ei and Ej, we mean all the endpoints of the edges

between Ei and Ej. For example, in Figure 6.10, the edges between E1 and E2 include

edges Ea; Eb and Ec and hence the vertices belonging to these edges are the vertices

between E1 and E2.

Computing the orientations �L and �H in line 1 amounts to solving a univariate

quadratic equation obtained from the system of equation de�ning three simultaneous

contacts. In line 2, parts of the boundary of type T1 and T2 that are line segments are

tested. This is done for all three choices of double contacts because at both extreme

orientations (�L and �H), the three designated edges are simultaneously in contact with

the robots. The for loop in line 3 has to repeat for the three choices of double contacts.

Note that when the intersection is detected, the routine returns TRUE and terminate,

otherwise it returns FALSE before it stops. Computing intersection in line 8 amounts to

solving system de�ning three simultaneous contacts which are two contacts between the

�xed robots Bi; Bj and Ei; Ej, and between an endpoint of E and E.

We have shown how to test the intersection between the envelope and an obstacle

edge. This process takes time linear in the size of the polygon, and it must be repeated

for every obstacle edge (or until some intersection is found). This simple approach can

be improved by limiting collision checking to obstacles in the vicinity of the envelope: we

compute bounding rectangles for the envelope and each obstacle, and e�ciently test the

intersection between these rectangle. It is easy to �nd the smallest isothetic rectangle

(i.e., with sides parallel to the coordinate axes) bounding a polygonal obstacle. To �nd an
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isothetic bounding rectangle for the envelope, we �rst compute the radius of the smallest

circle that contains the object (Fig. 6.12(a)): this is known as the smallest enclosing

circle problem in computational geometry, and the radius can be found in in time linear

in the size of the polygon by a randomized algorithm [104]. We place three circles with

this radius in the workspace so that each one passes through a pair of the robots and its

center is outside the triangle formed by the three robots (Fig. 6.12(b)). The bounding

rectangle is computed as the smallest isothetic rectangle that contains the three circles.

It is easy to show that the envelope is contained in this rectangle.

(a)

R

(b)

B

B

B

i

j

k

R

R

R

Figure 6.12 Constructing a box bounding the envelope: (a) the smallest circle containing
the object, and (b) a simple bounding box of the envelope.

We want to �nd all the obstacle rectangles that intersect the envelope rectangle. As

shown in [99, 100], this orthogonal intersection searching can be solved with query time

O(A + logP ) and preprocessing time O(P logP ), where A is the number of obstacle

bounding rectangles intersecting the reference rectangle, and P is the total number of

rectangles.

It is easy to show that the motion planning algorithm presented in this paper is

guaranteed to generate a plan avoiding obstacles when there exists such a path for the

object grown by the diameter of the robots plus some arbitrarily small positive number

": this is a direct consequence of the controllability condition of Lemma 7, the clearance

" ensuring that there is an open free neighborhood in con�guration space of any point

along the path.
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6.5 Discussion and Conclusions

We have introduced in this chapter the concept of maximum independent capture

discs (MICaDs), where the three robots can move independently while guaranteeing that

an object cannot escape their grasp. We have given a simple method for constructing

the MICaDs associated with a polygonal object, and shown they could be used as a basis

for motion planning in the presence of obstacles. We are currently implementing the

proposed approach and plan to conduct experiments using the Nomadic Scout robots

available in our laboratory.

So far, we have only implemented the construction of MICaDs associated with double

contacts, and Fig. 6.13 shows a couple of examples. The three-contact case and the

motion planning algorithm have not been implemented yet. Note that the discs may be

quite small depending on the choice of edges and object geometry (Fig. 6.13(c)), which

suggests taking the whole object boundary into account instead of three edges at a time

during the construction of capture regions.

(a) (b) (c)

Figure 6.13 Examples of MICaDs. Each example took less than 1 second to compute
on a SUN SparcStation 10.

Friction may of course cause the robots to jam during the execution of the motion

plan. We have tried to minimize the risk of jamming by avoiding to completely grasp

the object until the end of the manipulation task: indeed, grasping requires establishing

three simultaneous contacts, with a much higher chance for jamming than when a single

contact or a pair of contacts occur. Nonetheless, friction should be dealt with explicitly,

and therefore we investigate the e�ect of friction in the next chapter.
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CHAPTER 7

FRICTION

7.1 Introduction

Friction is ussually considered desirable for grasping: it is known to lower the number

of �ngers required to achieve force closure [59, 52], and it also helps the object to stick

better to the �ngers allowing higher tolerance for errors in the positioning [63, 70]. Most

approaches to grasping are static and mainly focus on the computation of the grasp

position [63, 64, 73, 72, 15]. It is usually assumed that the object to be grasped is

located at the desirable con�guration and it does not move during the grasp execution.

In practice, this assumption is of course not always satis�ed: when all the contacts are

not made at exactly the same time, the contact occuring �rst may cause the object to

move. If the object does not move too far, it can still be succesfully grasped with the

help of friction, but likely to be at a wrong position.

The problems of capturing the object to be grasped and making an approach for

the grasp are commonly overlooked in grasp planning (not always, see [68]) but they

are sometimes addressed in the context of object manipulation. Some manipulation

methods assume that the contact is never broken (by limiting the operating velocity to

simplify dynamics, for example), so the capturing problem can be avoided [1, 49, 55].

An assumption of frictionless contacts is also usually made to guarantee that the object

can be grasped at the desired con�guration [31, 32, 33, 96, 94, 92]. Although it may

not be di�cult to arrange for these assumptions to be satis�ed in particular settings, a
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(a) (b) (c) (d) (e)

Figure 7.1 Grasping the object within the capture.

true solution requires a better understanding of what actually happens in a more general

environment. We have already presented an approach to capturing based on inescapable

con�guration space regions in Chapter 4, 5 and 6. In this chapter, we investigate the

e�ect of friction.

