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Abstract. This paper presents a method for approximate match of �rst-order rules

with unseen data. The method is useful especially in case of a multi-class problem or

a noisy domain where unseen data are often not covered by the rules. Our method

employs the Backpropagation Neural Network for the approximation. To build the

network, we propose a technique for generating features from the rules to be used as

inputs to the network. Our method has been evaluated on four domains of �rst-order

learning problems. The experimental results show improvements of our method over

the use of the original rules. We also applied our method to approximate match

of propositional rules converted from an unpruned decision tree. In this case, our

method can be thought of as soft-pruning of the decision tree. The results on multi-

class learning domains in the UCI repository of machine learning databases show

that our method performs better than standard C4.5's pruned and unpruned trees.

Keywords: approximate match, feature generation, inductive logic programming,

backpropagation neural networks

1. Introduction

The advantages of inductive logic programming (ILP) (Quinlan, 1990;

Muggleton, 1991; Muggleton & De Raedt, 1994) are the expressive

power of �rst-order logic representation and the ability of employing

background knowledge. ILP systems use background knowledge pro-

vided in form of �rst-order logic to generalize training examples, and

produce rules that �t the training examples. However, when we apply

an ILP system to a real-world domain, especially the domain where

there are several classes of examples or the noisy domain, the produced

rules may not cover or may not exactly match with the unseen data.

Consider for example the task of learning rules for the recognition

of English uppercase characters. In this task, there are 26 classes of

examples, i.e. 26 di�erent English characters, and the real-world data

usually contains noise such as noise due to the quality of the scanner.

To classify English characters, we may use an ILP system to learn rules

for each class. With exception of some systems which learn multi-class
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concepts (Baroglio & Botta, 1996; De Raedt & Laer, 1995; Martin &

Vrain, 1995; Blockeel & Raedt, 1997), most ILP systems work with

two classes of examples (positive and negative) and construct a set of

rules for the positive class. Any example not covered by the rules is

classi�ed as negative. If we want to employ these two-class systems to

learn a multi-class concept, we could do this by �rst constructing a set

of rules for the �rst class with its examples as positive and the other

examples as negative, then constructing the sets of rules for the other

classes by the same process. The learned rules are then used to classify

future data, and the rule that covers or exactly matches the data can

be selected as the output. One major problem of this method is that

some test data, especially noisy data, may not be covered by any rule.

Thus the method is unable to determine the correct rule. A commonly

used technique for solving this problem is to assign the majority class

recorded from training data to the test data that is not exactly matched

against any rule (Clark & Niblett, 1989; Dzeroski et al., 1996).

In this paper, we are interested in solving this problem by �nding the

rule that provides the best match with the data. The main contribution

of the paper is to present a method for the approximate match of ILP

rules by using a Backpropagation Neural Network (BNN) in case of

multi-class problems or noisy domains. The basic idea is that when

there is no rule covering an example, we can make use of rules which

partially match with (partially cover) the example. Some of the partially

matching rules may capture important features (properties), and some

may capture unimportant features of the examples. The best rule then

should be the rule that matches many important features and does

not necessarily match unimportant ones. The signi�cance level of each

feature is determined in terms of a weight that is trained by the BNN.

Our method can deal with a related problem when a test data is covered

by multiple rules.

To �nd the best matching rule, we also propose a novel technique

for generating features from a �rst-order rule. The feature generation is

based on the notions of closed chains and open chains. The chains de�ne

parts of rules (features) that are considered to be useful for checking

properties of the examples. The features are then used by the BNN for

the approximate match. We evaluate our method on four �rst-order

datasets. The results show improvements of our method over the use

of the original rules.

We also applied our method to approximate match of propositional

rules converted from an unpruned decision tree. In this case, our method

can be thought of as soft-pruning of a decision tree. Compared with

standard C4.5's pruned trees on twenty datasets of multi-class learning

domains in the UCI repository of machine learning databases (Merz et
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al., 1997), our method performs signi�cantly better on �ve domains,

worse on one domain and equally well on the rest.

The paper is organized as follows. Section 2 describes the method for

generating features from rules and the structure of the neural network.

Section 3 and 4 describes the results on �rst-order and propositional

learning problems, respectively. Section 5 describes related and future

work. Finally the conclusion is given in Section 6.

2. Approximate Match of ILP Rules Using Backpropagation

Neural Networks

Several works have shown that combining neural networks with sym-

bolic rules produced excellent performance (Towell & Shavlik, 1994;

Mahoney & Mooney, 1994; Botta et al., 1997). In this paper, a multi-

layer feedforward neural network is employed to select the rule that best

matches with the input data. The algorithm for training the network

used in our method is the backpropagation algorithm (Rumelhart et

al., 1986) that is widely applied to various classi�cation problems.

The following subsections explain the methods for generating fea-

tures, building a network from features, and training the network.

2.1. Feature Generation

Our method is based on the idea that when there is no rule covering

an example, we can make use of rules which partially cover (partially

match with) the example, i.e. rules of which some literals are true for

that example. The partially matching rule should not be neglected as it

may capture some important properties or features of the example. The

best rule should be the rule that matches many important features and

does not necessarily match with unimportant ones. The signi�cance

level of each feature is determined in terms of a weight trained by the

BNN which will be described later.

First, consider a �rst-order rule of which every literal in the body of

the rule has only variables occurring in the head. For example, consider

the following rule:

mesh(A,11)  long(A), one side loaded(A), fixed(A).

Each literal checks a feature of an example. In such a rule, we will use

each literal as a feature. We call this kind of feature singleton feature.

In a propositional rule, we can see that each feature examines a

particular value of an attribute, such as the feature outlook=sunny in

the following rule:

class=play  outlook=sunny, humidity � 75.
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However, it is more diÆcult to determine what should be used as fea-

tures when we consider �rst-order rules with new variables. A literal

with new variables itself may not check for a speci�c property of the

example, i.e. the literal alone may be meaningless without the presence

of other literals which make use of the newly introduced variables.

Most literals introducing new variables are for passing the introduced

variables to other literals that may check a property or introduce other

new variables again. Usually a newly introduced variable should end at

a literal that checks for a property. The connection of the variables via

the sequence of literals thus examines a feature of the example. Below

we give an algorithm to select a sequence of literals to be used as a

feature. Our method of feature generation is based on the notion of

closed and open chains.

De�nition 1 (Closed chain). A sequence of some literals in the body

of a rule is said to be a closed chain if every new variable not occurring

in the head of the rule appears at least in two literals of the sequence

and occurs at least once in a literal with variable(s) of the head or with

variable(s) in one of the preceding literals.

Intuitively speaking, a new variable not occurring in the head of a

rule is in a closed chain if after it is introduced by a literal it must

be consumed by another literal. The closed chain does not allow a

variable which occurs alone in two or more literals without being linked

to existing variables. However, in some cases, some variables may not

be in a closed chain.

De�nition 2 (Open chain). A sequence of some literals in the body

of a rule is said to be an open chain if there exists a new variable not

occurring in the head of the rule which appears only once in a literal

with variable(s) of the head or with variable(s) in one of the preceding

literals.

Some examples of closed and open chains are shown below.

