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While the initial connection protocol works fine for those servers that can be created as they
are needed, there are many situations in which services do exist independently of the process
server. A file server, for example, needs to run on special hardware (a machine with a disk)
and cannot just be created on-the-fly when someone wants to talk to it.

To handle this situation, an alternative scheme is often used. In this model, there exists a
special process called a name server or sometimes a directory server. To find the TSAP
address corresponding to a given service hame, such as "time of day," a user sets up a
connection to the name server (which listens to a well-known TSAP). The user then sends a
message specifying the service name, and the name server sends back the TSAP address.
Then the user releases the connection with the name server and establishes a new one with
the desired service.

In this model, when a new service is created, it must register itself with the name server,
giving both its service name (typically, an ASCII string) and its TSAP. The name server records
this information in its internal database so that when queries come in later, it will know the
answers.

The function of the name server is analogous to the directory assistance operator in the
telephone system—it provides a mapping of names onto numbers. Just as in the telephone
system, it is essential that the address of the well-known TSAP used by the name server (or
the process server in the initial connection protocol) is indeed well known. If you do not know
the number of the information operator, you cannot call the information operator to find it out.
If you think the number you dial for information is obvious, try it in a foreign country
sometime.

6.2.2 Connection Establishment

Establishing a connection sounds easy, but it is actually surprisingly tricky. At first glance, it
would seem sufficient for one transport entity to just send a CONNECTION REQUEST TPDU to
the destination and wait for a CONNECTION ACCEPTED reply. The problem occurs when the
network can lose, store, and duplicate packets. This behavior causes serious complications.

Imagine a subnet that is so congested that acknowledgements hardly ever get back in time
and each packet times out and is retransmitted two or three times. Suppose that the subnet
uses datagrams inside and that every packet follows a different route. Some of the packets
might get stuck in a traffic jam inside the subnet and take a long time to arrive, that is, they
are stored in the subnet and pop out much later.

The worst possible nightmare is as follows. A user establishes a connection with a bank, sends
messages telling the bank to transfer a large amount of money to the account of a not-
entirely-trustworthy person, and then releases the connection. Unfortunately, each packet in
the scenario is duplicated and stored in the subnet. After the connection has been released, all
the packets pop out of the subnet and arrive at the destination in order, asking the bank to
establish a new connection, transfer money (again), and release the connection. The bank has
no way of telling that these are duplicates. It must assume that this is a second, independent
transaction, and transfers the money again. For the remainder of this section we will study the
problem of delayed duplicates, with special emphasis on algorithms for establishing
connections in a reliable way, so that nightmares like the one above cannot happen.

The crux of the problem is the existence of delayed duplicates. It can be attacked in various
ways, none of them very satisfactory. One way is to use throw-away transport addresses. In
this approach, each time a transport address is needed, a new one is generated. When a
connection is released, the address is discarded and never used again. This strategy makes the
process server model of Fig. 6-9 impossible.
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Another possibility is to give each connection a connection identifier (i.e., a sequence number
incremented for each connection established) chosen by the initiating party and put in each
TPDU, including the one requesting the connection. After each connection is released, each
transport entity could update a table listing obsolete connections as (peer transport entity,
connection identifier) pairs. Whenever a connection request comes in, it could be checked
against the table, to see if it belonged to a previously-released connection.

Unfortunately, this scheme has a basic flaw: it requires each transport entity to maintain a
certain amount of history information indefinitely. If a machine crashes and loses its memory,
it will no longer know which connection identifiers have already been used.

Instead, we need to take a different tack. Rather than allowing packets to live forever within
the subnet, we must devise a mechanism to kill off aged packets that are still hobbling about.
If we can ensure that no packet lives longer than some known time, the problem becomes
somewhat more manageable.

