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Abstract

We address the problem of computing immobilizing fixtures and grasps of three-
dimensional objects, using simple fixturing devices and grippers with both discrete
and continuous degrees of freedom. The proposed approach is based on the notion of
second-order immobility introduced by Rimon and Burdick [48, 49, 50], which is used
here to derive simple sufficient conditions for immobility and stability in the case of
contacts between spherical locators and polyhedral objects. In turn, these conditions
are the basis for efficient geometric algorithms that enumerate all of the stable immobi-
lizing fixtures and grasps of polyhedra that can be achieved by various types of fixturing
devices and grippers. Preliminary implementations of the proposed algorithms have
been constructed, and examples are presented.

1 Introduction

We address the problem of immobilizing an object through a few contacts with simple modu-
lar fixturing elements, with applications in manufacturing (fixturing) and robotics (grasping).
Our approach is based on the notion of second-order immobility introduced by Rimon and
Burdick [48, 49, 50], and it is related to recent work in fixture planning by Wallack and
Canny [57, 58], Brost and Goldberg [5], and Wagner, Zhuang, and Goldberg [56].

For concreteness, let us consider the fixturing device shown in Figure 1: it consists of two
parallel plates with locator holes drilled along a rectangular grid, and of a set of spherical
locators with integer height and radius. Four of these locators can be selected to form a
fixture; either two of them are mounted on each plate (type I configuration, Figure 1(a)),
or three locators are mounted on the first plate, the last one being mounted on the second
plate (type II configuration, Figure 1(b)). The distance between the plates is a continuously
adjustable degree of freedom of the device. (This device is a generalization of the two-

dimensional fixturing vise proposed by Wallack and Canny [57, 58].)
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Figure 1: The proposed fixturing device: (a) type I configuration, (b) type II configuration.

Our goal is to compute the locator configurations (i.e., placements and heights) as well
as the plate separation that will guarantee that a polyhedral part in frictionless contact
with the locators is immobilized. To solve this problem, we must (1) formulate operational
conditions for immobility, (2) enumerate all of the locator configurations that may achieve
immobility, and (3) for each of these configurations, decide whether there exists a pose of the
fixtured object that simultaneously achieves contact with the four locators and guarantees
immobility. Our approach to step (1) is to specialize the conditions formulated by Rimon
and Burdick to the class of fixturing elements and objects of interest. Step (2) can then
be reduced to solving a combinatorial problem, so we can attack step (3) using numerical
algebraic methods [28, 29, 37|.

It should be noted that the conceptual design shown in Figure 1 can be implemented
using standard modular fixturing elements such as the ones available in the QU CO kit: for
example, a type [ configuration can be constructed using two spherical locators mounted on
a plate and two additional locators mounted on a beam clamp (Figure 2). A similar assembly
with three locators and an adjustable vertical clamp can be used for type II configurations.

Although we will emphasize the fixturing problem in most of the paper, our approach
applies to robotic grasp planning and other related problems (see Section 4). In particular,
we are also developing an automatically reconfigurable gripper (Figure 3) which consists of
two parallel plates whose distance can be adjusted by a computer-controlled actuator. The
top plate carries a rectangular grid of individually-actuated locators, which can translate
vertically under computer control. The bottom plate is a bare plane with three passive
planar degrees of freedom, which are used to simulate the absence of friction and ensure
grasp stability. This design is reminiscent of Goldberg’s sliding-jaw gripper [17].

The rest of this paper is organized as follows. Previous work in fixture and grasp planning



Figure 2: Implementing a type I configuration of the proposed fixturing device using standard
modules from the QU CO Kkit.

L 1
U U

Figure 3: A reconfigurable gripper. An actuated locator is associated with each grid point.
To avoid friction effects, the bottom plate should have three passive planar degrees of free-
dom.

is reviewed in Section 2. Our approach is described in Section 3: sufficient conditions for
immobility and stability are derived in Section 3.1; they are used in Section 3.2 to design
an efficient algorithm for enumerating all immobilizing stable fixtures of a given polyhedral
object using the device shown in Figure 1. This algorithm is adapted to the problem of
planning immobilizing grasps for the reconfigurable gripper of Figure 3 in Section 4, where
some other extensions are also described. Preliminary experiments are presented in Section

5. Section 6 concludes with a brief discussion of our approach and future research directions.

2 Related Work

Modular fixturing systems consist of a kit of modules that can be reconfigured to fixture
different parts. They have the potential of avoiding the costs associated with the design of
custom fixtures, but pose the problem of automatically planning the module configurations

adequate for a given part geometry. Traditionally, fixture designers have relied on heuristics



such as the 3:2:1 fiszturing principle [19, 53]: the object to be fixtured is first positioned
relative to a plane (primary datum) defined by three contact points; it is then positioned
relative to a line (secondary datum) defined by two additional contact points, and finally
positioned relative to a last point contact (tertiary datum). When the six points have been
chosen correctly, the position of the fixtured object is completely determined as long as the
contacts are maintained (deterministic positioning [1]). The object is then clamped into
place by one or several additional contacts (total constraint [1]). Positioning is typically
achieved through contact with passive fixturing elements such as plates, vee blocks, and
locators, while clamping is achieved through contact with active fixturing elements, such as
vises, toe clamps, or chucks.