Example 1 (Closed chain). For the rule:

p(A,B) q1(A), q2(A,C), q3(C), q4(C,D), q5(D), q6(A,E,F),

q7(E,G), q8(E,H), q9(E), q10(F,I), q11(I,B).

some closed chains are:
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(i) q2(A,C), q3(C)

(ii) q2(A,C), q4(C,D), q5(D)

(iii) q2(A,C), q3(C), q4(C,D), q5(D)

(iv) q6(A,E,F), q9(E), q10(F,I), q11(I,B) �

Example 2(Open chain). For the rule in Example 1, some open chains
are:

(i) q6(A,E,F), q7(E,G)

(ii) q6(A,E,F), q8(E,H)

(iii) q6(A,E,F), q7(E,G), q8(E,H)

(iv) q6(A,E,F), q7(E,G), q9(E)

(v) q6(A,E,F), q8(E,H), q9(E)

(vi) q6(A,E,F), q7(E,G), q8(E,H), q9(E) �

The de�nition of the open chain does not allow the variable that

occurs only once in the chain but is not linked to other variables

occurring in the head or in the preceding literals. For example, the

open chains, for the rule in Example 1, do not include the sequences

\q3(C)", \q1(A), q3(C)", \q5(D)", \q1(A), q5(D)", etc.

We now describe our method for generating features of a rule. The

method is best understood by viewing a rule as a dependency graph.

The root node of the graph is a set of variables occurring in the head

of the rule. Each of the other nodes represents a set of new variables

introduced by a literal, and an edge to the node represents the literal.

The whole graph shows the dependency of variables. Figure 1 shows an

example of dependency graph of the rule in Example 1.
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Figure 1. The dependency graph for the rule \p(A,B) q1(A), q2(A,C),

q3(C), q4(C,D), q5(D), q6(A,E,F), q7(E,G), q8(E,H), q9(E), q10(F,I),

q11(I,B).''

Using the de�nitions of closed and open chains and viewing a rule as

a dependency graph, we can now describe our algorithm for generating

features as shown in Table I.
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Table I. The algorithm for feature generation.

1. Find every edge beginning and ending at the root node and use it
as a feature.

Remove this kind of edges from the graph and do not consider the
edges in the following steps.

This type of feature is a singleton feature which introduces no new
variable.

2. Find all possible closed chains starting from the root node, and
use the sequence of literals along each of the chains as a feature.

This type of feature is a closed chain feature.

3. For every leaf node that has no edge to others, �nd all possible
paths that start from the root to that node.

Use the sequence of literals along each of the paths as a feature.

This type of feature is an open chain feature.

4. Find every possible combination of the open chain features gener-
ated in Step 3 that have new variables (not occurring in the head)
in common. If the combination is di�erent from the existing open
chain features, then add it to the feature set.

The algorithm in Table I generates all closed chains that include

variables at the root node of the graph. However, it does not generate

all possible open chains; it does not generate open chains which are

sub-chains of a closed chain feature. This is because we consider that

usually a newly introduced variable should be consumed by another

literal that checks for a speci�c property of the example. Therefore, we

�rst generate all closed chain features if they exist; open chains which

are sub-chains of a closed chain feature will not be generated. However,

for some literal which introduces new variables, we may be unable to

�nd a closed chain feature for the literal. In such a case, we generate

an open chain feature that includes the literal. An example of feature

generation is shown in Example 3.

Example 3 (feature generation). For the rule in Example 1, all possible
features generated by our algorithm are:

Step 1. in Table I

(i) q1(A)

Step 2. in Table I

(ii) q2(A,C), q3(C)

(iii) q2(A,C), q4(C,D), q5(D)
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(iv) q2(A,C), q3(C), q4(C,D), q5(D)

(v) q6(A,E,F), q9(E), q10(F,I), q11(I,B)

Step 3. in Table I

(vi) q6(A,E,F), q7(E,G)

(vii) q6(A,E,F), q8(E,H)

(viii) q6(A,E,F), q9(E), q7(E,G)

(ix) q6(A,E,F), q9(E), q8(E,H)

Step 4. in Table I

(x) q6(A,E,F), q7(E,G), q8(E,H)

(xi) q6(A,E,F), q7(E,G), q8(E,H), q9(E) �

Our method of feature generation can also be thought of as the
transformation of a rule into an equivalent rule with duplicated literals
that preserves the meaning of the original rule. The method reformu-
lates the original rule into a number of parts, by using singleton, closed
and open chain features, each of which is for examining a particular
property of the example. For instance, using features in Example 3,
the rule in Example 1 will be transformed into:

p(A,B) q1(A),

q2(A,C), q3(C),

q2(A,C), q4(C,D), q5(D),

q2(A,C), q3(C), q4(C,D), q5(D),

q6(A,E,F), q9(E), q10(F,I), q11(I,B),

q6(A,E,F), q7(E,G),

q6(A,E,F), q8(E,H),

q6(A,E,F), q9(E), q7(E,G),

q6(A,E,F), q9(E), q8(E,H),

q6(A,E,F), q7(E,G), q8(E,H),

q6(A,E,F), q7(E,G), q8(E,H), q9(E).

The obtained rule is then used to construct the structure of a neural

network for enabling the approximate match, as described in the next

subsection.

2.2. Building a Neural Network from Features

As some ILP systems are able to specialize variables to constants and

unify two variables, the head of a rule may contain constants or the

same variables occurring in more than two arguments. The following

rule is such an example:

illegal(WKf,3,WRf,WRr,BKf,WRr) lt(WKf,3).
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This rule contains a constant \3" at the second argument and a variable

\WRr" at the fourth and sixth arguments. Before we map rules to a

neural network, we �rst preprocess such a rule by using the uni�cation

(=) so that the head of the rule does not contain constants and the same

variables. This is done by replacing constants and the same variables

in the head with all di�erent variables and adding the uni�cations into

the body which unify the constants with the head variables and unify

pairs of the head variables.

Using this preprocessing, the above rule will be converted to:

illegal(WKf,WKr,WRf,WRr,BKf,BKr) WKr=3, WRr=BKr, lt(WKf,3).

This preprocessing is needed because the specialization or uni�cation

can be viewed as an operator that checks for a property of the argument

and thus should be considered as a feature. However, we do not replace

the constant in the head if the constant de�nes the class. For exam-

ple, the constant \1" in the rule \mesh(A,1)  not important(A),

not loaded(A)." indicates the class, and is not replaced by a variable.

Given a set of rules obtained from the preprocessing technique, we

then generate the singleton, closed chain and open chain features for

each rule by using the algorithm in Table I. The features of a rule are

used as input units that are linked to one hidden unit which represents

the rule. Therefore, the number of hidden units in the network is the

same as the number of rules. Each class is represented by one output

unit of the network. In two-class problems, there are two output units,

one for the positive and the other for the negative class. In multi-class

problems, the number of output units is equal to the number of classes.

The links from hidden units to output units are fully connected. Note

that all hidden and output units include bias weights. All weights of

all links and bias weights are trained by the backpropagation algorithm.

Example 4 (building a neural network from features). Consider the

following rule set fC1; C2; C3; C4g in the \�nite element mesh design"

problem (see Section 3.2).

C1 : mesh(A,1) not important(A), not loaded(A).

C2 : mesh(A,2) short(A), opposite l(B,A).

C3 : mesh(A,2) usual(A), neighbour yz r(A,B), cont loaded(B).

C4 : mesh(A,3) short(A), neighbour zx r(A,B), opposite r(A,C),

short(C).

The features generated for each rule are as follows, where FiCj is

the ith feature of the rule Cj .

F1C1: not important(A)
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Figure 2. The structure of the neural network for the rule set fC1; C2; C3; C4g in
Example 4.