More precisely, we will consider the problem of grasping a polygonal object that is

already captured by the robots. The setup is similar to the one presented in Chapter 5

(Figure 7.1). The object sits on a horizontal plane and cannot escape from the capture of

three disc-shaped robots. We assume that the two robots at the bottom of the �gure are

�xed and the top robot can move only along the dashed line trajectory. Figure 7.1(a)-(e)

shows snapshots of the top robot appraching the object. The object is pushed as the

contact with the top robot is made (the object may also bounce within the capture). At

some point, it will have three simultaneous contacts with the robots. At this point, as

the top robot attempts to push further, the possible scenarios are 1:

(a) The top robot continues pushing as the object rotates.

(b) The top robot cannot push any further and the object is at an immobilizing con-

�guration.

(c) The top robot cannot push further but the object is not at an immobilizing con�g-

uration.

1This assumes of course that the two bottom robots are heavy enough, with enough friction with the
ground, that they will not move.
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If an equilibrium is not achieved, the object can still be moved by the net force.

With three simultaneous contacts and the pushing robot moving along a straight line,

the motion of the object has one degree of freedom (Figure 7.1(d)). From case (a),

if the robot keeps pushing, at some point it will stop because: (1) the object reaches

the immobilizing con�guration (case (b), Figure 7.1(e)), or (2) because of friction, an

equilibrium is achieved before the object is pushed to the immobilizing con�guration (case

(c), Figure 7.1(d)). With frictionless contacts, the desirable outcome (b) is guaranteed.

In this chapter, we study the conditions under which jamming occurs due to friction (case

(c)).

7.2 Related Work

Dry friction is a natural phenomenon that happens in everyday life. Its behavior has

been modeled by the well-known Coulomb laws [9]: (1) the friction force is independent

of the area of the sliding surface; (2) it is proportional to the load; (3) the kinetic friction,

i.e., the force required to keep a body sliding at a constant velocity, does not depend on

the velocity and it is smaller than or equal to the static friction, i.e., the force required

to start sliding. Although Coulomb's model of friction is simple, the process of two solid

bodies sliding along each other is very complex and involves interactions from microscopic

to macroscopic scales. Therefore, without surprise, deviations from Coulomb's laws can

be found in experiments. Typical deviations include: (1) static friction is not constant

but increases with sticking time [77, 36], and (2) when the sliding velocity is large, kinetic

friction increases virtually linearly with the velocity [36].

Although Coulomb's law is far from perfect, it is simple and seems to work su�ciently

well in most cases. This is why it is, by far, the most popular friction model that has been

applied in robotics. As mentioned in the previous section, friction is usually considered

desirable for grasping. Most grasping �ngers are usually covered with rubber or other

elastic material to increase contact friction. Assuming Coulomb friction, Ngugen [63]

proposed a geometric method for computing maximal independent two-�nger grasps of
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polygon, i.e., segments of the polygonal boundary where the two �ngers can be positioned

independently while maintaining force closure, requiring as little positional accuracy from

the robot as possible. This approach has been generalized to handle various number of

�ngers and di�erent object geometries in [15, 68, 72, 74]. Jamming has rarely been

mentioned in the context of grasping because the main goal of most grasping tasks is

only to securely hold the object in the hand; accurately positioning the object is not

the main focus. If the object needs to be placed in a speci�c con�guration, the current

con�guration of the object in the grasp will normally be provided (by a vision-based

object recognition system, for example) to the robot so it can adjust its con�guration

appropriately for the execution of the positioning task.

In keeping with the idea of Reduced Intricacy Sensing and Control (RISC) robotic of

Canny and Goldberg [13] manipulation of workpieces without or with minimal sensory

data has gained attention in the robotics community [33, 78, 1]. This manipulation

scheme usually relies on simple and robust devices [32]. To develop reliable manipulation

algorithms, it is clear that jamming should be well understood. However, progress in this

area has been slow. The most extensively studied jamming situation is for the problem of

inserting a peg into a hole. Simunovic [90] introduced the terms \wedged" and \jammed"

in the context of inserting a planar peg into a hole after he noticed that wedging might

occur at shallow insertion depths as the possible contact forces including friction could

cover the entire wrench space. In [106], Whitney proposed quasi-static condtions to avoid

wedging and jamming for the peg-in-hole problem. He and Nevin [105] later developed

the remote-center compliance (RCC) wrist which is a passive mechanism allowing the

forces that arise due to small positioning errors to cause the peg to self-align with the

hole.

Donald and Pai [22] analyzed jamming for systems with more general geometries.

They developed a simulation-based technique to predict jamming during assembly of

two-dimensional workpieces. A similar technique for three-dimensional workpieces was

developed by Dupont [24]. Recently, Trinkle et al.[97] proposed an analytical condition
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to test for the impossibility of jamming in three-dimensional, quasistatic multi-rigid-body

system.

7.3 Jamming

In the previous chapters, we preprocessed the objects of interest by shrinking the

robots to their centers and growing the object by the radius of the robots. In this

chapter, we are interested in both the con�guration of the object and the robots and

in the actual contact points where forces are applied. Therefore, it is important not to

confuse the shrunk robots and the actual contact points.

We will assume from now on Coulomb friction, i.e., that the magnitude of the frictional

force cannot be greater than N tan�f (Figure 7.2) where N is the normal force and �f

is the half friction cone angle (when there is no sliding, the tangential force exerted at

the contact is compensated by a frictional force). Note that �f is a constant depending

on the material of the contact surfaces.

N

α
f

f

   f
f

Figure 7.2 Coulomb friction.

As mentioned before, jamming occurs when all the forces at the contacts including

friction achieve an equilibrium. Jamming occuring when there are one or two contacts

between the robots and the object can usually be dealt with by exerting larger force at

the contacts. In this chapter, we focus in the case of three contacts for which the chance
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(a) (b) (c)

Figure 7.3 Friction cones at (a) the immobilizing con�guration, and (b),(c) the two
critical orientations.

of jamming is much higher. When the pushing robot moves along a line segment, the

object con�guration with three simultaneous contacts has one degree of freedom that can

be parameterized by the orientation of the object. In this section, we characterize the

range of orientations where jamming may occur. In other words, we compute the range

of the object orientations for which an equilibrium can be achieved.