The theoretical justification for such an approach finds its roots in the dual role of fixtures:
immobilizing a part and resisting the forces and torques involved in manufacturing tasks such
as assembly or machining.! Since screw theory [2, 22, 41] can be used to represented both
displacements (twists) and forces and moments (wrenches), it is an appropriate tool for
analyzing and designing fixtures. Indeed, it is known that six independent contact wrenches
are necessary to prevent any infinitesimal displacement which maintains contact, and that
a seventh one is required to ensure that contact cannot be broken (these correspond to the
positioning and clamping contacts introduced above) [24, 54]. Such a fixture prevents any
infinitesimal motion of the object, and it is said to achieve form closure [41, 47, 52]. A
system of wrenches is said to achieve force closure when it can balance any external force
and torque. Like wrenches and infinitesimal twists [51], force and form closure are dual
notions and, as noted in [36, 39] for example, force closure implies form closure and vice
versa.” In particular, fixtures achieving form/force closure also fulfill their second role as
devices capable of resisting external forces and torques.

Past approaches to fixture planning have been based on expert systems [14, 18, 32],
kinematic analysis and screw theory [1, 3, 8, 34], or a combination of both [12, 16]: Markus

et al. have used a rule-based system to interactively design fixtures for box-type parts and to

! There are of course other issues involved in fixturing, for example the analysis of part deformation under
clamping, see [10, 20] for approaches using finite-element methods.

2Note that there is unfortunately no general agreement on terminology in the grasping literature (see
[55, 33] for discussions of this problem): for example, Reulaux [47], Salisbury [52], Ji [23], Markenscoff et al.
[30] and Trinkle [55] use the expression form closure for what we call force closure, and reserve the expression
force closure for grasps that can only balance certain external loads. Our definitions match the ones used
by Mishra et al. [35], Nguyen [39], and Murray et al. [38].



select appropriate fixture modules [32]. Ferreira and Liu have used a generate-and-evaluate
approach to determine the orientation of workpieces for machining operations [14]. Hayes and
Wright have proposed Machinist, an expert-system-based process planner that incorporates
fixturing information in the construction of a machining plan [18].

While expert systems are limited in their ability to generate fixture configurations based
on analytical considerations, approaches based on screw theory can accurately predict the
performance of fixture designs: Asada and By have proposed the Automatically Reconfigured
Fizturing (ARF) system, which uses a detailed kinematic analysis to derive conditions for
deterministic positioning, part accessibility and detachability, and total constraint [1]. Their
approach has been integrated into a robotic assembly cell. Chou, Chandru, and Barash have
developed a mathematical method based on screw theory for analyzing and synthesizing
fixtures, and used linear programming to generate optimal clamp positions constrained to
lie within convex contact polygons [8]. Bausch and Youcef-Toumi have introduced the notion
of motion stop which represents the geometric resistance of a contact point to a given screw
motion, and they have used it to compare fixture configurations. Their approach is integrated
with the CATTA CAD system and is capable of synthesizing optimal fixture configurations
from a discrete set of candidates.

Finally, it should be noted that some systems bridge the gap between expert systems
and kinematic and force analysis: Gandhi and Thompson have proposed a methodology that
relies on expert knowledge, force analysis, and geometric reasoning to synthesize and analyze
modular fixture configurations [16]. Englert has also combined analytical considerations and
knowledge-based methods to identify tradeoff relations between part production attributes
and propose a control structure for planning part setup and clamping [12].

In the robotics community, the notions of form and force closure have been the basis of
several approaches to grasp planning. Mishra, Schwartz, and Sharir [35] have proposed linear-
time algorithms for computing a finger configuration achieving force closure for frictionless
polyhedral objects. Markenscoff and Papadimitriou [31] and Mirtich and Canny [33] have
proposed algorithms for planning grasps which are optimal according to various criteria [13].
In each of these works, the grasp-planning algorithm outputs a single grasp for a given set
of contact faces. Assuming Coulomb friction [39], Nguyen has proposed instead a geometric
method for computing mazimal independent two-finger grasps of polygons, i.e., segments

of the polygonal boundary where the two fingers can be positioned independently while



maintaining force closure, requiring as little positional accuracy from the robot as possible.
This approach has been generalized to handle various numbers of fingers and different object
geometries in [4, 7, 42, 44, 45, 46]

Although robotic grasping and fixture planning are related (in both cases, the object
grasped of fixtured must, after all, be held securely), their functional requirements are not
the same: as remarked by Chou, Chandru, and Barash [8], machining a part requires much
better positional accuracy than simply picking it up, and the range of forces exerted on the
parts are very different. The role of friction forces is also different: in the grasping context,
where fingers are often covered with rubber or other soft materials, friction effects can be
used to lower the number of fingers required to achieve form closure from seven to four;
in the fixturing context, on the other hand, it is customary to assume frictionless contact,
partly due to the large magnitude and inherent dynamic nature of the forces involved [§]
(see, however [27] for an approach to fixture planning with friction). Finally, the kinematic
constraints on the positions of the contacts are also quite different.