F2C1: not loaded(A)

F1C2: short(A)
F2C2: opposite l(B,A)

F1C3: usual(A)
F2C3: neighbour yz r(A,B), cont loaded(B)

F1C4: short(A)
F2C4: opposite r(A,C), short(C)

F3C4: neighbour zx r(A,B)

In this example, most of the features are singleton features. F2C3

and F2C4 are closed chain features, and F2C2 and F3C4 are open chain

features. A singleton feature examines a property of an example by

using a single literal, such as F2C1:\not loaded(A)" checking for the

property that the edge \A" has no loading. A closed chain feature is

useful for checking the property that is de�ned by two or more literals.

F2C4 examines the property that an edge \C" which is opposite to \A"

must be a short edge. \Short(C)" in F2C4 will be meaningless, if it is

solely considered as a feature. The open chain feature F3C4 cannot be

neglected, and it examines the property that there is some edge \B"

which is a neighbour of \A".

Assume that there are only three classes, i.e. mesh(A,1), mesh(A,2)

and mesh(A,3). Figure 2 shows the structure of the network for the
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above rules. The hidden unit C1 representing the rule C1 is linked to

two input units each of which is a feature of C1. Similarly, the hidden

units C2, C3 and C4 are linked to their features. In this example, there

are three output units representing the classes. �

When new variables are considered, there can be many variable

bindings for a rule that make di�erent truth values for literals contain-

ing such variables. In such a case, there can be a number of possible

ways to select bindings. For example, one would use the binding that

gives the minimum number of features whose truth values are true,

or use bindings that assign true to many important features and few

unimportant features. The use of the minimum number of true-features

(features whose truth values are true) does not seem to be a good choice.

The binding which assigns true to many important features and few

unimportant features is a better choice. However, before the network is

completely trained, it is not known in advance which features are im-

portant. Even after the network is completely trained, it is still diÆcult

and costly to �nd and separate important features from unimportant

ones. Therefore, in our implementation, we use a reasonable and simple

method that selects the binding which gives the maximum number of

features whose truth values are true. The truth value of a feature is true

if the truth values of all literals of the feature are true, otherwise the

truth value of the feature is false. In case there is more than one binding

that gives the same value of the maximum number of true-features, we

just randomly choose only one.

2.3. Training the Network

The weights of the network are randomly initialized, and the �nal

weights are obtained by the standard backpropagation algorithm (Rumel-

hart et al., 1986). In our experiment, all units in the network use the

sigmoid function.

The training examples of the network are basically the same as those

used to create a rule set, except for the following points.

� For multi-class problems, only examples that are covered by rules

are used. As the learned rules are not representative for uncovered

examples, they are not used to train the network.

� For two-class problems, all negative examples are used, and only

positive examples covered by rules are used as the learned rules

are representative only for the covered positive examples.1

1 We also ran experiments by using all positive and all negative examples, and

found that the results are almost the same.

mlj_ksc_revision.tex; 11/12/2000; 21:28; p.10



Approximate Match of Rules Using Backpropagation Neural Networks 11

Each training example is evaluated with every rule and the truth

values of features are determined. We use a Prolog interpreter to eval-

uate the truth values of features, and thus our method works with Horn

clauses including recursive rules. The features whose truth values are

true are set to 1, whereas the features whose truth values are false

are set to �1 for input units. The network is repetitively trained by

using training examples until it converges or the number of training

iterations exceeds the prede�ned threshold. After having been trained,

the network can be used to classify unseen data. The unseen data is

evaluated with features of each rule as in the training process. The

truth values of features are then fed into the network, and the output

with highest value will be taken as the prediction.

3. Results on First Order Domains

We implemented a learning system, BANNAR (Backpropagation Ar-

ti�cial Neural Networks for Approximating Rules). BANNAR receives

a rule set, training examples and background knowledge as the inputs.

The system uses the rule set to construct a feature set for building a

neural network, and trains the network by using background knowledge

to determine the truth values of features for each example.

In the following experiments, we selected PROGOL (Muggleton,

1995) or GOLEM (Muggleton & Feng, 1990) for learning rules. Nor-

mally we used rules produced by PROGOL as the input to BANNAR.

However in our experiments on the �nite element mesh design and the

King-Rook-King chess endgame datasets described below, PROGOL

failed to produce a rule set within a reasonable time. In those exper-

iments, we employed GOLEM developed by the same research group

of PROGOL. We then compared the results obtained by BANNAR

with those of the original rule set. To show the quality of the rule

set used in our method, we also included the results obtained by the

other three learning systems, i.e. TILDE, 1BC and LINUS. TILDE is a

multi-class learning system that extends C4.5 to a �rst-order decision

tree learner (Blockeel & Raedt, 1997). 1BC is a �rst-order probabilistic

learning system using the naive Bayes algorithm (Flach & Lachiche,

1999). LINUS is a �rst-order learner based on the transformation ap-

proach (Lavra�c & D�zeroski, 1994).

In the following subsections, we brie
y describe the learning sys-

tems and the datasets, and present the experimental results. Next, to

understand the characteristic of BANNAR, we run additional sets of

experiments and report the results in Section 3.4, 3.5 and 3.6.
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3.1. Learning Systems

PROGOL

PROGOL is a state-of-the-art ILP system described in (Muggleton,

1995). Having positive examples, negative examples, background knowl-

edge and mode declarations as inputs, PROGOL constructs a most

speci�c rule for a random seed example. The mode declarations specify,

for each argument of each predicate, the type of the argument and

whether it should be a constant, a variable bound before the predicate

is called, or a variable bound by the predicate. Given a most speci�c

rule, PROGOL performs a complete search of the hypothesis space

bounded below by the most speci�c rule, using A*-like search (Nilsson,

1980). Because of its complete search, PROGOL usually requires more

time and memory than the other systems used in our experiments.

Although PROGOL is able to learn from only positive examples,

the system usually works well with two-class (positive and negative)

examples. Therefore, in our experiment on the Thai character recogni-

tion dataset (see below) which contains 77 classes of examples, a set

of rules is induced for each class. Positive examples of one class are

treated as negative examples of the other classes.

GOLEM

GOLEM (Muggleton & Feng, 1990) is based on the concept of rel-

ative least general generalization (rlgg) (Plotkin, 1970) with the ij-

determinate constraint that is used to restrict the class of programs

to be eÆciently learned. The inputs to GOLEM are positive examples,

negative examples and background knowledge. To learn a rule, GOLEM

randomly selects several pairs of positive examples and computes the

rlggs of each pair. The resulting rlgg, which is represented as a �rst-

order rule, with the greatest coverage of positive examples is selected,

and that rule is further generalized by computing the rlggs of the

rule with new randomly chosen positive examples. The generalization

process stops when the coverage of the best rule does not increase.

The user can specify the number of pairs to be considered for con-

structing rlggs (the default setting is 8). If the number of pairs is

large, GOLEM will have a better chance of �nding good rules. In the

experiments in Section 3.3, we use the default setting. GOLEM is a two-

class learning system, and needs negative examples to learn rules. In

the experiment on the �nite element mesh design dataset (see below),

negative examples are generated by using the closed-world assumption.
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TILDE

Unlike PROGOL and GOLEM that learn rules, TILDE learns logical

decision trees (Blockeel & Raedt, 1997). TILDE extends the attribute-

value learner C4.5 to a �rst-order learning system. The learning al-

gorithm used in TILDE is similar to C4.5. TILDE starts with the

empty tree, and then generates all possible test nodes and computes

the heuristic values of these test nodes. However, rather than using

attribute-value tests in the nodes, TILDE employs �rst-order logical

queries. Among the possible test nodes, it will select the one that scores

best on the heuristic and place that in the current node. It will then use

the partial tree to classify all examples (in the current node) to its sub-

nodes. All examples passing the test will be propagated to the left, all

the other ones to the right. The procedure will then recursively analyze

the left and right sub-trees. When a node only contains examples of a

single class (or when heuristics indicate it is uninteresting to split a

node), it will be turned into a leaf. Note that TILDE is a multi-class

learning system.