There are two sources of friction: (1) friction between the robots and the object, and

(2) friction between the object and its supporting plane. Let us begin by assuming that

there is no friction between the object and its supporting plane.

Consider Figure 7.3. Since we assume that there is no friction between the object

and its supporting plane, there are only three forces to consider. These are the forces

applied at the contacts between the robots and the object. These forces must lie within

the friction cones at the contacts. Clearly, an equilibrium can be achieved only when the

three forces intersect. This implies that an equilbrium can be achieved only when the

three friction cones intersect (Figure 7.3(a)).

Computing the range of orientations [�0; �00] for which an equilibrium can be achieved

therefore amounts to computing the range of orientations for which the three friction

cones can intersect. It is easy to see that the most clockwise (resp. counterclockwise)

orientation of this range corresponds to the orientation at which the counterclockwise

(resp. clockwise) edges of the three cones intersect (Figure 7.3(b)-(c)).

In the following, we describe how to compute the critical orientations �0 and �00. To

simplify the contact analysis, we assume for the time being that the robots have zero

radius (the general case will be discussed in Section 7.3.2). Most of the notation is
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the same as in Chapter 5. That is, we denote by � the orientation of the object, by

�i; i = 1; 2; 3 the o�set angle of the internal normal of edge Ei, and by qi = (qi; ri)
T ; i =

2; 3 the location of the �xed robots. The location of the movable robot is given by

(q1 + � cos�; r1 + � sin�)T where � denotes the orientation of the line trajectory and �

denotes the coordinate of the robot along this trajectory line. Without loss of generality,

we arrange the set up such that the immobilizing con�guration occurs at � = 0 and � = 0.

The most counterclockwise orientation at which an equilibrium can be achieved cor-

responds to the orientation for which the clockwise edges of the three friction cones at

the contacts intersect (see Figure 7.4).

(u,v)

(q  ,r  ) (q  ,r  )
2 2

3 3

θ+α −α3 f

fα

(q +   cos   ,r +   sin   )θ θδ δ1 1

α f

α f

α

Figure 7.4 Friction cones at a critical orientation.

Writing that these three edges intersect at (u; v)T yields:
8>>>>><
>>>>>:

(u� (q1 + � cos�))c1 + (v � (r1 + � sin�))s1 = 0;

(u� q2)c2 + (v � r2)s2 = 0;

(u� q3)c3 + (v � r3)s3 = 0;

(7.1)

where ci = cos(� + �i + �=2 + �f) and si = sin(� + �i + �=2 + �f), i = 1; 2; 3.

After eliminating u and v, we have:

� sin(� + 
1) + A sin(� + 
2) = 0
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where 
1; 
2 and A are appropriate constants.

From Chapter 5, the relationship between � and � can be written as:

� sin(� + 
3) +B sin(� + 
4) + C = 0

where 
3; 
4; B and C are appropriate constants.

Using both equations above, we can easily eliminate � to obtain a trigonometric equa-

tion in � which can be solved in closed form. Note that the clockwise critical orientation

can be computed similarly by formulating the equations corresponding to the intersection

of the counterclockwise edges of the friction cones (intead of the clockwise edges shown

above).

This calculation yields the range [�0; �00] for which an equilibrium can be achieved.

Jamming is possible when the orientation of the object is within this interval, so it is

desirable that its size be small. Can we adjust anything to make jamming range smaller?

In the following section, we show the case where a special orientation of the trajectory

line cause �0 to be ��f and �00 to be �f . We will examine how the range of jamming

orientations is a�ected by the orientation � of the trajectory line.

7.3.1 In
uence of Line orientation on Jamming

First, we will examine the special case where internal normal of edge E1 at the

immobilizing con�guration (� = �1 + �). We are going to show that �0 = ��f and

�00 = �f in this case.

Figure 7.5 illustrates the situation. At the immobilizing con�guration, the axes of the

three friction cones intersect at P (Figure 7.5(a)). Note that the trajectory line coincides

with the axis of the friction cone at the contact between the pushing robot and the

object. Consider the object as it rotates counterclockwise by an angle �f . Accordingly,

the axes of the friction cones at the two �xed robots (bottom one) rotate counterclockwise

by an angle �f . Their clockwise edges also rotate counterclockwise by an angle �f and

intersect at P . It is easy to see that, regardless of the position of the pushing robot on the

trajectory line, the clockwise edge of the friction cone at the pushing robot now becomes
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Figure 7.5 A special case.

coincident with the trajectory line which also intersects P (Figure 7.5(b), a similar result

can be shown for the clockwise rotation). Thus �00 = ��0 = �f .

What will happen if the direction of the line trajectory is set di�erently? Consider

the case where � = �1+�; �=2 < � < �. At the immobilizing con�guration, we assume

that the clockwise edges of the friction cones at the two �xed robots intersect at Q1

(Figure 7.6(a)). As the object rotates counterclockwise by angle �f (rotates from � = 0

to � = �f), these two edges also rotates counterclockwise by angle �f and intersect and

P (Figure 7.6(b)). Consider the clockwise edge of the friction cone at the pushing robot.

As the object rotates counterclockwise by angle �f (the robot moves accordingly from A

to B), this edge moves from L1 to L
0

1 and sweeps the shaded region. Clearly, this edge

passes P before � = �f , and the part of the curve (including P ) traced by the intersection

of the two clockwise edges of the friction cones of the �xed robots is contained in the

region R1. Therefore, the clockwise edges of the three friction cones must intersect at

some � < �f .

Now consider the clockwise rotation. When � = 0, the counterclockwise edges of

the friction cones at the two �xed robots intersect at Q2 (Figure 7.6(a)) and when � =

��f , these edges intersect at P (Figure 7.6(c)). Let us denote by Z2 the curve of the

intersection of these edges as � goes from 0 to ��f . As the object rotates clockwise from
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Figure 7.6 Jamming range when angle � 6= �=2.

