Generated by Foxit PDF Creator © Foxit Software
| http://www.foxitsoftware.com For evaluation only.

3.2« MULTIPLEXING AND DEMULTIPLEXING 203

cuss congestion control in a general setting and then discuss how TCP performs con-
gestion control. But before getting into all this good stuff, let’s first look at
transport-layer multiplexing and demultiplexing.

5.2 Multiplexing and Demultiplexing

In this section we discuss transport-layer multiplexing and demultiplexing, that is,
extending the host-to-host delivery service provided by the network layer to a
process-to-process delivery service for applications running on the hosts. In order to
keep the discussion concrete, we’ll discuss this basic transport-layer service in the
context of the Internet. We emphasize, however, that a multiplexing/demultiplexing
service is needed for all computer networks.
At the destination host, the transport layer receives segments from the network
layer just below. The transport layer has the responsibility of delivering the data in
(hese segments to the appropriate application process running in the host. Let’s take
~ alook at an example. Suppose you are sitting in front of your computer, and you are
downloading Web pages while running one FTP session and two Telnet sessions.
‘\ You therefore have four network application processes running—two Telnet
processes, one FTP process, and one HTTP process. When the transport layer in
your computer receives data from the network layer below, it needs to direct the
received data to one of these four processes. Let’s now examine how this is done.

First recall from Sections 2.7 and 2.8 that a process (as part of a network appli-
~ cation) can have one or more sockets, doors through which data passes from the net-
work to the process and through which data passes from the process to the network.
Thus, as shown in Figure 3.2, the transport layer in the receiving host does not actu-
ally deliver data directly to a process, but instead to an intermediary socket. Because
at any given time there can be more than one socket in the receiving host, each
socket has a unique identifier. The format of the identifier depends on whether the
socket is a UDP or a TCP socket, as we’ll discuss shortly.

Now let’s consider how a receiving host directs an incoming transport-layer
- segment to the appropriate socket. Each transport-layer segment has a set of fields
in the segment for this purpose. At the receiving end, the transport layer examines
these fields to identify the receiving socket and then directs the segment to that
socket. This job of delivering the data in a transport-layer segment to the correct
socket is called demultiplexing. The job of gathering data chunks at the source host
from different sockets, encapsulating each data chunk with header information (that
will later be used in demultiplexing) to create segments, and passing the segments
to the network layer is called multiplexing. Note that the transport layer in the mid-
dle host in Figure 3.2 must demultiplex segments arriving from the network layer
below to either process P, or P, above: this is done by directing the arriving seg-
ment’s data to the corresponding process’s socket. The transport layer in the middle

204 CHAPTER 3

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

* TRANSPORT LAYER

Application Py P, Application P, P, Application
i Transport \ Transport Transport
ﬂ» ‘ Network u Network Network
’[§~?‘; Data link C‘“—-:—:"} Data link Data link
Physical Physical Physical

Key:

O Process [:] Socket

Figure 3.2 ¢ Transportlayer multiplexing and demultiplexing

host must also gather outgoing data from these sockets, form transport-layer
segments, and pass these segments down to the network layer. Although we have
introduced multiplexing and demultiplexing in the context of the Internet transport
protocols, it’s important to realize that they are concerns whenever a single protocol
at one layer (at the transport layer or elsewhere) is used by multiple protocols at the
next higher layer.

To illustrate the demultiplexing job, recall the household analogy in the previ-
ous section. Each of the kids is identified by his or her name. When Bill receives a
batch of mail from the mail carrier, he performs a demultiplexing operation by
observing to whom the letters are addressed and then hand delivering the mail to his
brothers and sisters. Ann performs a multiplexing operation when she collects let-
ters from her brothers and sisters and gives the collected mail to the mail person.