1BC

1BC is a �rst-order probabilistic learning system based on the naive

Bayes algorithm. The naive Bayes algorithm works by collecting statis-

tical information in training data, and uses this information to classify

unseen data. The statistical information collected are (1) the probabil-

ity of encountering each class, (2) the probability of seeing each feature

given a particular class. To predict the class of an unseen data, the

algorithm then �nds the class that maximizes the product of the above

two kinds of probabilities. See (Flach & Lachiche, 1999) for details.

In propositional learning, a feature is a test for a speci�c value of an

attribute, such as attribute1=value1. However, in �rst-order learning,

like the problem faced in our method, 1BC has to determine what will

be used as features. 1BC employs structural predicates and properties

provided by users for generating atomic features. As the number of

atomic features can be large, 1BC constrains this number by allowing

the user to limit the numbers of variables and literals for each atomic

feature. Atomic features containing more variables or literals than the

user-speci�ed value will not be considered. In our experiments, we asked

1BC to generate atomic features containing up to three literals and

three variables. However, in the dataset of the �nite element mesh

design, due to memory of our computer system, we had to limit these

numbers to two.
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LINUS

LINUS is a �rst-order learning system based on the transformation

approach (Lavra�c & D�zeroski, 1994). The system works by �rst trans-

forming a �rst-order problem to an attribute-value one, and then learn-

ing with an attribute-value learner. LINUS can transform the learned

description back to �rst-order rules. The system �rst transforms a �rst-

order example with background knowledge into a set of truth-value

tuples described by features (literals). Depending on background knowl-

edge, the number of generated features may be very large. To reduce

the number of generated features, Lavra�c et al. (Lavra�c et al., 1999)

propose a technique for selecting only relevant features and eliminating

irrelevant ones.

The attribute-value learner employed by LINUS in our experiments

is C4.5 because of its availability and its multi-class learning ability. The

accuracy of LINUS in our experiments is evaluated by C4.5's trees.

3.2. Datasets

Thai Character Recognition

The dataset consists of 77 classes of examples, i.e. 77 di�erent Thai

characters2. The goal of this task is to learn rules for predicting the

class of unseen data. In the training set, each character has 14 exam-

ples constructed from 14 sample images. The total number of training

examples is 1,078. The noise was added into the original images, and the

test data were constructed. The test set contains 2,143 test examples.

This is a usual experimental setting in the task of the character recog-

nition as the learned rules or neural networks usually encounter unseen

images containing noise when they are used by a character recognition

software.

Each example is of the form char(A,B,C,D,E,F). The information

contained in A,B,C,D,E,F are image features3 extracted by a pre-

processing algorithm. These image features describe various properties

of a character image such as the ratio of the width and the height of

the character, the structure of lines and circles that form the character,

the list of zones in the images that contain junctions of lines, etc.

The background knowledge contains 55 predicates. See (Kijsirikul &

Sinthupinyo, 1999) for more details.

2 The dataset will be made available at http://mind.cp.eng.chula.ac.th.
3 These are features describing the structure of the character images, such as the

ratio of the width and the height of the character image. These features should not

be confused with the feature generation described in Section 2.1.
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Finite Element Mesh Design

The dataset for the �nite element mesh design (Dolsak & Muggleton,

1992) consists of 5 structures and has 13 classes (13 possible number

of partitions for an edge in a structure). Each example is of the form

mesh(Edge,Number) where Number indicates the number of partitions.

The total number of examples is 278. The goal of �nite element mesh

design is to learn general rules describing how many elements should

be used to model each edge of a structure. The background knowl-

edge consists of relations describing the properties of an edge (e.g.

short, not loaded), boundary conditions (e.g. free), loadings (e.g.

not loaded), and the relations describing the structure of the object

(e.g. neighbour). See (Dolsak et al., 1994; Dolsak & Muggleton, 1992)

for more details.

Mutagenesis

The dataset for the mutagenesis domain consists of 188 molecules, of

which 125 are active and 63 are inactive. The goal of this problem

is to predict the mutagenicity of the molecules, whether a molecule

is active or inactive in terms of mutagenicity. This problem is a two-

class learning problem. A molecule is described by listing its atoms

atom(AtomID,Element,Type,Charge) and the bonds bond(Atom1,Atom2,

BondType) between atoms. The background knowledge used in our

experiment is the set S2 described in (Srinivasan et al., 1996) that

contains the de�nition of atom, bond, methyl groups, nitro groups,

aromatic rings, hetero-aromatic rings, connected rings, ring length, and

the three distinct topological ways to connect three benzene rings. See

(Srinivasan et al., 1996) for more details.

King-Rook-King Chess Endgame

The last dataset used in our experiment is the King-Rook-King chess

endgame (KRK) dataset provided by the Machine Learning group at

the University of York4. The goal is to learn the concept of an illegal

white-to-move position with only white king, white rook and black king

on the board (Muggleton et al., 1989). The number of examples in the

dataset is 10,000; 3,240 representing illegal KRK endgame positions

(positive), the rest representing legal endgame positions (negative).

Each example is of the form illegal(WKf,WKr,WRf,WRr,BKf,BKr),

where (WKf,WKr), (WRf,WRr) and (BKf,BKr) are the positions (�le,rank)

of White King, White Rook and Black King, respectively. Each of these

4 http://www-users.cs.york.ac.uk/~stephen/chess.html
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variables takes values from 0 to 7. Background knowledge contains two

relations for comparing rank and �le; adj(X,Y) and lt(X,Y) indicating

that rank/�le X is adjacent to rank/�le Y and rank/�le X is less than

rank/�le Y, respectively.

Note that only in this dataset, for 1BC we used the background rela-

tions described in (Flach & Lachiche, 1999), such as board2whiteking,

board2blackking, board2whiterook, fileeq, rankeq, pos2rank,

etc. For the other datasets described above, all background relations

given to all learning systems are the same.

3.3. Experimental Results on First-Order Datasets

We used three-fold cross-validation5 and averaged the results in all ex-

periments except for the experiment on the Thai character recognition

dataset where training and test data were given. For the accuracies

of PROGOL or GOLEM, we assigned the majority and the negative

class to examples uncovered by the rules in the case of multi-class and

two-class problems, respectively. The experimental results reporting

the accuracies of all systems are shown in Table III 6. Table II re-

ports the training times required for training BANNAR and PROGOL

(GOLEM).

Table II. The training times in seconds of BANNAR and PROGOL

(GOLEM), the number of features generated by BANNAR and the

number of rules generated by PROGOL (GOLEM). All systems were

run on 400Mhz Pentium II. The times, the number of features and

the number of rules are the average values for three-fold data, except

for the TCR data set.

Data Set BANNAR PROGOL or GOLEM

# Features Time (sec.) # Rules Time (sec.)

TCR 467.0 39.38 77.0 1344112.92

FEM 115.0 32.98 38.0 3607.88

MUTA 18.3 12.67 6.3 6014.30

KRK 32.3 925.03 14.0 36.00

Though our method required an additional time to train BANNAR,

it was shown in Table II that, except for the KRK dataset, the training

time of BANNAR was much less than that of PROGOL or GOLEM.

