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nothing at all about the attempts to disconnect and is still fully active. This situation results in
a half-open connection.

We could have avoided this problem by not allowing the sender to give up after N retries but
forcing it to go on forever until it gets a response. However, if the other side is allowed to time
out, then the sender will indeed go on forever, because no response will ever be forthcoming.
If we do not allow the receiving side to time out, then the protocol hangs in Fig. 6-14(d).

One way to kill off half-open connections is to have a rule saying that if no TPDUs have arrived
for a certain number of seconds, the connection is then automatically disconnected. That way,
if one side ever disconnects, the other side will detect the lack of activity and also disconnect.
Of course, if this rule is introduced, it is necessary for each transport entity to have a timer
that is stopped and then restarted whenever a TPDU is sent. If this timer expires, a dummy
TPDU is transmitted, just to keep the other side from disconnecting. On the other hand, if the
automatic disconnect rule is used and too many dummy TPDUs in a row are lost on an
otherwise idle connection, first one side, then the other side will automatically disconnect.

We will not belabor this point any more, but by now it should be clear that releasing a
connection without data loss is not nearly as simple as it at first appears.

6.2.4 Flow Control and Buffering

Having examined connection establishment and release in some detail, let us now look at how
connections are managed while they are in use. One of the key issues has come up before:
flow control. In some ways the flow control problem in the transport layer is the same as in the
data link layer, but in other ways it is different. The basic similarity is that in both layers a
sliding window or other scheme is needed on each connection to keep a fast transmitter from
overrunning a slow receiver. The main difference is that a router usually has relatively few
lines, whereas a host may have numerous connections. This difference makes it impractical to
implement the data link buffering strategy in the transport layer.

In the data link protocols of Chap. 3, frames were buffered at both the sending router and at
the receiving router. In protocol 6, for example, both sender and receiver are required to
dedicate MAX_SEQ + 1 buffers to each line, half for input and half for output. For a host with a
maximum of, say, 64 connections, and a 4-bit sequence number, this protocol would require
1024 buffers.

In the data link layer, the sending side must buffer outgoing frames because they might have
to be retransmitted. If the subnet provides datagram service, the sending transport entity
must also buffer, and for the same reason. If the receiver knows that the sender buffers all
TPDUs until they are acknowledged, the receiver may or may not dedicate specific buffers to
specific connections, as it sees fit. The receiver may, for example, maintain a single buffer pool
shared by all connections. When a TPDU comes in, an attempt is made to dynamically acquire
a new buffer. If one is available, the TPDU is accepted; otherwise, it is discarded. Since the
sender is prepared to retransmit TPDUs lost by the subnet, no harm is done by having the
receiver drop TPDUs, although some resources are wasted. The sender just keeps trying until
it gets an acknowledgement.

In summary, if the network service is unreliable, the sender must buffer all TPDUs sent, just as
in the data link layer. However, with reliable network service, other trade-offs become
possible. In particular, if the sender knows that the receiver always has buffer space, it need
not retain copies of the TPDUs it sends. However, if the receiver cannot guarantee that every
incoming TPDU will be accepted, the sender will have to buffer anyway. In the latter case, the
sender cannot trust the network layer's acknowledgement, because the acknowledgement
means only that the TPDU arrived, not that it was accepted. We will come back to this
important point later.
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Even if the receiver has agreed to do the buffering, there still remains the question of the
buffer size. If most TPDUs are nearly the same size, it is natural to organize the buffers as a
pool of identically-sized buffers, with one TPDU per buffer, as in Fig. 6-15(a). However, if there
is wide variation in TPDU size, from a few characters typed at a terminal to thousands of
characters from file transfers, a pool of fixed-sized buffers presents problems. If the buffer size
is chosen equal to the largest possible TPDU, space will be wasted whenever a short TPDU
arrives. If the buffer size is chosen less than the maximum TPDU size, multiple buffers will be
needed for long TPDUs, with the attendant complexity.