Packet lifetime can be restricted to a known maximum using one (or more) of the following
techniques:

1. Restricted subnet design.
2. Putting a hop counter in each packet.
3. Timestamping each packet.

The first method includes any method that prevents packets from looping, combined with
some way of bounding congestion delay over the (now known) longest possible path. The
second method consists of having the hop count initialized to some appropriate value and
decremented each time the packet is forwarded. The network protocol simply discards any
packet whose hop counter becomes zero. The third method requires each packet to bear the
time it was created, with the routers agreeing to discard any packet older than some agreed-
upon time. This latter method requires the router clocks to be synchronized, which itself is a
nontrivial task unless synchronization is achieved external to the network, for example by
using GPS or some radio station that broadcasts the precise time periodically.

In practice, we will need to guarantee not only that a packet is dead, but also that all
acknowledgements to it are also dead, so we will now introduce T, which is some small
multiple of the true maximum packet lifetime. The multiple is protocol dependent and simply
has the effect of making T longer. If we wait a time T after a packet has been sent, we can be
sure that all traces of it are now gone and that neither it nor its acknowledgements will
suddenly appear out of the blue to complicate matters.

With packet lifetimes bounded, it is possible to devise a foolproof way to establish connections
safely. The method described below is due to Tomlinson (1975). It solves the problem but
introduces some peculiarities of its own. The method was further refined by Sunshine and
Dalal (1978). Variants of it are widely used in practice, including in TCP.

To get around the problem of a machine losing all memory of where it was after a crash,
Tomlinson proposed equipping each host with a time-of-day clock. The clocks at different hosts
need not be synchronized. Each clock is assumed to take the form of a binary counter that
increments itself at uniform intervals. Furthermore, the number of bits in the counter must
equal or exceed the number of bits in the sequence numbers. Last, and most important, the
clock is assumed to continue running even if the host goes down.

The basic idea is to ensure that two identically numbered TPDUs are never outstanding at the
same time. When a connection is set up, the low-order k bits of the clock are used as the initial
sequence number (also k bits). Thus, unlike our protocols of Chap. 3, each connection starts
numbering its TPDUs with a different initial sequence number. The sequence space should be
so large that by the time sequence numbers wrap around, old TPDUs with the same sequence
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number are long gone. This linear relation between time and initial sequence numbers is
shown in Fig. 6-10.

Figure 6-10. (a) TPDUs may not enter the forbidden region. (b) The
resynchronization problem.
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Once both transport entities have agreed on the initial sequence number, any sliding window
protocol can be used for data flow control. In reality, the initial sequence number curve (shown
by the heavy line) is not linear, but a staircase, since the clock advances in discrete steps. For
simplicity we will ignore this detail.

A problem occurs when a host crashes. When it comes up again, its transport entity does not
know where it was in the sequence space. One solution is to require transport entities to be
idle for T sec after a recovery to let all old TPDUs die off. However, in a complex internetwork,
T may be large, so this strategy is unattractive.

To avoid requiring T sec of dead time after a crash, it is necessary to introduce a new
restriction on the use of sequence numbers. We can best see the need for this restriction by
means of an example. Let T, the maximum packet lifetime, be 60 sec and let the clock tick
once per second. As shown by the heavy line in Fig. 6-10(a), the initial sequence number for a
connection opened at time x will be x. Imagine that at t = 30 sec, an ordinary data TPDU being
sent on (a previously opened) connection 5 is given sequence number 80. Call this TPDU X.
Immediately after sending TPDU X, the host crashes and then quickly restarts. At £ = 60, it
begins reopening connections 0 through 4. At t = 70, it reopens connection 5, using initial
sequence number 70 as required. Within the next 15 sec it sends data TPDUs 70 through 80.
Thus, at t = 85 a new TPDU with sequence number 80 and connection 5 has been injected into
the subnet. Unfortunately, TPDU X still exists. If it should arrive at the receiver before the new
TPDU 80, TPDU X will be accepted and the correct TPDU 80 will be rejected as a duplicate.

To prevent such problems, we must prevent sequence numbers from being used (i.e., assigned
to new TPDUs) for a time T before their potential use as initial sequence numbers. The illegal
combinations of time and sequence number are shown as the forbidden region in Fig. 6-
10(a). Before sending any TPDU on any connection, the transport entity must read the clock
and check to see that it is not in the forbidden region.