PROGOL or GOLEM required quite a long time, especially on the

5 As training ILP systems requires quite a long time, we used only three folds in

the cross-validation experiments.
6 The results were obtained by using the default settings of all systems.
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Table III. The percent accuracies of BANNAR and the other systems on �rst-order

datasets; TCR � Thai Character Recognition, FEM � Finite Element Mesh

Design, MUTA � Mutagenesis, KRK � King-Rook-King Chess Endgame. Super-

scripts denote con�dence levels for the di�erence in accuracy between BANNAR

and the corresponding system, using a one-tailed paired t test: * is 90.0%, ** is

99.0%, *** is 99.5%; no superscripts denote con�dence levels below 90%. 3CV

denotes the experiment that uses three-fold cross-validation. The accuracies of

PROGOL (GOLEM) are calculated by assigning the majority and negative class to

uncovered examples in the case of multi-class and two-class problems, respectively.

Data #Train #Test #Classes BAN- PROGOL TILDE 1BC LINUS

Set NAR or

GOLEM

TCR 1,076 2,143 77 94.40 72.00��� 88.57��� 77.23��� 66.54���

FEM 278 3CV 13 64.45 57.80�� 58.02�� 46.73�� 60.45�

MUTA 188 3CV 2 83.58 82.01 68.94� 77.72 74.41�

KRK 10,000 3CV 2 99.90 99.83 69.67��� 87.11��� 99.36���

TCR dataset. In the TCR dataset, as there are 77 classes of examples,

PROGOL used a signi�cant time to learn rules for 77 classes. The

training time of BANNAR is proportional to the number of training

examples and the number of rules, because it needs to match features of

all rules with the examples. Therefore, in the case of the KRK dataset

in which there are 10,000 examples, BANNAR used a longer time to

run than in the case of the other datasets.

The results in Table III show that the performance of PROGOL

or GOLEM was comparable to that of TILDE; PROGOL or GOLEM

performed better than TILDE in two-class problems, whereas TILDE

did better in multi-class problems. In the datasets tested in our exper-

iments, 1BC did not perform well, compared to PROGOL or GOLEM.

LINUS performed better than PROGOL or GOLEM only on the FEM

dataset and worse on the other datasets. These results show the high

accuracies of rules produced by PROGOL or GOLEM. Nevertheless, as

shown in the table, BANNAR was still able to improve the accuracies

of the rules, especially in the multi-class problems. Compared with

the other learning systems, BANNAR performed best on all datasets.

Moreover, BANNAR signi�cantly outperformed PROGOL or GOLEM,

TILDE, 1BC and LINUS on 2, 4, 3 and 4 datasets, respectively. Note

that in the MUTA dataset, there are cases that multiple rules �re but

there is no diÆculty for BANNAR as it predicts the class which best

matches the examples.
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We further investigate these improvements. We want to see how well

BANNAR classi�es examples when they are not covered by the rules.

Table IV summarizes the results.

Table IV. Improvements of BANNAR over the original rules, reported according to

covered and uncovered examples. The columns \Covered" and \Uncovered" denote

the numbers of examples covered and uncovered by the rules. Each cell denotes the

number of examples correctly classi�ed/the number of examples for that portion.

Data Set # Test BANNAR PROGOL or GOLEM

(Majority or Negative Class)

Covered Uncovered Covered Uncovered

TCR 2,143 1570/1611 453/532 1540/1611 3/532

FEM 278 145/200 34/78 146/200 14/78

MUTA 188 102/109 55/79 100/109 54/79

KRK 10,000 3352/3356 6638/6644 3350/3356 6633/6644

The results in the table show the ratio between the number of exam-

ples correctly classi�ed and the number of examples for each portion.

For example, 453/532 in the row TCR indicates that 532 examples

were not covered by the rules, and 453 of them were correctly classi�ed

by BANNAR. 3/532 in the same row shows that 3 of 532 examples

were correctly classi�ed by PROGOL as we used the majority class for

predicting unseen data (or the negative class for two-class problems).

This means that BANNAR correctly classi�ed 450 more examples in

the case of uncovered examples. Similarly, 1570 of 1611 examples were

correctly classi�ed by BANNAR, whereas 1540 were correctly classi�ed

by PROGOL; although the number of examples covered by PROGOL

was 1611, 1540 out of them were correct. A similar improvement can

be seen on the FEM dataset. Slight improvements were obtained on

the MUTA and the KRK datasets which are two-class problems. These

results show that BANNAR signi�cantly improved the accuracy on

data which were not covered by the rules, especially in the multi-class

problems.

In the next subsection, we explore if our method will help in two-

class problems with the presence of noise.

3.4. Experiments on KRK Noisy Datasets

To study the e�ect of noise on two-class learning problems, we se-

lected the KRK dataset. In the following experiments, three-fold cross-

validation was used. The dataset was partitioned into three disjoint

subsets. Each subset was used as a test set once, and the remaining
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subsets were used as the training set. Given training and test sets, 5%,

10% and 15% class noise was randomly added into the training set,

and no noise was added into the test set. In our case, adding x% of

noise means that the class value was replaced with the wrong value in

x out of 100 data. For example, 5% of noise means that 5% of data

were randomly selected and the class value of each data was replaced

by the opposite value (from positive to negative, and vice versa). The

average results of GOLEM7 and BANNAR on noisy data are shown in

Table V. In the table, we also included the result on noise-free data for

comparison.

To see how well BANNAR handles noisy data, we also ran FOSSIL

on the same dataset, and reported the results together in Table V.

FOSSIL is a �rst-order learning algorithm that has the ability to handle

noisy data by using the correlation heuristic to prevent learning of

over-speci�c rules. The system has been shown to be robust against

noise (F�urnkranz, 1994).

Table V. The percent accuracies (Acc.) of GOLEM, BAN-

NAR and FOSSIL with 5%, 10% and 15% noise added. The

dataset contains 10,000 examples. The experiment was run us-

ing three-fold cross-validation. The number of rules obtained

by GOLEM is the average value for three-fold data.

Noise Level GOLEM BANNAR FOSSIL

#Rule Acc. Acc. Acc.

0% 14.00 99.83 99.90 99.02

5% 49.67 92.27 98.09 97.93

10% 134.00 87.32 98.12 96.08

15% 150.00 82.51 94.33 94.79

As shown in the table, when noise was added, GOLEM produced a

large number of over-speci�c rules that were needed to cover positive

training data. These rules �tted only the training data well, but they

resulted in wrong classi�cation for unseen data as shown by the decrease

of the accuracy with increasing noise. The results of BANNAR show

that the accuracy decreased much slower than that of GOLEM, and

BANNAR signi�cantly improved the accuracy of GOLEM when noise

was added (the di�erences are statistically signi�cant at the con�dence

levels of 99.5% for 5% or 10% noise, and 97.5% for 15% noise). These

results show BANNAR's robustness against noise which is useful to

increase the accuracy of rules produced by a learning system having

7 In the experiments below, the number of pairs of examples to be considered for

constructing rlggs is set to 50.
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no ability to handle noise, such as GOLEM. Comparing the results of

BANNAR with FOSSIL which has ability to handle noise, we see that

the accuracies of BANNAR were comparable to those of FOSSIL. The

accuracies of BANNAR were higher than those of FOSSIL in the case

of 0%, 5% and 10% noise, and lower in the case of 15% noise.

The mechanism of BANNAR to prevent over�tting noisy data is

di�erent from that of FOSSIL. Whereas FOSSIL uses the heuristic to

prevent learning over-speci�c rules, BANNAR employs neural networks

to give less attention to unimportant features. Even using over-speci�c

rules to construct a neural network, BANNAR was able to produce

the network which comparatively did not over�t the data as shown

by the slower decrease of its accuracy. The following example shows

that BANNAR gave appropriate weights to features, i.e. higher weights

to important features and lower weights to unimportant ones. In our

experiment, one of rules obtained when 5% noise was added is:

illegal(WKf,WKr,WRf,WRr,BKf,BKr) 

WRr=BKr, lt(WKr,WRr), lt(WKf,WRf).