� = 0 to � = ��f , the counterclockwise edge of the friction cone at the pushing robot

moves from L2 to L
0

2 (Figure 7.6(c)). It is easy to see that the region swept by this edge

does not contain the curve Z2. This means that the counterclockwise edges of the three

friction cones do not intersect during ��f < � < 0. In other words, the object need

to rotates further than �f for the counterclockwise edges to intersect and jamming to

become impossible.

In summary, for this setting of the direction of the trajectory line, the range of the

object orientations for which an equilibrium can be achieved is �0 < � < �00 where

�0 < ��f and �00 < �f . That is, the range of counterclockwise jamming orientations is

smaller than the range of clockwise jamming orientations. Note that if the trajectory

line slants in the other direction, we can imagine a mirrored copy of Figure 7.6(c) which

we will obtain the range of jamming orientations to be �0 < � < �00 where �0 > ��f and

�00 > �f .

7.3.2 In
uence of Robot Radius on Jamming

We now consider the robots with radii greater than zero. In Figure 7.7, we have three

robots with radius r > 0. We show the friction cone at the contact between the object

and the bottom left robot. Clearly, as the object rotates, the edges of the friction cones
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Figure 7.7 Grasping using robots with non-zero radius.

also rotate. Unlike the zero-radius case, however, these edges do not pass through the

center of the robot. Being aware of this fact, we formulate equations similar to (7.1) to

express that the three edges intersect, and compute the critical orientations de�ning the

jamming range. In particular, we will have:

� sin(� + 
1) + A sin(� + 
2) +B = 0;

where 
1; 
2; A and B are appropriate constants. Note that there is one more constant

than the previous formulation. As before, the relationship between � and � of the object

having three simultaneous contacts (Section 5.2.1) can be used to eliminate �. The

resulting equation is, again, a univariate equation of degree four.

Let us look closely at one contact. In Figure 7.8, we superimpose �gures to show a

contact with robots of radius zero, r1, and r2, where 0 < r1 < r2. At the immobilizing

con�guration, the three robots share the same contact point, and the edges of the friction

cones coincide. We denote by L the line where the clockwise edges coincide (Figure

7.8(a)). As the object rotates counterclockwise by some angle, the clockwise edges rotate

accordingly by the same angle (Figure 7.8(b)). The clockwise edge of the friction cone of

the robot with radius r2 (resp. r1 and zero) rotates from L to L2 (resp. L1 and L0). We

can see that the clockwise edge of the robot with greater radius sweeps a larger region

than the edge of the friction cone of the robot with a smaller radius. This is also true

for the robots making contacts with the other two edges of the object. Remember that

we have to compute the intersection of the edges of the three friction cones at the three
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Figure 7.8 The friction cones associated with di�erent robots' radii.

contacts to obtain the jamming range. For three robots with larger radius, the three

edges intersect when the object rotates by a smaller angle than it would for the robots

with smaller radius. We can therefore conclude that the larger radius yields a smaller

range of jamming orientations.

So far, we can see that the amount of force applied by the pushing robot is not involved

in the computation of the critical orientations. That is, for the case where friction only

comes from the contacts between the object and the robots, the magnitude of this force

has no in
uence on the range of jamming orientations. No matter how hard the robot

pushes, the object could still be stuck.

7.3.3 Accounting for Friction between the Object and its Sup-

porting Plane

We are now ready to take into account friction between the object and its supporting

plane. By Coulomb's laws, the maximum magnitude of frictional force at any point in

the contact region is proportional to the normal pressure at the point. By considering

the entire contact region and assuming that the coe�cient of friction is uniform over the

region, we can consider the total frictional force as a single force applied at the centroid

of the pressure distribution (in the opposite direction to the net horizontal force). Let

us assume further that the pressure distribution does not change during the grasp. As

a result, the centroid of the pressure distribution is �xed with the object and we have
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jff j � �fN where f f is the frictional force between the object and its supporting plane,

�f is the coe�cient of friction and N is the magnitude of the net normal load. We

denote by qf the centroid of the pressure distribution and by W = �fN the maximum

magnitude of f f .

In the following, we list the conditions for equilibrium. Note that we need to consider

only horizontal forces because we assume that the object does not have any vertical

motion, which means that the net normal load and the reaction force from the ground

cancel each other.

Let us denote by f i; i = 1; 2; 3 the forces at the contact qi. When the object is in

equilibrium, all forces must cancel:

f 1 + f2 + f3 + f f = 0;

and net moment is zero (calculated around qf here):

i=3X
i=1

((qi � qf)� f i) = 0:

The following constraints must also be satis�ed. The forces at the contacts must lie

in their friction cones:

f i 2 Ci; i = 1; 2; 3;

where Ci is a cone at the origin with half angle �f and the internal normal of the edge

Ei as the main axis.

The magnitude of the friction f f cannot exceed W :

ff 2 SW ;

where SW is a disk at the origin with radius W .

When the orientation � is given (Figure 7.9), the contact points qi; (i = 1; 2; 3), the

axis of friction cone Ci; (i = 1; 2; 3) and the center of friction qf can be calculated.

As a result, the equilibrium constraints can be written as a set of linear equations in

f i; (i = 1; 2; 3) and f f . The fact that the contact forces must lie in the corresponding

friction cones can also be written as linear inequalities in f i. For the constraint on the
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Figure 7.9 Force diagram when friction between the object and its supporting surface
is considered.

magnitude of the friction force f f , we approximate the circle SW with the smallest n-gon

that encloses the circle and rewrite the constraint as a set of linear inequalities in f f .

We also want the magnitude of the normal component of the force at the contact with

the pushing robot to be set to a constant F to eliminate the trivial case of equilibrium

when all forces are zero and to re
ect the amount of pushing force over which we have

some control. This condition can be written as:

f 1 �
0
B@

cos(� + �1)

sin(� + �1)

1
CA = F;

which is linear in f 1 when � is given.

As a result, for a given orientation �, we can use linear programming to determine

whether equilibrium can be achieved. We can then use bisection to seek the range of

jamming orientations by using linear programming to test for the existence of equilibrium

con�gurations at each bisection step. For the initial smallest range, we can use the

jamming range of orientations obtained for the same setting but with no friction between

the object and its supporting surface (set W = 0) in which we know how to compute.