Nonetheless, as noted by Wallack [58], there has recently been a renewed interest in
the academic robotics community for manufacturing problems in general and fixturing in
particular. Mishra has studied the problem of designing fixtures for rectilinear parts using
toe clamps attached to a regular grid, and proven the existence of fixtures using six clamps
[34] (this result has since then been tightened to four clamps by Zhuang, Goldberg, and
Wong [59]). In keeping with the idea of Reduced Intricacy Sensing and Control (RISC)
robotics of Canny and Goldberg [6], Wallack and Canny [57, 58] and Brost and Goldberg
[5] have recently proposed very simple modular fixturing devices and efficient algorithms for
constructing form-closure fixtures of two-dimensional polygonal and curved objects. Wagner,
Zhuang, and Goldberg [56] have also proposed a three-dimensional seven-contact fixturing
device and an algorithm for planning form-closure fixtures of a polyhedron with pre-specified
pose.

All of the approaches discussed so far are based on the concepts of form and force closure.
A different notion is stability: a part is said to be in stable equilibrium if it returns to its
equilibrium position after having been subjected to a small displacement. Stability is very
important in real mechanical systems which cannot be expected to have perfect accuracy.
Nguyen has shown that force (or form) closure implies stability [40], but Donoghue, Howard

and Kumar have shown that there exist stable grasps or fixtures which do not achieve form



closure [11, 21]. Recently, Rimon and Burdick have introduced the notion of second-order
immobility [48, 49, 50] and shown that certain equilibrium grasps (or fixtures) of a part
which do not achieve form closure effectively prevent any finite motion of this part through
curvature effects in configuration space. They have given operational conditions for immobi-
lization and proven the dynamic stability of immobilizing grasps under various deformation
models [50]. An additional advantage of this theory is that second-order immobilization can
be achieved with fewer fingers (four contacts for convex fingers) than form closure (seven con-
tacts [24, 54]). As detailed in the next section, we propose to exploit second-order immobility

in fixture planning for three-dimensional polyhedral objects.

3 Proposed Approach

We first derive simple sufficient conditions for immobility and stability in the case of contacts
between spherical locators and polyhedral objects (Section 3.1). We then use these conditions
in Section 3.2 to design an efficient algorithm for planning stable immobilizing fixtures of a

polyhedral object with the device shown in Figure 1.

3.1 Sufficient Conditions for Immobility and Stability

A sufficient Condition for Immobility. Let us consider a rigid object and the contacts
between d locators and this object. Let us also denote by p, (i = 1,..,d) the positions of
the contacts in a coordinate frame attached to the object, and by n; (i = 1,..,d) the unit
inward normals to the corresponding faces.

We say that equilibrium is achieved when the contact wrenches balance each other, i.e.,

(™) =0 0
i=1 P X M
for some \; > 0 (i = 1,..,d) with %, \; = 1. Equilibrium is a necessary, but not sufficient,
condition for force and form closure.

Czyzowicz, Stojmenovic and Urrutia have recently shown that three contacts in the plane
and four contacts in the three-dimensional case are sufficient to immobilize (i.e., prevent
any finite motion of) a polyhedron [9]. Rimon and Burdick have formalized the notion of
immobilizing grasps and fixtures in terms of isolated points of the free configuration space

[48, 49, 50]. They have shown that equilibrium fixtures that do not achieve form closure may
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still immobilize an object through second-order (curvature) effects in configuration space:
a sufficient condition for immobility is that the relative curvature form associated with an

essential equilibrium ?® grasp or fixture and defined by
d

Krel = Z)\z|’wz|f€z
i=1

be negative definite. Here the weights \; are the equilibrium weights of (1), |w;| is the
magnitude of the wrench exerted by locator number 7, and x; is the curvature form associated
with the corresponding contact; this quadratic form is defined by:

1
|w;|

(o', wh)(Cl LiCi + D) <Z> ,

KR; =

where v and w denote the translational and rotational parts of an infinitesimal twist, £; is a
matrix related to the surface curvatures of the body and locator at the contact points, and
the matrices C; and D; depend only on the position p, of the contact point and the normal
to n; to the body’s surface in p;.

Specializing the above equations to equilibrium contacts between spherical locators and

polyhedra yields:
d
Krel = Z NwlKCw, where (2)

i=1
Ki = ([nix]" [pi])® — rilnix] [rix],
where 7; denotes the locator’s radius, and by definition, A° = %(A + A7)
Note that there is no term involving the translation v in this case. It follows from (2)
that a sufficient condition for immobility is that the 3 x 3 symmetric matrix
d
K=> XK
i=1

is negative definite.

A Sufficient Condition for Stability. We prove a sufficient condition for the stability
(in the sense of Nguyen [40], see also [11, 21]) of a fixture configuration, and show that it
is equivalent to the immobility condition derived in the previous paragraph (see [50] for a

more general statement of the dynamic stability of immobilizing grasps).