The rule contains three features, and states that the position is illegal

if (1) the ranks of the white rook and black king are the same, and (2)

the rank of the white king is less than the rank of the white rook (thus

the white king is not blocking the check), and (3) the �le of the white

king is less than (below) that of the white rook. Clearly, the feature

(3) is not necessary if the features (1) and (2) are satis�ed. This rule

is an over-speci�c rule and it is likely that the rule over�ts noisy data.

The literal lt(WKf,WRf) should not be added to this rule, i.e. the rule

will correctly classify more data if the literal is not included in the

rule. When we employed BANNAR, the system found the appropriate

weight for each feature of the rule. In this case, each literal was selected

as a feature. The unnecessary feature, i.e. lt(WKf,WRf), was given a

lower weight by BANNAR. Figure 3 shows the weights of literals of the

rule. As shown in the �gure, the weight of unuseful literal lt(WKf,WRf)

is �2:889 and is dominated by the sum of weights of the others which is

7:214+4:151 = 11:365. Therefore, if the �rst two features are satis�ed,

the hidden unit R1 representing this rule will give the positive output

and makes a high chance of predicting the positive class.

The ability to give appropriate weights to features is the advantage

of BANNAR, because the unimportant features will receive less atten-

tion in classifying unseen data. In this case, although the original rule is

over-speci�c, the obtained part of the network is very useful to classify

unseen data.
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Figure 3. A portion of the network for the rule illegal(WKf,WKr,WRf,WRr,BKf,BKr)

 WRr=BKr, lt(WKr,WRr), lt(WKf,WRf).

3.5. A Comparison of BANNAR's and LINUS's Features

This subsection describes experiments which compare features gener-

ated by BANNAR and those generated by LINUS. For comparison,

these two sets of features were employed by the same attribute-value

learners, i.e. C4.5 and a neural network. In BANNAR, as described

earlier, the features were generated from rules obtained by PROGOL

(GOLEM), and the truth values of the features for examples were

evaluated to be used as inputs to C4.5 or a neural network. In LINUS,

features were directly generated from background knowledge, and the

truth values of features for examples were evaluated to be used as

inputs to the same learning algorithm. In the case of C4.5, each feature

generated by BANNAR or LINUS was considered as an attribute. In the

case of a neural network, each feature was used as an input unit of the

network. A neural network constructed from LINUS's features consists

of three layers, i.e. input, hidden and output layers. The number of

input units and the number of output units are equal to the number

of features, and the number of classes, respectively. The number of

hidden units was determined to be the same as the number of input

units. The links from input units to hidden units, and from hidden

units to output units are fully connected. The experimental results are

shown in Table VI.

The results show that compared to LINUS's features, BANNAR's

features gave higher accuracy, both in the case of a neural network and

C4.5. This shows the e�ectiveness of features generated by BANNAR.

Note that BANNAR generates features from rules obtained by PRO-

GOL (GOLEM), and thus the good quality of BANNAR's features

is due in part to the high accuracy of rules produced by PROGOL

(GOLEM).
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Table VI. The comparison of features generated by BANNAR and LINUS. The

number of features or the percent accuracy (Acc.) is the average value for three-fold

data, except for the TCR data set.

Data Set # Features Acc. of Neural Networks Acc. of C4.5

BANNAR LINUS BANNAR's LINUS's BANNAR's LINUS's

Features Features Features Features

TCR 467.0 36.0 94.40 67.10 89.22 66.54

FEM 115.0 209.0 64.45 57.97 60.46 60.45

MUTA 18.3 16.0 83.58 78.53 81.44 74.41

KRK 32.3 72.0 99.90 99.57 99.82 99.36

3.6. Empirical Study on the Improved Accuracy of

BANNAR

The results on previous sections show the usefulness of our method for

increasing the classi�cation accuracy of rules for unseen data, especially

data in multi-class problems and noisy domains. The good performance

of BANNAR is certainly due to the high accuracy of rules produced by

PROGOL or GOLEM, and more improvement comes from two main

elements: (1) our feature generation that enables partial match between

the examples and the useful parts of rules which examine some prop-

erties of the examples, and (2) backpropagation neural networks that

make use of features to enable more 
exible match of rules with the

examples. Though it is diÆcult to separately evaluate the contribution

of each of these two elements to the increased accuracy of BANNAR,

in this section we try to give some empirical evaluation. We designed

a set of experiments that were aimed at explaining the contribution of

each element to the improved accuracy of BANNAR.

The experiments were designed to evaluate that (1) how much fea-

tures alone increase the accuracy, and (2) how much neural networks

further increase the accuracy.

To evaluate the e�ect of features alone, we employ a simple technique

that makes use of features to match with examples uncovered by the

rules. When there are no rules which perfectly match an unseen data,

we want to select the rule that provides the best match with the data.

Therefore, our technique is to �nd the rule that contains a lot of features

matching with the data. To �nd the best matching rule, we de�ne

matchRatior;e of a rule r for an example e as follows:

matchRatior;e =
trueFeature(r; e)

no: of all features
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where trueFeature(r; e) is the number of features of r whose truth

values are true for e. The value of matchRatio will be high if the rule

contains a lot of features matching with the example. In the case of

multi-class problems, the best matching rule for the example e will be

the rule that gives the highestmatchRatio, and the corresponding class

of the rule will be selected as the prediction.

However, in two-class problems, we have no rule for the negative

class. Therefore, we use a simple method that will classify an example

e as positive by using the following criterion.

9r matchRatior;e > �r

where

�r = max
n2NE

matchRatior;n

and NE is the set of all negative training examples.

�r is the threshold of the rule r and is de�ned to be the maximum

value of matchRatio's among all negative training examples. The value

�r ensures that all negative training examples will be classi�ed as nega-

tive. Therefore, for an example e, if there exists matchRatior;e greater

than �r, the example will be classi�ed as positive; otherwise it will be

classi�ed as negative.

Though it did not occur in the following experiments, in case of noisy

training data, there may be some negative example that is covered by

a rule; the number of true-features for that example will be equal to

the number of all features. For such a rule, the maximum value of

matchRatio's among all negative examples will be 1. In this case, we

use the weak criterion that will classify an example as positive only if

matchRatio of that rule for the example is equal to 1 (not greater than

1).

Using this technique, in the case of multi-class problems, we evaluate

matchRatio's of all rules for an example to be classi�ed, and predict

as the output the class with the corresponding highest matchRatio. In

two-class problems, we �rst calculate �r's of all rules by using the set

of all negative training examples, then for an example e we evaluate

matchRatior;e's of all rules, and classify the example as positive if there

is some matchRatior;e that is greater than �r (or equal to 1). The

results of this technique denoted as \FEATURE ALONE" are shown

in Table VII. For comparison, we included the results of the original

rules and the results of BANNAR in the table.

As shown in the table, the method of \FEATURE ALONE" classi-

�ed more correct uncovered-examples than PROGOL or GOLEM did,

especially in the multi-class problems (TCR and FEM). For example,

the number of correctly classi�ed uncovered-examples increased from
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Table VII. The results of using features alone and those of PROGOL (GOLEM) and

BANNAR on the �rst-order datasets, reported according to covered and uncovered

examples. Each cell denotes the number of examples correctly classi�ed/the number

of examples for that portion.