For the largest possible range, we can use the range of orientations the object can rotate

at the maximum ICS (Chapter 5) because the object orientation cannot be outside this

range if it has to be in the capture of the robots.
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The magnitude of the friction force f f cannot exceed W . The constant W is pro-

portional to the normal load (which is assumed to be constant) and is independent from

the force exerted by the pushing robot: intuitively that the e�ect of ff on the range of

jamming orientations will decrease as the ratio F
W

increases. This is con�rmed by the

simulation result in the Section 7.4.

7.4 Simulation Experiments

In this section, we present some simulation results that illustrate the observations

presented in the previous sections. The sample object is an equilateral triangle with unit

edges. The direction of the trajectory line is the angle �. The object is immobilized

when the orientation � = 0 and the robots are at the midpoint of the edges. We compute

the range of jamming orientations which is composed of two parts: (1) counterclockwise

jamming orientations (� > 0), and (2) clockwise jamming orientations (� < 0). The

implementation follow the formulation described in the previous sections. The programs

were written in C++ programming language and run on a 450-MHz personal computer.

For all examples given here, the running times are less than one second. In the �rst two

examples, we assume no friction between the supporting surface and the object.

Figure 7.10 The jamming range of orientations as a function of the direction of the
trajectory line.
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We show in Figure 7.10 the range of jamming orientations as a function of the ori-

entation of the trajectory line. We can see that when the direction � is �=2, the range

is well balanced (the range of counterclockwise jamming orientations is as large as the

range of clockwise jamming orientation). As we decrease �, the trajectory line slants to

the right side and the range of counterclockwise jamming orientations becomes smaller

while the range of clockwise jamming orientations becomes larger. The opposite happens

when we increase �. Again, this result con�rms the observation mentioned in Section

7.3.1. Note that for this result, the program was written to compute the orientations �0

and �00 at a given � by solving the quartic equation described at the beginning of Section

7.3.

Figure 7.11 The counterclockwise jamming range of orientations as a function of the
radius of the robots.

Figure 7.11 shows the range of jamming orientions (in degrees) as a function of the

radius of the robots relative to the size of the triangle at various half-cone angles. The

trajectory line is set at � = �=2 so the range is well balanced. Therefore, in Figure

7.11, we show only the counterclockwise jamming range of orientations as we vary the

radius of the robots from 0 to 0.2 unit. The range becomes smaller as the radius gets

larger as explained in Section 7.3.2. For this result, a program was written to compute

the orientations �0 and �00 at a given radius r by solving the quartic equation given in

Section7.3.2.
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Figure 7.12 The jamming range of orientations (in degrees) as a function of the ratio
F=W .

Finally, we plot in Figure 7.12 the range of jamming orientations (in degree) as a

function of the ratio F=W . The half cone angle �f is set to 20 degrees. We can see that

the e�ect of the friction force f f on the range of jamming orientations decreases as the

ratio F=W increases. The range converges to the case of no friction f f as F=W increases.

The program generating this result was written following the description given in 7.3.3.

7.5 Discussion and Conclusions

We have studied jamming in grasping. One of the main objectives of this chapter

is to develop a more reliable method for grasping under friction. We have learned how

the range of jamming orientations is a�ected by friction and other factors including the

trajectory direction, the radius of the robots, and the magnitude of the pushing force

relative to the friction with the ground.

The e�ect of friction between the object and the supporting surface is reduced as

we increase the magnitude of the pushing force. To avoid damaging the object and to

guarantee that the other two robots are not pushed away, the magnitude of the pushing

force can be increased only upto some limit. As mentioned in the previous section,

increasing the pushing force cannot improve any jamming e�ect of the friction between

the object and the robots. It is therefore preferable that the friction between the robots
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Figure 7.13 Grasping with four robots.

and the object is low and the object is so light that the friction between the object and

the ground surface can easily be overriden by the pushing force. A larger robot radius

can also help reducing the range of jamming orientations but, on-line adjustment of the

radius is of course usually impossible.

It is clear that the chance of jamming during the range of orientations near the immo-

bilizing con�guration is very high. The manipulation plan not attempting to immobilize

the object is therefore reduce the chance that the object be in this range of orientations,

and reduce the risk of jamming. It is very interesting to consider adding another pushing

robot. Used in conjunction with a simple strategy outlined below. This may signi�cantly

reduce the range of jamming orientations or even avoid jamming altogether. Consider

Figure 7.13. Here we have two pushing robots B1 and B2. The goal is to grasp the object

by placing each robots near the end points of the grasped edge (Figure 7.13(d)). The

�rst step is to move both pushing robots into the inescapable region associated with the

two �xed robots so the object cannot escape. Then, we move the robots to the locations

for which the robots can grasp the object if they are translated along the direction of

the arrow (Figure 7.13(a)). To grasp the object, we translate both robots simultaneously

along the arrowed direction. In this example, we can see that at any point during the
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translation, when three simultaneous contacts with the object are possible, the three fric-

tion cones at the contacts do not intersect (Figure 7.13(b)-(c)). The only possibility for

jamming to occur is therefore due to the friction between the object and its supporting

surface which we can usually counter by pushing harder. The key idea is that, at any

point, the object can be in contact with at most three robots and the placement of the

robots are arranged such that the friction cones at the contacts do not intersect. An

obvious application of this idea would be in the design of a manipulation planner that

can generate plans guaranteed to be jam-free even with friction.
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CHAPTER 8

CONCLUSION

We have addressed the problem of immobilizing and manipulating parts with devices

that have a mixture of discrete and continuous degrees of freedom. We have devised

e�cient algorithms for planning immobilizing �xtures, grasps, in-hand manipulation se-

quences and obstacle avoidance manipulation plans for parts with known geometry.

We believe that the key contribution of the thesis is the introduction of the concept of

inescapable con�guration space region as a framework for manipulation planning. Within

this framework, the main contributions of the thesis are:

1. A �xture planning algorithm for three-dimensional parts. This is, to the best of our

knowledge, the �rst algorithm ever proposed for �xturing true three-dimensional

objects with arbitrary pose (see [11, 101] for related work using prismatic objects

and three-dimensional objects with pre-speci�ed pose).