Figure 6-15. (a) Chained fixed-size buffers. (b) Chained variable-sized
buffers. (c) One large circular buffer per connection.
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Another approach to the buffer size problem is to use variable-sized buffers, as in Fig. 6-15(b).
The advantage here is better memory utilization, at the price of more complicated buffer
management. A third possibility is to dedicate a single large circular buffer per connection, as
in Fig. 6-15(c). This system also makes good use of memory, provided that all connections are
heavily loaded, but is poor if some connections are lightly loaded.

The optimum trade-off between source buffering and destination buffering depends on the
type of traffic carried by the connection. For low-bandwidth bursty traffic, such as that
produced by an interactive terminal, it is better not to dedicate any buffers, but rather to
acquire them dynamically at both ends. Since the sender cannot be sure the receiver will be
able to acquire a buffer, the sender must retain a copy of the TPDU until it is acknowledged.
On the other hand, for file transfer and other high-bandwidth traffic, it is better if the receiver
does dedicate a full window of buffers, to allow the data to flow at maximum speed. Thus, for
low-bandwidth bursty traffic, it is better to buffer at the sender, and for highbandwidth smooth
traffic, it is better to buffer at the receiver.

As connections are opened and closed and as the traffic pattern changes, the sender and
receiver need to dynamically adjust their buffer allocations. Consequently, the transport
protocol should allow a sending host to request buffer space at the other end. Buffers could be
allocated per connection, or collectively, for all the connections running between the two hosts.
Alternatively, the receiver, knowing its buffer situation (but not knowing the offered traffic)
could tell the sender "I have reserved X buffers for you." If the number of open connections
should increase, it may be necessary for an allocation to be reduced, so the protocol should
provide for this possibility.
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A reasonably general way to manage dynamic buffer allocation is to decouple the buffering
from the acknowledgements, in contrast to the sliding window protocols of Chap. 3. Dynamic
buffer management means, in effect, a variable-sized window. Initially, the sender requests a
certain number of buffers, based on its perceived needs. The receiver then grants as many of
these as it can afford. Every time the sender transmits a TPDU, it must decrement its
allocation, stopping altogether when the allocation reaches zero. The receiver then separately
piggybacks both acknowledgements and buffer allocations onto the reverse traffic.

Figure 6-16 shows an example of how dynamic window management might work in a
datagram subnet with 4-bit sequence numbers. Assume that buffer allocation information
travels in separate TPDUs, as shown, and is not piggybacked onto reverse traffic. Initially, A
wants eight buffers, but is granted only four of these. It then sends three TPDUs, of which the
third is lost. TPDU 6 acknowledges receipt of all TPDUs up to and including sequence number
1, thus allowing A to release those buffers, and furthermore informs A that it has permission to
send three more TPDUs starting beyond 1 (i.e., TPDUs 2, 3, and 4). A knows that it has
already sent number 2, so it thinks that it may send TPDUs 3 and 4, which it proceeds to do.
At this point it is blocked and must wait for more buffer allocation. Timeout-induced
retransmissions (line 9), however, may occur while blocked, since they use buffers that have
already been allocated. In line 10, B acknowledges receipt of all TPDUs up to and including 4
but refuses to let A continue. Such a situation is impossible with the fixed window protocols of
Chap. 3. The next TPDU from B to A allocates another buffer and allows A to continue.

Figure 6-16. Dynamic buffer allocation. The arrows show the direction
of transmission. An ellipsis (...) indicates a lost TPDU.