Data #Test PROGOL or GOLEM FEATURE BANNAR

Set (Majority or Negative) ALONE

Covered Uncovered Covered Uncovered Covered Uncovered

TCR 2,143 1540/1611 3/532 1540/1611 222/532 1570/1611 453/532

FEM 278 146/200 14/78 146/200 24/78 145/200 34/78

MUTA 188 100/109 54/79 100/109 54/79 102/109 55/79

KRK 10,000 3350/3356 6633/6644 3350/3356 6633/6644 3352/3356 6638/6644

3 to 222 and increased from 14 to 24 for the TCR and FEM datasets,

respectively. This shows the e�ectiveness of our features for the clas-

si�cation of uncovered examples in multi-class problems. \FEATURE

ALONE" did not help in increasing accuracy for examples covered by

the rules nor for examples in two-class problems.

Comparing BANNAR to the method of \FEATURE ALONE", we

can see that more uncovered-examples were correctly classi�ed by BAN-

NAR; the number of correctly classi�ed uncovered-examples increased

from 222 to 453 and increased from 24 to 34 for the TCR and FEM

datasets, respectively. Another advantage of BANNAR over \FEA-

TURE ALONE" was the higher accuracy for covered examples; e.g. the

number of correctly classi�ed covered-examples increased from 1540 to

1570 in the TCR dataset. All the above results show that about half

of the improvement of BANNAR, which contains two main elements

(features and neural networks), was due to the contribution of our

features in the case of uncovered examples in multi-class problems.

However, as \FEATURE ALONE" took each feature in a rule with

equal signi�cance, i.e. it simply counted the number of true-features

for calculating matchRatio's, it was unable to give important features

higher weights than others. After neural networks were incorporated

into BANNAR, more improvements were obtained as shown in the

case of covered examples as well as in the case of uncovered examples.

3.7. Summary

In this section, we have demonstrated that BANNAR achieved good

performance in classifying noisy or unseen data. The �rst set of ex-

periments in Section 3.3 shows that BANNAR successfully increased

the accuracy of the original rules obtained by PROGOL or GOLEM,

especially on multi-class problems. After analyzing the improvements,
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we found that the increased accuracy was signi�cantly obtained in the

case of data uncovered by the rules. These results show that BANNAR

achieves its main objective that is aimed at increasing the accuracy of

rules when no rule perfectly covers the unseen data.

The higher accuracy of BANNAR compared to PROGOL and GOLEM

is clearly due to the fact that noisy data or unseen data are often not

covered by the rules, and the use of only the majority or negative class

does not perform well. The higher accuracy of BANNAR over the other

learning systems, i.e. TILDE, 1BC, LINUS, is certainly due in part to

the high accuracy of rules produced by PROGOL or GOLEM, and the

approximate match of our method.

We next study if our method can improve the accuracy of rules in

two-class problems with the presence of noise. The results in Section 3.4

con�rmed the usefulness of our approximate match for increasing the

accuracy of the over�tting rules. As shown by an example in Fig-

ure 3, the neural network was able to give higher weights to important

features and give less attention to unimportant ones. These results

demonstrated the ability of neural networks which is useful for the

approximate match.

The approximate match is realized by two main elements: (1) our

feature generation that enables partial match between the examples

and the useful parts of rules which examine some properties of the

examples, and (2) backpropagation neural networks that make use of

features to enable more 
exible match of rules with the examples.

Though the usefulness of the approximate match was con�rmed by

the experiments on �rst-order datasets and the KRK noisy dataset,

we want to know more about the contribution of each element to

the increased accuracy. We then tried to give some evaluation of the

contribution of these two elements by designing the additional experi-

ments. The experimental results in Table VII show that about half of

the improvement was due to the contribution of features (the simple

algorithm \FEATURE ALONE" in the table). \FEATURE ALONE"

signi�cantly increased the accuracy of the original rules in the case of

uncovered examples in multi-class problems. This validates the use-

fulness of features constructed by our method. The disadvantage of

\FEATURE ALONE" is the lack of ability to give appropriate weights

to features, as it simply counts the number of true-features and all fea-

tures for determining the best matching rule. Neural networks, on the

other hand, have ability to give higher weights to important features,

and also play an important role in the improvement.

To summarize, the good performance of BANNAR is due to two

main factors: (1) the high accuracy of rules produced by PROGOL or

GOLEM, and (2) the approximate match of rules with unseen or noisy
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data that can capture useful features and assign appropriate weights

to the features by using our feature generation and backpropagation

neural networks, respectively.

4. Results on Propositional Domains

This section presents the results of our method on propositional do-

mains. We compare our method with C4.5 (Quinlan, 1993). For each

dataset, we employ C4.5 to generate an unpruned decision tree and

convert the tree to a propositional rule set. Having a rule set, we then

build our BNN as described above. Our method can be thought of as

soft-pruning of decision trees. By soft-pruning, we mean that a feature

will not be completely pruned but will be given a low weight if it is not

so important and a high weight if it is important.

To evaluate our soft-pruning method, we ran experiments to com-

pare BANNAR with C4.5's unpruned and pruned trees. We also in-

cluded the results of BANNAR using rules converted from C4.5's pruned

trees, as we want to see how over-speci�c rules e�ect the accuracy of

BANNAR. Twenty datasets of multi-class learning domains from the

UCI repository (Merz et al., 1997) were used. In case of datasets where

training and test sets were already provided, the results were evaluated

on the given test sets. In the other datasets providing no test set, the

results were averaged using 6-fold cross-validation8. Table VIII and

Table IX report the summary of the datasets and the classi�cation

accuracies of BANNAR and C4.5.

The results show that BANNAR was more accurate than C4.5's

unpruned trees in 12 datasets, and less in 4 datasets. Compared with

C4.5's pruned trees, BANNAR achieved a higher accuracy in 11 datasets

and lower in 8 datasets. The results were not as good as the ones for the

�rst-order datasets. This is because C4.5 is a multi-class learner and

more importantly it can e�ectively deal with noisy data by pruning

the over�tting trees. However, if we include con�dence levels in the

comparison, we can see that BANNAR performs signi�cantly better

than C4.5's unpruned and pruned trees on 6 and 5 datasets, respec-

tively. BANNAR performs signi�cantly worse than C4.5's pruned trees

only on one dataset. These results demonstrate the usefulness of our

method in soft-pruning decision trees. The better results are due to

more 
exibility in pruning of our method: (1) converting a tree to rules

before pruning will produce a non-leaf node (feature) of the tree in

8 Compared to the �rst-order domains which require long time to train ILP

systems, C4.5 ran fast in these propositional domains, and thus instead of 3-fold

we used 6-fold cross-validation in the experiments.
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Table VIII. The numbers of training data, test data and classes in the datasets

tested in the experiments. 6CV denotes the experiment that uses six-fold

cross-validation.

Data Set #Train #Test #Classes Data Set #Train #Test #Classes

Allbp 2800 972 3 LED 17 2000 500 10

Allhyper 2800 972 5 Lymphography 148 6CV 4

Allhypo 2800 972 5 Primary-tumor 339 6CV 22

Allrep 2800 972 4 Satimage 4435 2000 6

Anneal 798 100 6 Segment 2310 6CV 7

Balance-scale 625 6CV 3 Shuttle 43500 14500 7

Glass 214 6CV 6 Soybean 307 376 19

Image 210 2100 7 Waveform 5000 6CV 3

Iris 150 6CV 3 Waveform+noise 5000 6CV 3

LED 2000 500 10 Wine 178 6CV 3

more than two rules, and thus this feature can be separately soft-pruned

according to its participation in the rules, and (2) a feature that has

some degree of signi�cance for a rule will not be completely pruned,

and will be assigned with an appropriate weight by the neural network.