2. The design and construction of a novel recon�gurable gripper. This gripper has the

potential for achieving a level of dexterity comparable to dextrous robotic hands

[40, 87] at a fraction of the cost. (This part of our work was done in collaboration

with Dr. Narayan Srinivasa.)

3. An e�cient algorithm for planning immobilizing grasps with the recon�gurable grip-

per. This is a variant of the �xture planning algorithm, but it exploits the special

geometry of the gripper for additional e�ciency. We have implemented this algo-

rithm and tested it with the prototype of the gripper.
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4. The exact characterization of inescapable con�guration space regions for the grip-

per. ICS regions generalize the notion of immobilizing grasps: the object is not

immobilized but is constrained to lie within a compact region of the free con�gura-

tion space (see [80] for related work in the two-dimensional, two-�nger case). The

ICS region associated with a given gripper con�guration is characterized through

a detailed analysis of contact constraints in con�guration space.

5. An e�cient algorithm for in-hand manipulation planning. Unlike previous ap-

proaches to the same problem (see [1, 26, 33, 49, 55] for example), this approach

does not make strong assumptions about contact dynamics and does not attempt

to predict the exact motion of the part. Instead, atomic part motions are e�ected

by progressively reducing the set of admissible con�gurations to a single point,

and complex in-hand manipulation sequences are planned by e�ciently construct-

ing and searching the adjacency graph formed by overlapping ICS regions. This

algorithm has been implemented and tested with the prototype of the gripper.

6. An e�cient algorithm for manipulating polygonal objects with three disc-shaped

robots. The algorithm is developed based on the concept of ICS and capable of

generating plans to bring the object to a desired con�guration. The algorithm has

been fully implemented and tested using Scout Nomadic robots.

7. A novel robot motion planning for three disc-shaped robot to manipulate polygonal

objects among polygonal obstacles. The planning algorithm is based on the concept

of independent inescapable region and is capable of generating plans allowing three

robots to move simulataneously while guaranteeing that the object cannot escape

and cannot collide with any obstacle.

8. A characterization of jamming con�gurations under Coulomb friction. This charac-

terization provides detailed analysis about how jamming occurs during a grasping

task. The results may be helpful to grasp and manipulation planning that tries to

reduce the risk of jamming.
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Minor contributions include the proof that second-order immobilizing grasps and �x-

tures of polyhedra e�ected with spherical locators are stable. This complements previous

work by Nguyen [64], Howard and Kumar [38], and Rimon and Burdick [83].

Beyond the research described in this thesis, there are some related research issues

that are worth mentioning.

Fixture Planning. There are obviously polyhedral objects which cannot be �xtured

with our device (a trivial example is an object whose diameter is smaller than the inter-

locator distance). It would be interesting to characterize precisely the class of �xturable

objects (see [107] for a discussion of the two-dimensional case). Another interesting

avenue of research would be to extend the proposed algorithm to parts bounded by alge-

braic patches (see [103, Chapter 6] for the two-dimensional case). The overall approach

proposed in this thesis extends to this case in a straightforward way, but working out the

details of how to enumerate locator con�gurations and dealing with the very high degree

of the equations involved should prove quite challenging.

Manipulation Planning with the Recon�gurable Gripper. Our manipulation

planning approach requires computing all possible grasping con�gurations as a prepro-

cessing step. Usually, only few of them are needed to construct a manipulation sequence.

Also, this is obviously expensive particularly for polyhedral objects with many faces. It

would be interesting to to �nd another approach that does not require the preprocessing

stage. This may be possible by merging the preprocessing and the planning steps together

with an additional heuristic function that guides generating only the con�gurations likely

to be included in the plan. With much fewer con�gurations to consider, the amount of

time spent in the graph construction step should be signi�cantly reduced.

Manipulation Planning with Mobile Robots. There are numerous interesting ways

to extend the material presented in Chapter 5 and 6. One of them is to consider adding

a fourth robot. The addition has potential to considerably increase robustness and dex-

terity to the system. Besides grasping with four robots that may signi�cantly reduce

the vulnerability to jamming (Section 7.5), capturing and manipulating several objects

simultaneously is possible. Capturing two objects with four robots clearly can be per-
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formed by placing the robots in such a way that allows each object to be caged by the

other object and two of the robots. With four robots, �nger gaiting could be consid-

ered. This would allow the robots to switch the triple of the edges of the object they

are designated to without allowing the object to escape. Maneuvering through some

obstacles may be more di�cult with some triples than the others. The ability to switch

triples to accomodate obstacle avoidance should result in more e�cient plans. Another

interesting issue is to consider the whole boundary of the manipulated object. Because

the ICS region is de�ned for a chosen triple of edges, the quality of plans generated by

the current approach depends on how well the triple is chosen. Taking the whole ob-

ject boundary into account in generating a capturing region would obviously eliminate

this concern and, because the interaction between neighboring edges, has potential in

producing larger capturing regions.
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APPENDIX A

Proofs of Lemmas of Chapter 6

A.1 Proof of Lemma 5

Lemma 5The independent capture discs maximizing the smallest of their three radii

satisfy the following conditions: (a) 
1 is tangent to C3;1, 
2 is tangent to C1;2 and 
3 is

tangent to C2;3; (b) the robot con�guration where the discs 
i; i = 1; 2; 3 touch the edge

Ei must immobilize the object; and (c) the three discs must have the same radius.

Proof:

1. 
1 is tangent to C3;1, 
2 is tangent to C1;2 and 
3 is tangent to C2;3. It is easy

to see in Figure 6.4 that when this condition is not satis�ed, there is space for the

smallest disk to grow. Figure A.1 shows an example after the radius r3 has been

increased until this condition is satis�ed.