3Essential equilibrium is achieved when the coefficients \; in (1) are uniquely defined and strictly positive
[49].



Each locator is modeled as a sphere of radius r; attached to a linear spring whose axis is
aligned with the inward normal to the corresponding contact face. As the solid moves, the

sphere slides on the contact face and translates along the corresponding spring (Figure 4).

p

displaced

Figure 4: Small displacement of a plane in contact with a sphere mounted on a spring.

The potential energy of the fixture is the sum of the potential energies of the individual
springs, i.e.,

2
0-,"7

N | —

>

i=1
where o; is the displacement of the spring associated with locator number ¢ from its position
at rest (we assume a unit spring constant for each locator). In general we can write o; =
— X+ p;, where )\; is the compression at equilibrium (which is of course equal to the coefficient
Ai in (1)) and p; denotes the displacement of the sphere along n; corresponding to a given
displacement of the solid. An equilibrium fixture will be stable when it corresponds to a
local minimum of the potential energy (as a function of small displacements of the object).
A rigid displacement is specified by a rotation R of axis @ and angle 6, and a translation v.
Following Nguyen [40], we use a second-order Taylor expansion of the exponential definition
of rotations, and parameterize p; by the twist (v, w), where w = fa.

The gradient and Hessian of the potential energy are respectively

d
VU = Z(—)\i + p;)Vy;  and (3)

i=1
VU = L, ViVl + (=X + 1) V.

A simple calculation shows that the gradient of yu; at the origin is the wrench (nl,p; x

n?)T and it follows as expected that the fixture is in equilibrium if and only if equation (1)



is satisfied. To decide whether the equilibrium is stable, we must examine the Hessian of the

potential function. Computing the Hessian of y; at the origin and substituting in (3) yields:

V2Uloo=F+8S, where

d T
n; n;
F=) ( ’ >< ’ ) . and
i=1 pZ X n’i p’t X ni

d
0 0
=—> N\ .
S=-2N (0 x.)
The equilibrium is stable when F + S, the Hessian of the potential function, or stiffness
matriz, is positive definite. The matrix F is of course positive semi-definite, its zeros being

the twists reciprocal to the wrenches exerted by the locators (which are guaranteed to exist

for frictionless fixtures when d < 6). These twists satisfy the equations
vn+tw:(p,xn)=0 for i=1,...,d (4)

For equilibrium fixtures, only three of the above equations are independent, and for any
choice of w there exists in general a vector v such that (4) is satisfied. Thus V2U is positive
definite if and only if the matrix IC is negative definite. This condition is the same as the

sufficient condition for immobility derived earlier.

3.2 Planning Four-Locator Immobilizing Fixtures of Polyhedral
Objects

In this section, we focus on the four-locator case and present an efficient algorithm for
enumerating all immobilizing fixtures of a polyhedral object that can be achieved with the
device of Figure 1. To simplify this planning process, we reduce the problem of achieving
contact between a spherical locator and a plane to the problem of achieving point contact
with a plane. This is done without loss of generality by growing the object to be fixtured by
the locator radius and shrinking the spherical end of the locator into its center (see [5, 57, 58]
for similar approaches in the two-dimensional case). For the sake of conciseness, we restrict
our attention here to type II fixture configurations. Planning type I configurations involves
analogous methods and has the same cost

The algorithm can be summarized as follows. For each quadruple of faces do:
1. Test whether they can be held in essential equilibrium.
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2. Enumerate all locator configurations potentially achieving equilibrium through con-

tacts with the selected faces.

3. For each such configuration, compute the pose of the object and test the immobilization

condition.

Testing Essential Equilibrium For a polyhedral object, the normals n; are fixed vectors.
To ensure essential equilibrium, we restrict our attention to quadruples of faces such that
no three of them have coplanar normals. This ensures that the coefficients A; in (1) are
uniquely defined, and it allows us to compute them from the equation Y, \;n; = 0 and
to test whether they all have the same sign. If they do not, the four candidate faces are
rejected. If they do, we obtain three independent linear constraints on the positions of the

locators on the faces: \

2 (Aini) x p; = 0. (5)

i=1
(Note that the coefficients ); are now constants depending only on the choice of faces.)
We can parameterize each contact p, by two variables u;, v;. Assuming convex faces, the
fact that the contact points actually belong to the faces can be written as a set of linear
inequalities on u;, v;:

fzy(u’t:v’t) S 07 j - 17 "Jk’i7 (6)

where k; is the number of edges that bound face number .

Given a choice of four faces, a necessary and sufficient condition for the existence of
contact points within those faces which achieve equilibrium is that there exists a solution to
(5) subject to the constraints (6). This can be tested using linear programming. If the test
is negative, the quadruple of faces is rejected.

For quadruples passing this second test, there is only (in general) a subset of each face that
can participate in an equilibrium configuration. The subset corresponding to face number
i is determined by projecting the five-dimensional polytope defined by (5) and (6) onto the
plane (u;,v;). Several algorithms can be used to perform this projection, including Fourier’s
method [15], the convex hull and extreme point approaches of Lassez and Lassez [26, 25],
and the Gaussian elimination and contour tracking techniques of Ponce et al. [46].