Comparing the results of BANNAR with BANNAR using pruned

trees, we can see that using pruned trees slightly reduced the aver-

age accuracy of BANNAR. Standard BANNAR signi�cantly performed

better than BANNAR using pruned trees on 4 datasets, and worse on

2 datasets. This shows that BANNAR performed better when it was

provided with over-speci�c rules converted from C4.5's unpruned trees.

Even when provided by rules converted from pruned trees, BANNAR

still preserved its good performance.

5. Related and Future Work

There have been earlier learning systems which employ neural networks

to improve the performance of symbolic learning. KBANN (Towell &

Shavlik, 1994) and FONN (Botta et al., 1997) are the systems that

use initial rules and training examples for learning neural networks.

KBANN translates a propositional theory into a neural network, and

uses training examples to re�ne the network. The results of KBANN

show that its performance is better than methods which learn purely

from examples. The main di�erences between BANNAR and KBANN

are the �rst-order representation of the rules and the method of fea-

ture generation used in BANNAR. FONN translates �rst-order rules

possibly including literals with new variables into a neural network. Its
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Table IX. The percent accuracies of BANNAR and C4.5 on propositional do-

mains. The second and third columns show the accuracies of C4.5's unpruned and

C4.5's pruned trees, respectively. The accuracies of BANNAR are given in the

�fth column, and those of BANNAR using pruned trees are given in the fourth

column. The row \Won-loss-tied (BANNAR - XXX)" shows the performance

comparison between BANNAR and the corresponding systems; where XXX is

C4.5 or BANNAR using pruned trees. Superscripts denote con�dence levels for

the di�erence in accuracy between BANNAR and the corresponding system,

using a one-tailed paired t test: + or � is 90%, ++ or �� is 95%, +++ or ���
is 99%; no superscripts denote con�dence levels that are below 90%(+ indicates

higher accuracy of BANNAR, whereas � indicates lower accuracy of BANNAR).

Note that the highest accuracy for each data set is shown in bold face.

Data C4.5 C4.5 BANNAR+Pruned BANNAR

Set (Unpruned) (Pruned)

Allbp 96.81 97.84 97.94 97.12

Allhyper 98.87 98.56 98.46 98.87

Allhypo 99.49 99.49 99.49 99.69

Allrep 98.77 99.07 99.07 98.97

Anneal 97.00 95.00 96.00 97.00

Balance-scale 69.76+++ 65.77+++ 89.92
� 86.56

Glass 66.34 66.34 69.11 67.22

Image 89.43 91.00 92.38
�� 90.38

Iris 95.33 94.00 94.00 95.33

LED 75.40 75.20 74.80 74.60

LED 17 66.40 75.20
��� 65.00 63.80

Lymphography 73.70 78.38 80.42 77.72

Primary-tumor 42.19 41.32 33.93++ 38.66

Satimage 84.90++ 85.45 86.35 86.80

Segment 96.97 96.97 97.01 96.75

Shuttle 99.97+ 99.95++ 99.96++ 99.99

Soybean 85.64++ 86.70++ 86.44++ 90.96

Waveform 75.76+++ 75.82+++ 79.40++ 80.30

Waveform+noise 75.22+++ 75.30+++ 79.38 79.64

Wine 93.30 93.30 93.30 93.30

Average 84.06 84.53 85.62 85.68

Won-loss-tied 12-4-4 11-8-1 10-9-1

(BANNAR - XXX)

primary goal is to re�ne numerical literals of the rules. It �rst �nds only

bindings for new variables that satisfy non-numerical literals and uses

these bindings for re�ning the numerical literals (Botta et al., 1997).

The architecture of FONN is based on the Factorizable Radial Basis

Function network, whereas BANNAR is based on the backpropagation

neural network. Another di�erence between BANNAR and FONN is
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our method of feature generation. Both KBANN and FONN as well as

our system BANNAR have shown the similar results that the accuracy

of rules can be increased by using neural networks.

Our method of feature generation is related to clause templates or

sketches that are used as biases to de�ne the hypothesis space in ILP

systems (Bergadano & Gunetti, 1995; Tausend, 1994; Brazdil & Jorge,

1993). In MOBAL (Kietz &Wrobel, 1992), a rule model, which is a kind

of clause templates, de�nes how background predicates are used to form

a clause and de�nes the connection of variables via the predicates. The

variable connection represents how variables in a clause are linked to

other variables, and is similar to our closed and open chain features.

The feature generation (selection) has been addressed in earlier ILP

systems, such as LINUS and 1BC. LINUS generates features for trans-

forming a �rst-order example into a propositional representation in

form of truth-value tuples described by the features. Depending on

background knowledge which is used to generate features, the number

of features can be very large. Lavra�c et al. (Lavra�c et al., 1999) describe

a method for selecting only relevant features in order to reduce the

hypothesis space searched by LINUS. The method is based on the

discriminating power of a feature. Feature selection in LINUS and

feature generation in BANNAR are employed for di�erent purposes.

The main purpose of feature selection in LINUS is for reducing the

hypothesis space employed by an attribute-value learner, whereas our

aim of feature generation is to generate a sequence of literals for par-

tial matching with unseen examples. 1BC employs structural predicates

and properties provided by users for generating atomic features. The

features are then used to train the naive Bayes classi�er for learning sta-

tistical information from training examples. The di�erence between our

feature generation and that of 1BC is that our method does not require

the user to give additional information for generating the features.

Both LINUS and 1BC generate features directly from background

knowledge. However, our method needs rules obtained from PROGOL

or GOLEM to generate features. This is a limitation of our method that

cannot directly generate features from background knowledge. One of

our future research plans is to extend the feature generation to a more

powerful technique that can directly generate features from background

knowledge. Another interesting research direction is to combine a naive

Bayes classi�er, like one in 1BC, with our method that generates fea-

tures from previously learned rules, and use these features to learn

statistical information for the classi�er.

Another disadvantage of our method is that the learned neural net-

works are very diÆcult to understand to the user. We plan to study a
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method that transfers the networks into a more understandable repre-

sentation in the future.

Another direction for our future research is to investigate a more

sophisticated method for evaluating the truth values of features, such

as fuzzy logic. In the current work, if truth values of some literals of a

feature are false, the truth value of the whole feature will be false. If

we can assign a more suitable value, it may increase the classi�cation

accuracy.

There are some ILP systems that are able to learn multi-class con-

cepts represented in �rst-order rules, such as RTL (Baroglio & Botta,

1996), ICL (De Raedt & Laer, 1995), MULT ICN (Martin & Vrain,

1995). Nevertheless, it is still possible that some unseen data may not

exactly match the rules produced by these systems. We believe that

our method can also be applied to these systems.

6. Conclusions

We have proposed a method for approximate match of rules using

neural networks. The main contribution of our work is the method of

using feature generation and neural networks to increase the accuracy

of �rst-order rules in case of multi-class problems or noisy domains

where unseen data are often not covered by the rules. We have also

proposed a novel technique to generate �rst-order features to be used

for the approximate match of rules. Our method has been evaluated on

four domains of �rst-order learning problems. The experimental results

show that our method gives signi�cant improvements over the use of

the original rules. The improved results come from the combination of

the ILP system and our system BANNAR. The ILP system produces

rules that accurately classify the training data, and BANNAR makes

the rules more 
exible for partially matching with unseen or noisy data.

We also applied BANNAR to approximate match of propositional rules

converted from an unpruned decision tree. The results show that our

method performs better than standard C4.5's pruned and unpruned

trees.
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