The protocol can get itself into trouble in two distinct ways. If a host sends too much data too
fast on a newly-opened connection, the actual sequence number versus time curve may rise
more steeply than the initial sequence number versus time curve. This means that the
maximum data rate on any connection is one TPDU per clock tick. It also means that the
transport entity must wait until the clock ticks before opening a new connection after a crash
restart, lest the same number be used twice. Both of these points argue in favor of a short
clock tick (a few psec or less).
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Unfortunately, entering the forbidden region from underneath by sending too fast is not the
only way to get into trouble. From Fig. 6-10(b), we see that at any data rate less than the
clock rate, the curve of actual sequence numbers used versus time will eventually run into the
forbidden region from the left. The greater the slope of the actual sequence number curve, the
longer this event will be delayed. As we stated above, just before sending every TPDU, the
transport entity must check to see if it is about to enter the forbidden region, and if so, either
delay the TPDU for T sec or resynchronize the sequence numbers.

The clock-based method solves the delayed duplicate problem for data TPDUs, but for this
method to be useful, a connection must first be established. Since control TPDUs may also be
delayed, there is a potential problem in getting both sides to agree on the initial sequence
number. Suppose, for example, that connections are established by having host 1 send a
CONNECTION REQUEST TPDU containing the proposed initial sequence number and destination
port number to a remote peer, host 2. The receiver, host 2, then acknowledges this request by
sending a CONNECTION ACCEPTED TPDU back. If the CONNECTION REQUEST TPDU is lost but
a delayed duplicate CONNECTION REQUEST suddenly shows up at host 2, the connection will
be established incorrectly.

To solve this problem, Tomlinson (1975) introduced the three-way handshake. This
establishment protocol does not require both sides to begin sending with the same sequence
number, so it can be used with synchronization methods other than the global clock method.
The normal setup procedure when host 1 initiates is shown in Fig. 6-11(a). Host 1 chooses a
sequence number, x, and sends a CONNECTION REQUEST TPDU containing it to host 2. Host 2
replies with an ACK TPDU acknowledging x and announcing its own initial sequence number, y.
Finally, host 1 acknowledges host 2's choice of an initial sequence number in the first data
TPDU that it sends.

Figure 6-11. Three protocol scenarios for establishing a connection
using a three-way handshake. CR denotes CONNECTION REQUEST. (a)
Normal operation. (b) Old duplicate CONNECTION REQUEST appearing
out of nowhere. (c) Duplicate CONNECTION REQUEST and duplicate
ACK.
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Now let us see how the three-way handshake works in the presence of delayed duplicate
control TPDUs. In Fig. 6-11(b), the first TPDU is a delayed duplicate CONNECTION REQUEST
from an old connection. This TPDU arrives at host 2 without host 1's knowledge. Host 2 reacts
to this TPDU by sending host 1 an

ACK TPDU, in effect asking for verification that host 1 was indeed trying to set up a new
connection. When host 1 rejects host 2's attempt to establish a connection, host 2 realizes that
it was tricked by a delayed duplicate and abandons the connection. In this way, a delayed
duplicate does no damage.

The worst case is when both a delayed CONNECTION REQUEST and an ACK are floating around
in the subnet. This case is shown in Fig. 6-11(c). As in the previous example, host 2 gets a
delayed CONNECTION REQUEST and replies to it. At this point it is crucial to realize that host 2
has proposed using y as the initial sequence number for host 2 to host 1 traffic, knowing full
well that no TPDUs containing sequence number y or acknowledgements to y are still in
existence. When the second delayed TPDU arrives at host 2, the fact that z has been
acknowledged rather than y tells host 2 that this, too, is an old duplicate. The important thing
to realize here is that there is no combination of old TPDUs that can cause the protocol to fail
and have a connection set up by accident when no one wants it.

6.2.3 Connection Release

Releasing a connection is easier than establishing one. Nevertheless, there are more pitfalls
than one might expect. As we mentioned earlier, there are two styles of terminating a
connection: asymmetric release and symmetric release. Asymmetric release is the way the
telephone system works: when one party hangs up, the connection is broken. Symmetric