For faces with a bounded number of edges, all of these algorithms run in constant time,

and they can be used to construct sub-faces that can be passed as input to the rest of the

11



algorithm.

Enumerating Locator Configurations An exhaustive search of all possible grid coor-
dinates would be extremely expensive: consider an object of diameter D (measured in units
equal to the distance between successive plate holes); there are O(D?) type II possible con-
figurations: omne locator is at the origin with zero length, two locators have three integer
coordinates, the last locator has only two. A similar line of reasoning also applies to type I
configurations, and it yields the same order of complexity.

This has prompted us, like Wallack and Canny [57, 58] and Brost and Goldberg [5] in
the two-dimensional case, to use bounds on the distance between two faces to restrict the
set of grid coordinates under consideration. The minimum and maximum distances between
pairs of points belonging to two given faces can be computed in constant time as follows:
the maximum distance between two faces is always achieved for a pair of vertices. The
minimum distance, on the other hand, may be achieved for any pair of face, edge, or vertex
points (Figure 5). The first two cases shown in Figure 5 (face-face and edge-face pairs) only
occur when two faces are parallel or when one edge is parallel to a face, and they reduce to
computing the distance between a vertex and a face. Thus, there are only three non-trivial
cases: the vertex-face, edge-edge, and vertex-edge pairs, and the corresponding distances are

easily computed by constructing the unique straight line orthogonal to the pair of features

=
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Figure 5: A list of the feature combinations yielding the minimum distance between two
faces.

of interest.

Let us position the first locator at the origin with zero length. The integer point corre-
sponding to the second locator is then constrained to lie within the spherical shell centered at

the origin with inner radius equal to the minimum distance between the two corresponding
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faces and outer radius equal to the maximum distance. Given the position of the second
locator, the third locator is now constrained to lie within the region formed by the intersec-
tion of the two shells associated with the first and second locator. Finally, given the position
of the third locator, the fourth locator is constrained to lie within a region formed by the
intersection of three shells. The projection of this region onto the first plate yields the set
of integer coordinates of the locator. Its last coordinate ¢ is determined at the next stage of

the algorithm.

Computing the Pose Associated with a Given Locator Configuration. To avoid
imposing a particular parameterization of the object’s pose, we take advantage of the fact
that a tetrahedron is completely determined by the lengths of its six edges.

We define the tetrahedron whose vertices are the four contacts by six quadratic equality

constraints of the form
Ip; —p;I? =17, withi=1,2,3and i < j <4, (7)

which specify the lengths of the tetrahedron’s edges.

At this point, the integer grid coordinates of the locators are fixed, and the coefficients
l;; are only functions of the variable §. Thus the equalities (5) and (7) form a system of nine
equations in the nine unknowns w;,v; (i = 1,..,4) and §. Since three of these equations are
linear, and the remaining six are quadratic, this system admits at most 2° = 64 solutions
which can easily be computed using homotopy continuation [37] or the toolkit for algebraic
computation described in [28].

Once the solutions have been found, we can check whether they satisfy the linear in-
equalities (6) defining the contact faces, then check whether they achieve immobilization.
Note that the object pose corresponding to a given locator configuration and plate distance
is easily computed: since one of the locators is at the origin, we only need to compute the
rotation mapping the fixturing device’s coordinate frame onto the object’s coordinate frame.
Since we know the positions of the contacts in both coordinate systems, it is a simple matter

to compute the corresponding rotation.

Algorithm Analysis. For each quadruple of faces, enumerating the locator configurations

amounts to determining the integer positions falling in regions defined by the intersection
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of two, four, or six half-spaces bounded by spheres. A naive approach to that problem is to
test every grid point against the constraints defining the regions of interest with cost O(D?),
where D is as before the diameter of the object measured in units equal to the distance
between two successive holes.

A better approach is to use a three-dimensional scan-line conversion algorithm to deter-
mine the integer points within a region in (optimal) time proportional to the number V' of
these points: scan-line conversion algorithms are used in computer graphics to render polyg-
onal and curved shapes by enumerating pixels within these shapes one row at a time; they
only require the ability to trace the shape boundaries and find their extrema in the horizontal
and vertical dimension, and they have a time complexity linear in the size of their output.
It is relatively straightforward to generalize these algorithms to the three-dimensional case:
we can construct an explicit representation of the region boundaries by a procedure akin to
boundary evaluation in constructive solid geometry. This process is simplified by the fact
that in our case the boundary elements are sphere patches, circular arcs (intersections of two
spheres), and vertices (intersections of three spheres). Constructing the boundary represen-
tation and its extrema in any direction can be done in constant time (given our bounded
number of half-spaces), and scan-line conversion can then proceed, one plane at a time, in
time proportional to V' (Figure 6). Thus, the time complexity of our overall algorithm is

O(N*V) where N is the number of faces of the polyhedron. Of course, V is still, in the worst

case, O(D?).
/%(_\
scan line

L]
circular
arc

Figure 6: Illustration of scan-line conversion in the 2D case: spans between consecutive
boundary elements are filled one scan-line at a time.