A Meassage B Comments
i — < regues! 8 buffers= — A wants 8 buffers
g — <ack = 15, bul = 4> —— B grants messages 0-3 only
3 - <geq = 0, data = mil= —_— A has 3 buffers left now
4 = <seq =1, data = mi= _— A has 2 buffers left now
5 — «seq = 2, data = m2= v Message lost but A thinks it has 1 left
6 =-— <ack =1, buf = 3= -— B acknowledges 0and 1, permits 2.4
7 o— «<seq = 3, data = m3= — A has 1 buffer left
g8 — =geq = 4, data = md= — A has 0 buffers left, and must Stop
9 — «geq = 2, data = m2= - A times out and refransmits
10 =— =ack = 4, bul = 0> -— Evarylhing acknowledged, bul A still blocked
11 = <ack = 4, bulf = 1= -— A may now send 5
12 =— =ack = 4, buf = 2> -— B found a naw buffer somawhera
13 — <seq = 5, data = m5= — A has 1 buffer left
14 —= <5eq = B, data = mb= — A is now blocked again
15 =— <ack =6, buf = 0= -— A is still blocked
16 wes <ack = 6, buf = 4= — Fotential deadlock

Potential problems with buffer allocation schemes of this kind can arise in datagram networks
if control TPDUs can get lost. Look at line 16. B has now allocated more buffers to A, but the
allocation TPDU was lost. Since control TPDUs are not sequenced or timed out, A is now
deadlocked. To prevent this situation, each host should periodically send control TPDUs giving
the acknowledgement and buffer status on each connection. That way, the deadlock will be
broken, sooner or later.

Until now we have tacitly assumed that the only limit imposed on the sender's data rate is the
amount of buffer space available in the receiver. As memory prices continue to fall
dramatically, it may become feasible to equip hosts with so much memory that lack of buffers
is rarely, if ever, a problem.
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When buffer space no longer limits the maximum flow, another bottleneck will appear: the
carrying capacity of the subnet. If adjacent routers can exchange at most x packets/sec and
there are k disjoint paths between a pair of hosts, there is no way that those hosts can
exchange more than kx TPDUs/sec, no matter how much buffer space is available at each end.
If the sender pushes too hard (i.e., sends more than kx TPDUs/sec), the subnet will become
congested because it will be unable to deliver TPDUs as fast as they are coming in.

What is needed is a mechanism based on the subnet's carrying capacity rather than on the
receiver's buffering capacity. Clearly, the flow control mechanism must be applied at the
sender to prevent it from having too many unacknowledged TPDUs outstanding at once.
Belsnes (1975) proposed using a sliding window flow control scheme in which the sender
dynamically adjusts the window size to match the network's carrying capacity. If the network
can handle ¢ TPDUs/sec and the cycle time (including transmission, propagation, queueing,
processing at the receiver, and return of the acknowledgement) is r, then the sender's window
should be cr. With a window of this size the sender normally operates with the pipeline full.
Any small decrease in network performance will cause it to block.

In order to adjust the window size periodically, the sender could monitor both parameters and
then compute the desired window size. The carrying capacity can be determined by simply
counting the number of TPDUs acknowledged during some time period and then dividing by
the time period. During the measurement, the sender should send as fast as it can, to make
sure that the network's carrying capacity, and not the low input rate, is the factor limiting the
acknowledgement rate. The time required for a transmitted TPDU to be acknowledged can be
measured exactly and a running mean maintained. Since the network capacity available to any
given flow varies in time, the window size should be adjusted frequently, to track changes in
the carrying capacity. As we will see later, the Internet uses a similar scheme.

6.2.5 Multiplexing

Multiplexing several conversations onto connections, virtual circuits, and physical links plays a
role in several layers of the network architecture. In the transport layer the need for
multiplexing can arise in a number of ways. For example, if only one network address is
available on a host, all transport connections on that machine have to use it. When a TPDU
comes in, some way is needed to tell which process to give it to. This situation, called upward
multiplexing, is shown in Fig. 6-17(a). In this figure, four distinct transport connections all
use the same network connection (e.g., IP address) to the remote host.

Figure 6-17. (a) Upward multiplexing. (b) Downward multiplexing.
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Multiplexing can also be useful in the transport layer for another reason. Suppose, for
example, that a subnet uses virtual circuits internally and imposes a maximum data rate on