2. The robot con�guration where the disks 
i; i = 1; 2; 3 touch the edge Ei must immo-

bilize the object. Even when the �rst condition is satis�ed, it is still possible for the

radii to increase. Figure A.1 illustrates this: the �rst condition is satis�ed but the

three normals at the contact between the independent disks and the object do not

intersect. This implies that the object is not immobilized by the disks, therefore

the object can move to a con�guration where it does not touch the disks (Figure

A.2), providing space for the disks to get larger.
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Figure A.1 Independent inescapable disks with condition 1 satis�ed.

3. r1 = r2 = r3. Let us consider Figure A.3. We denote by Li;j the line segment

joining two points in the disk 
i and the disk 
j that are farthest from each others.

Clearly, Li;j passes through the centers of both disks. For the �rst condition to be

satis�ed, the length of Li;j must be maintained constant at Ri;j. In Figure A.3(a),

we assume that the �rst two conditions are satis�ed and r2 is the smallest radius.

To increase the radius r2, we change the intersection point between L1;2 and L2;3

(which is the location of the center of 
2). For the disks not to intersect with the

object and to maintain the constant length of each Li;j, as r2 increases, the object

must move toward 
1 and 
3 and the radii r1 and r3 must decrease (Figure A.3(b)).

Since this process can always be applied as long as the radius of the smallest disk

is strictly smaller than the other ones, this radius is maximized when all three radii

are equal. 2
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A.2 Proof of Lemma 8

Lemma 8 If ICS(q1; q2; q3) denotes the set of free con�gurations of the object associated

with the robot con�gurations qi (i = 1; 2; 3), then

[

qi 2 q
0

i
q
00

i

i = 1; 2; 3

ICS(q1; q2; q3) =
[

qi 2 fq0

i
; q00

i
g

i = 1; 2; 3

ICS(q1; q2; q3)

for any two con�gurations q0 = (q01; q
0

2; q
0

3) and q00 = (q001; q
00

2; q
00

3) in the same triple of

MICaDs.
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Proof: The set ICS(q1; q2; q3) is a volume bounded by three ruled surfaces, each of

which corresponds to the set of con�gurations for which the robot Bi at qi is in contact

with edge Ei of the object.

When Bi is at the point q
0

i, the corresponding ruled surface is:

V 0

i = (x� q0i) cos(� + �i) + (y � r0i) sin(� + �i) + di � 0:

Likewise, when Bi is at the point q
00

i , the corresponding rule surface is:

V 00

i = (x� q00i ) cos(� + �i) + (y � r00i ) sin(� + �i) + di � 0:

For �i + �i = 1; �i; �i � 0, we have:

V (�i; �i) = �iV
0

i + �iV
00

i =

(x� (�iq
0

i + �iq
00

i )) cos(� + �i) + (y � (�ir
0

i + �ir
00

i )) sin(� + �i) + di = 0:

The equation V (�i; �i) = 0 de�nes the ruled surface associated with having robot Bi

at �iq
0

i + �iq
00

i (which is a point on the line segment q0iq
00

i ). Clearly, this rule surface is

always between the ruled surfaces V 0

i = 0 and V 00

i = 0. Therefore, we can write:

Vi(�i; �i) � V 0i [ V 00i ;

where we denote by Vi(�i; �i) the volume Vi(�i; �i) � 0 , by V 0i the volume V 0

i � 0, and

by V 00i the volume V 00

i � 0.

Using the above statement and considering i = 1; 2; 3, we can write:

V1(�1; �1) \ V2(�2; �2) \ V3(�3; �3) � (V 01 [ V 001 ) \ (V 02 [ V 002 ) \ (V 03 [ V 003 ):

The left hand side of the statement above is ICS(q1; q2; q3) where qi can be anywhere

on the line segment q0iq
00

i (depending on �i and �i). That the above statement is true

independent of the values of �i and �i implies:

[

�i + �i = 1

�i; �i � 0

i = 1; 2; 3

V1(�1; �1)[V2(�2; �2)[V3(�3; �3) � (V 01 [V 001 )\ (V 02 [V 002 )\ (V 03 [V 003 ): (A.1)
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Using basic set algebra, the right hand side of the statement above can be expanded

as:

(V 01 \ V 02 \ V 03) [ (V 01 \ V 02 \ V 003 ) [ (V 01 \ V 002 \ V 03) [ (V 01 \ V 002 \ V 003 )[

(V 001 \ V 02 \ V 03) [ (V 001 \ V 02 \ V 003 ) [ (V 001 \ V 002 \ V 03) [ (V 001 \ V 002 \ V 003 ):

The above expression is the union of eight sets. Each set is the ICS for the con�gu-

ration having the robot Bi located at either end of the line segment q0iq
00

i . For example,

the second term, V 01 \ V 02 \ V 003 is ICS(q1 = q01; q2 = q02; q3 = q003).

Because the term V 0i can be written as Vi(�i = 1; �i = 0) and the term V 00i can be

written as Vi(�i = 0; �i = 1) the reverse of the statement (A.1) is true as well. 2

A.3 Proof of Lemma 9

Lemma 9 As the object rotates while maintaining contact with B1 and B2, La rotates

as well and remains tangent to a �xed circle Ca.

Proof: Let us consider Figure A.4. The three lines L1; L2 and La belong to the same

object, the points q1 = (q1; r1)
T and q2 = (q2; r2)

T are �xed and the normals at q1, q2

and qa = (qa; ra)
T intersect at (s; t)T where qa is a point on La. We want to show here

that when the object rotates while maintaining simultaneous contacts between q1 and

L1 and between q2 and L2, the point qa will trace a circle Ca and the line La is always

tangent to this circle.

Let us denote by � the orientation of the object and by �1; �2 and �a the constant

o�et angles of the internal normals of the three edges. The �rst three equations de�ne

L1; L2 and La which are the lines supporting the three edges under consideration (E1; E2

and Ea).

8>>>>><
>>>>>:

(x� q1) cos(� + �1) + (y � r1) sin(� + �1) = 0

(x� q2) cos(� + �2) + (y � r2) sin(� + �2) = 0

(qa � x) cos(� + �a) + (r3 � y) sin(� + �a)� d = 0:

(A.2)
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Figure A.4 The line L3 as the object rotates.