To obtain a more realistic estimate of the algorithm behavior, we can parameterize V' by
the diameter D of the object and the maximum range between the minimum and maximum

distance between two faces, say r. If we assume that » << D and that the distance between

14



two faces is bounded below by some strictly positive number,? then the regions corresponding
to the possible positions of the second, third, and fourth locator have respectively the “thick”
spherical, circular, and punctual shapes shown in Figure 7. The corresponding volumes are
respectively O(D?r), O(Dr?), and O(r?). The projection of the latter volume on the plate
has an area of O(r?), and it follows that V = O(D?r°) < O(D?). Experiments will allow us

to conduct an empirical evaluation of this model.

(@ (b) (c)

Figure 7: The regions shown in grey correspond to the position of: (a) the second locator,
(b) the third locator, (c¢) the fourth locator.

4 Extensions

In this section, we show that our general approach to fixturing applies to a variety of related
problems. For the sake of conciseness, we do not go into as much detail as in the previous

section.

4.1 Planning Immobilizing Grasps for a Reconfigurable Gripper

Consider the reconfigurable gripper shown in Figure 3: it is similar to the device of Figure 1,
except that the bottom plate is just a bare plane, and that the top plate carries a rectangular
array of individually-actuated locators. This gripper can be used to immobilize a polyhedral
object through contacts with three of the top plate locators, and either a face, an edge-
and-vertex, or a three-vertex contact with the bottom plate. Let us assume for the sake
of simplicity that the faces of the polyhedron are triangular (convex faces can be handled
in similar ways, see [8] for a related approach). Any wrench exerted at a contact point
between a face and the bottom plate can be written as a positive combination of wrenches
at the vertices. Likewise, the wrenches corresponding to an edge-and-vertex contact are

positive combinations of wrenches exerted at the end-points of the line segment and at the

4This is of course not true in general for an arbitrary polyhedron; however in practice two contact points
are separated by at least one unit of distance.
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vertex. Thus equilibrium configurations can be found, in general, by writing the equilibrium
equation (1) for six elementary wrenches.

We detail the case of a contact between the bottom plate and a triangular face with
unit normal n and vertices v; (i = 1,2,3). Let p, and n; (i = 1,2, 3) denote the remaining
contact points and surface normals; we take advantage of the fact that the overall scale of

the wrenches is irrelevant to rewrite (1) as

3

3
n mn; - .
ZAi(vixn)+§ L <Pi><’ni>_0’ with (8)

i=1 i=1
M+ X+A3=1and A\, pi; >0 (i =1,2,3).

When the four surface normals are linearly independent, the equation n = — Zf’zl i
allows us to compute the coefficients p; and check whether they have the same sign. If they
do not, the quadruple of faces under consideration is rejected. If they do, (8) provides four
linear equations in the the nine unknowns \;, u;,v; (i = 1,2,3), where u;, v; parameterize
as before the position of the contact point p, within the corresponding face. We test the
existence of equilibrium configurations by using linear programming to determine whether
the polytope defined by the constraints (6), (8), and \; > 0 (i = 1,2, 3) is empty. When this
polytope is not empty, we determine as before the subset of each face that may participate in
an equilibrium configuration by projecting it onto the plane w;, v; (i = 1,2,3). Ideas similar
to the ones used in the four-locator case can be used to reduce the subset of integer locator
positions that needs to be considered.

We now show how to compute the pose of the object for a given configuration of the
locators. We write that the difference in height between the contact points p; and p,
(j = 1,2) is equal to the difference in height J; between the corresponding locators. This
yields two linear equations

(p,—p) - m=9; j=12 (9)
in the unknowns u;,v; (i =1,2,3).

We still need three additional equations to compute the pose of the object. Let us denote
by q; (i = 1,2,3) the projections of the three locators onto the plane of the bottom plate.
The planar transformation mapping the vector g, — g, onto the vector g; — q, is the linear
map 7 obtained by composing the rotation that aligns the two vectors with the scaling that

gives them the same length. The transformation 7 is trivially determined from the points

q;-
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Let us denote by p! = p, — (p; - n)n the projection of the point p, (i = 1,2,3) onto the
plane of the bottom plate. We now write that the two triangles formed respectively by the

points p, and g, are similar. This can be expressed by the linear vector equation
(p3 —p1) = T (ps — pY), (10)
which expresses the fact that the two triangles are homotetic, and by the quadratic equation
Py — P = la, — @, (11)

which expresses the fact that the two triangles have the same size.

Together, (8), (9) and (10) form a system of eight linear equations that can be used to
solve for eight of the unknowns as a function of the remaining one. Substituting in (10)
finally yields a univariate quadratic equation which is readily solved.

It follows that we can enumerate as before the equilibrium configurations, then test them
for immobility. For planar contacts, equilibrium will guarantee immobilization, while for
edge-and-vertex contacts a conservative condition will be to use point contact (r; = 0) in
the expression of the relative curvature form. The complexity of the algorithm is O(N*DS).
Interestingly, the solution of a six-contact fixturing problem has a lower complexity than the

four-contact fixturing problem encountered before.

4.2 Planning Three-Locator Stable Equilibrium Fixtures

Consider the problem of computing “fixture” configurations in which a polyhedral object
rests in a stable fashion on three locators with integer lengths attached to a single horizontal
plate (Figure 8).° Here we take the effect of gravity into account, and assume that the

vertical is aligned with one of the axes of the grid. The method is similar to the earlier one.

Figure 8: A three-locator “fixturing” device.

5This problem was suggested by Ken Goldberg.
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We choose the center of mass of the object as the origin. Writing that the weight w and

the reaction forces achieve equilibrium yields

<Qg> +§‘;Ai<pizini> =9 (12)

with A\, >0 for for +=1,2,3.
We can assume unit weight, and by choosing one of the locators as the origin of the grid,

we obtain six more quadratic constraints:

) |P1 - I’2|2 = l%2
|w| - 1: |p2 - p?;|2 = l%?) ’ and (13)
|P3 - 171|2 = l%l

(pg_pl)"w:k2

Note that the last two equations are necessary to ensure that the vertical is aligned with

{ (py —p1) - w =k

one of the grid axes. Together, equations (12) and (13) yield nine quadratic constraints in
the nine variables \;, u;, v; (1 = 1,2, 3) (it is not necessary to explicitly use w as an unknown,
since the vector — 2?21 Ain; can be used instead). The total degree of the system is 2 = 512.
Once the solutions of the equations have been found, they can be checked to see whether
the corresponding contacts actually lie inside the faces and whether the equilibrium is stable
(of course immobilization is not achieved anymore in this case). It should be noted that
planning the position of three locators instead of four reduces the complexity of planning to
O(N3®D%). Another important point is that for the device of Figure 8 to work properly, it is
very important that no friction occurs at the contacts. This can be achieved by mounting

the locator caps on ball bearings, at the cost of some loss in positioning accuracy.

4.3 Four-Finger Immobilizing Grasp Planning

We now consider the problem of planning a four-finger immobilizing grasp of a polyhedral ob-
ject. First, it should be obvious that when the positions of the contact points between fingers
and object faces are unconstrained, equations (5) and (6) form a set of linear constraints
defining the set of all equilibrium grasps. Thus this set can be completely characterized
through linear programming. As shown earlier, an equilibrium grasp achieves immobiliza-

tion when the matrix C is negative definite. For a given choice of faces, the only unknowns in
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the matrix K are the finger positions p,. However, testing for definite negativeness involves
cubic constraints on the elements of K.

As shown in [46], four-finger equilibrium grasps can be divided into three sub-classes:
concurrent, two-pencil, and regulus grasps (Figure 9).° Thus we can examine each class
separately: by specializing for each of them the expression of K; given in (2) and, if appro-
priate, the twist reciprocity condition given in (4), we will simplify the form of the immobility

condition with the goal of finding linear sufficient conditions for immobility.

5

(a) (b) ©) .

Figure 9: Classes of grasps achieving equilibrium: (a) the contact forces intersect in one
point; (b) they form two non-coplanar pencils; (c¢) they form a regulus. The contact faces
are not shown.

We illustrate this process with concurrent grasps, such that the lines of action of the four

forces intersect in one point (Figure 9(a)). These grasps can be parameterized by

D; = Py — pPiNi, (14)

where p, is the point where the lines of action of the forces intersect, and p; is the signed

distance between p, and p,, such that p; > 0 if p, is on the interior side of face number

i. Substituting in (2) and taking advantage once again of the fact that, at equilibrium,
le Ain; = 0, we obtain immediately

4

K=— Z)\,(p, =+ Ti)[niX]T[niX].

i=1

A sufficient (but not necessary) condition for IC to be definite negative is of course that
pi+ri >0, for i=1,...,4, (15)

and it follows that the immobilizing grasps satisfying this condition can be completely char-

acterized through linear programming under the constraints (5), (6), and (15). Since the

50f course, four co-planar forces can also achieve equilibrium, but not essential equilibrium.
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stiffness matrix of the grasp is determined by K;, we can also compute optimal grasps by
maximizing min;(p; + ;) under these constraints.
We plan to seek similar linear sufficient conditions for the other two types of equilibrium

grasps.

5 Implementation and Results

We have fully implemented the four-locator fixturing algorithm and the algorithm for plan-
ning immobilizing grasps using the reconfigurable gripper proposed in Section 4.1. The
fixtures have been physically implemented using QU CO fixturing elements as shown in Fig-
ure 2. Because we are still in the process of constructing the reconfigurable gripper, we can
only present simulated grasping experiments. Both implementations have been written in C,
and they include the two pruning stages proposed in Section 3: the subsets of the faces that
may participate in an immobilizing grasp are first found by projecting the polytope defined
by the equilibrium constraints (5) and (6) onto the parameter space of the faces. Candidate
configurations that satisfy the distance constraints associated with these subsets of the faces

are then enumerated by scan-converting the volumes bounded by the corresponding spherical

shells.