The next three equations express the fact that the three internal normals at the

contacts intersect at the point (s; t) (immobilizing the object).

8>>>>><
>>>>>:

(s� q1) cos(� + �1 + �=2) + (t� r1) sin(� + �1 + �=2) = 0

(s� q2) cos(� + �2 + �=2) + (t� r2) sin(� + �2 + �=2) = 0

(s� qa) cos(� + �a + �=2) + (t� ra) sin(� + �a + �=2) = 0:

(A.3)

Eliminating x and y from (A.2) yields:

(ra � r2) cos(�1 � �2 � �a � �) + (r2 � r1) cos(�1 + �2 � �a + �)� 2d sin(�1 � �2)+

(r1 � ra) cos(�1 � �2 + �a + �)� (q2 � qa) sin(�1 � �2 � �a � �)+

(q1 � q2) sin(�1 + �2 � �a + �)� (q1 � qa) sin(�1 � �2 + �a + �) = 0:

(A.4)

Likewise, eliminating s and t from (A.3) yields:

(qa � q2) cos(�1 � �2 � �a � �) + (q2 � q1) cos(�1 + �2 � �a + �)+

(q1 � qa) cos(�1 � �2 + �a + �) + (r2 � ra) sin(�1 � �2 � �a � �)�
(r1 � r2) sin(�1 + �2 � �a + �) + (r1 � ra) sin(�1 � �2 + �a + �) = 0:

(A.5)
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Applying some algebraic manipulation to eliminate � yields:

f2qa sin(�1 � �2) + (r1 � r2) cos(�1 � �2) + (r2 � r1) cos(�1 + �2 � 2�a)�
(q1 + q2) sin(�1 � �2) + (q1 � q2) sin(�1 + �2 � 2�a)g2+

f2r3 sin(�1 � �2)� (q1 � q2) cos(�1 � �2)� (q2 � q1) cos(�1 + �2 � 2�a)+

(r1 + r2) sin(�1 � �2) + (r1 � r2) sin(�1 + �2 � 2�a)g2 =
4d2 sin2(�1 � �2):

(A.6)

It is easy to see that (A.6) de�nes a circle with the constant radius d in the (qa; ra)

plane. Let us call this circle Ca and denote by c = (cx; cy)
T the center of this circle.

From (A.6), cx and cy can be written as a function of �. By eliminating ra from (A.4)

using (A.5) we can write qa as a function of �. Likewise, by eliminating qa from (A.4)

using (A.5), we can also write ra as a function of �. We obtain

q3 = (qa; ra) =
1

2 sin(�1 � �2)

0
BBBBBBBBBBBBBBBBBBBBB@

(r2 � r1) cos(�1 � �2)� (r2 � r1) cos(�1 + �2 � 2�a)+

(q1 + q2) sin(�1 � �2) + (q2 � q1) sin(�1 + �2 � 2�a)+

d sin(�1 � �2 � �a � �) + d sin(�1 � �2 + �a + �)

(q1 � q2) cos(�1 � �2) + (q2 � q1) cos(�1 + �2 � 2�a)+

d cos(�1 � �2 � �a � �)� d cos(�1 � �2 + �a + �)+

(r1 + r2) sin(�1 � �2)� r1 sin(�1 + �2 � 2�a)+

r2 sin(�1 � �2 � 2�a)

1
CCCCCCCCCCCCCCCCCCCCCA

:

(A.7)

The unit tangent of the line La is na = (cos(� + �a + �=2); sin(� + �a + �=2))T , and it

follows immediately that

(qa � c) � na = 0:

That is, we have shown that the line La is always tangent to the circle Ca as the

object changes its orientation during the double-contact constrained motion. Box
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APPENDIX B

Intersection between a Curve Traced by a Vertex

and a Line Segment

In Figure B.1, the object in Figure 6.10 is drawn as a dotted polygon. Let the given

line be de�ned by:

u cos� + v sin�+ d = 0; (B.1)

where � and d are some constants. Consider the curve U = f(u(�); v(�))T ; �L � � � �Hg

(q  ,r  )
1 1

(q  ,r  )
2 2

E a
θ θ(u(  ), v(  ))

E
E

E

1
2

3

(q  ,r  )3 3

d

θ+α

θ+α

1

2

d2
1

L
L

1
2

Figure B.1 Parameterizing the endpoint (u(�); v(�))T .

where (u(�); v(�))T is an endpoint of the edge Ea when the object is at orientation �.
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Writing that the distance from (u(�); v(�))T to line L1 (the line supporting E1) is

constant d1 yields:

0
B@
u(�)� q1

v(�)� r1

1
CA �
0
B@

cos(� + �1)

sin(� + �1)

1
CA = (u(�)� q1) cos(� + �1) + (v(�)� r1) sin(� + �1) = d1:

(B.2)

Likewise, writing that the distance from (u(�); v(�))T to line L2 (the line supporting

E2) is d2 yields:

(u(�)� q2) cos(� + �2) + (v(�)� r2) sin(� + �2) = d2: (B.3)

We want to compute the intersection of curve U and line L. Suppose that the inter-

section occurs at (u; v)T . We can then set u(�) = u and v(�) = v in (B.2) and (B.3),

and use the resulting equations to eliminate u and v in (B.1). We obtain after some

simpli�cation:

(r1 � r2) cos(�� �1 � �2 � 2�) + (q1 � q2) sin(�� �1 � �2 � 2�)�

2d2 sin(�� �1 � �) + 2d1 sin(�� �2 � �) + K = 0; (B.4)

where

K = r2 cos(�� �1 + �2) � r1 cos(� + �1 � �2)+

2d sin(�1 � �2) + q1 sin(� + �1 � �2) � q2 sin(�� �1 + �2)

Finding the roots of this equation amounts to solving a trigonometric eqation in �

which can be done in closed form. The intersection points of U and L are the points

(u; v)T at the root orientations � that are within the range [�L; �H ]. To compute the

intersection of a line segment supported by the given line L, an extra step is needed for

testing whether any of the obtained intersection points is contained in the line segment.
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