5.1 Four-Locator Fixture Planning

As shown in Figure 2, we have constructed the proposed four-locator fixturing device using
modular fixturing elements from the QU CO kit. We have used an aluminum base plate
with an array of threaded holes, compatible threaded bolts and nuts, removable spherical
locator tips, and a horizontal beam. The bolts and spherical tips are used as locators, and
different locator heights are implemented by attaching different number of nuts to the bolts
before screwing them through the threaded holes of the base plate. The horizontal beam is
used as a support for the top locators.

Figure 10 shows some simulation results. The test object is a tetrahedron, and each
result is shown from two different viewpoints. Figure 11 shows the fixturing device in the
immobilizing configuration given in 10.a.

Table 1 shows some quantitative results for different grid resolutions. In our experiments

we have used a K x K grid with various values of K, as well as locators whose height may
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d)
Figure 10: Some solutions for the four-locator fixturing device.

Figure 11: The fixturing device immobilizing a tetrahedron.
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take ten discrete values. Table 1 shows the results obtained without any pruning (N), using

spherical shell pruning only (S), and combining the projection- and shell-pruning stages

(P+S).
K # Candidates
N S P+S
3 6,377,292 267,868 223,224
4 63,700,992 4,429,772 3,601,440
5 | 379,687,500 | 20,720,018 | 17,709.408
6 | 1,632,586,752 | 297,104,432 | 237,683,544

Table 1: Quantitative results using a tetrahedron as a test object.

We have used homotopy continuation [37] to solve the polynomial system of degree 64
that determines the poses of an object compatible with a given locator configuration. Our
distributed implementation of continuation takes roughly 2.5 seconds on two networked four-
processor SUN SPARCstations 10 to solve this system. Thus we have not been able in our
actual experiments with moderate grid resolutions to compute in a reasonable time all of
the achievable fixtures. Instead, we have stopped the computation once a few immobilizing
fixtures had been found. The statistics given in Table 1 have been obtained by running
only the part of the algorithm that enumerates all possible locator configurations. We have
recently found a new pose parameterization that only requires solving a system of degree 32

and are in the process of implementing it.

5.2 Planning Grasps for the Reconfigurable Gripper

In the case of the gripper, we have recently found that the orientation of an immobilized
object is independent of the heights of the three locators, and that this orientation can be
computed by solving a univariate quadratic equation. This has allowed us to construct an
efficient implementation of our grasp planning algorithm. Figures 12 and 13 show some of
the grasps found for a tetrahedron for two different grid resolutions, and Table 2 shows some
quantitative results. In this case, we have been able to compute all of the immobilizing
grasps; the run times reported in Table 2 were measured on a SUN SPARCstation 10.
Figures 14 amd 15 show some more simulation examples using a polyhedron with ten

faces. As shown in Table 3, in this case pruning eliminates a much larger percentage of the
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Figure 12: Grasping a tetrahedron: some solutions for a 5 x 5 grid.

Figure 13: Some solutions for a 6 x 6 grid.
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K | Number of | Run Time (s) # Candidates
Solutions | N | S | P+S N S | P+S
3 0 1|1 1 33 10 10
4 160 1|1 1 141 42 40
) 704 2|1 2 411 | 145 | 135
6 1,963 4|2 2 927 | 391 | 378
7 4,263 8 | 4 4 1,839 | 795 | 751

Table 2: Quantitative results using a tetrahedron as a test object.

possible configurations, corresponding to the fact that, for most choices of faces, the range

between the minimum and maximum distances being smaller than in the previous case.

Figure 14: Grasping a 10-face polyhedron: some solutions for a 5 x 5 grid.

6 Discussion

We have proposed and implemented various algorithms for fixturing and grasping three-
dimensional polyhedra. We are in the process of constructing a prototype of the automati-
cally reconfigurable gripper whose conceptual design is shown in Figure 3.

There are obviously polyhedral objects which cannot be fixtured with our device (a trivial
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Figure 15: Some solutions for a 6 x 6 grid.

K # Sol Run Time (s) # Candidates

N S P+S N S P+S
3 0 20 1 2 2,772 750 712
1 189 a7 3 1 11,844 2,213 2,102
5 794 72 9 9 34,524 3,819 3,537
6 | 2,326 | 142 | 20 20 77,868 7,811 7,125
7 5,046 | 341 | 43 a1 154,476 | 16,259 | 14,951

Table 3: Quantitative results using a 10-face polyhedron

25
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example is an object whose diameter is smaller than the inter-locator distance). It would be
interesting to characterize precisely the class of fixturable objects (see [59] for a discussion
of the two-dimensional case).

Another interesting avenue of research would be to extend the proposed algorithm to
parts bounded by algebraic patches (see [58, Chapter 6] for the two-dimensional case). Our
overall approach extends to this case in a straightforward way, but working out the details
of how to enumerate locator configurations and dealing with the very high degree of the
equations involved should prove quite challenging.

Finally, we plan to investigate in-hand manipulation using our reconfigurable gripper.
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