Now that we understand the roles of transport-layer multiplexing and demulti-
plexing, let us examine how it is actually done in a host. From the discussion above,
we know that transport-layer multiplexing requires (1) that sockets have unique
identifiers and (2) that each segment have special fields that indicate the socket to
which the segment is to be delivered. These special fields, illustrated in Figure 3.3,
are the source port number field and the destination port number field. (The
UDP and TCP segments have other fields as well, as discussed in the subsequent
sections of this chapter.) Each port number is a 16-bit number, ranging from 0 to
65535. The port numbers ranging trom 0 to 1023 are called well-known port num-
bers and are restricted, which means that they are reserved for use by well-known
application protocols such as HT'TP (which uses port number 80) and FTP (which
uses port number 21). The list of well-known port numbers is given in RFC 1700

32 bits
=

Source port # Dest. port #

Other header fields

Application
data
(message)

Figure 3.3 ¢ Source and destination portnumber fields in a transportlayer
segment

and is updated at http://www.iana.org [RFC 3232]. When we develop a new appli-
“cation (such as one of the applications developed in Sections 2.7 and 2.8), we must
assign the application a port number.

~ Itshould now be clear how the transport layer could implement the demultiplex-
ing service: Each socket in the host could be assigned a port number, and when a seg-
~ment arrives at the host, the transport layer examines the destination port number in
 the segment and directs the segment to the corresponding socket. The segment’s data
then passes through the socket into the attached process. As we’ll see, this is basi-
cally how UDP does it. However, we’ll also see that multiplexing/demultiplexing in
‘TCP is yet more subtle.

Connectionless Multiplexing and Demultiplexing

Recall from Section 2.8 that a Java program running in a host can create a UDP
socket with the line

DatagramSocket mySocket = new DatagramSocket();

When a UDP socket is created in this manner, the transport layer automatically assigns
a port number to the socket. In particular, the transport layer assigns a port number in
the range 1024 to 65535 that is currently not being used by any other UDP port in the
host. Alternatively, a Java program could create a socket with the line

DatagramSocket mySocket = new DatagramSocket(19157);
In this case, the application assigns a specific port number—namely, 19157—to the

UDP socket. If the application developer writing the code were implementing the
server side of a “well-known protocol,” then the developer would have to assign the

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

3.2« MULTIPLEXING AND DEMULTIPLEXING

205

206

CHAPTER 3

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

* TRANSPORT LAYER

corresponding well-known port number. Typically, the client side of the application
lets the transport layer automatically (and transparently) assign the port number,
whereas the server side of the application assigns a specific port number.

With port numbers assigned to UDP sockets, we can now precisely describe
UDP multiplexing/demultiplexing. Suppose a process in Host A, with UDP port
19157, wants to send a chunk of application data to a process with UDP port 46428
in Host B. The transport layer in Host A creates a transport-layer segment that
includes the application data, the source port number (19157), the destination port
number (46428), and two other values (which will be discussed later, but are unim-
portant for the current discussion). The transport layer then passes the resulting seg-
ment to the network layer. The network layer encapsulates the segment in an IP
datagram and makes a best-effort attempt to deliver the segment to the receiving host.
If the segment arrives at the receiving Host B, the transport layer at the receiving
host examines the destination port number in the segment (46428) and delivers the
segment to its socket identified by port 46428. Note that Host B could be running
multiple processes, each with its own UDP socket and associated port number. As
UDP segments arrive from the network, Host B directs (demultiplexes) each segment
to the appropriate socket by examining the segment’s destination port number.

It is important to note that a UDP socket is fully identified by a two-tuple consist-
ing of a destination IP address and a destination port number. As a consequence, if two
UDP segments have different source IP addresses and/or source port numbers, but have
the same destination IP address and destination port number, then the two segments
will be directed to the same destination process via the same destination socket.

You may be wondering now, what is the purpose of the source port number? As
shown in Figure 3.4, in the A-to-B segment the source port number serves as part of
a “return address”—when B wants to send a segment back to A, the destination port
in the B-to-A segment will take its value from the source port value of the A-to-B
segment. (The complete return address is A’s [P address and the source port num-
ber.) As an example, recall the UDP server program studied in Section 2.8. In
UDPServer. java, the server uses a method to extract the source port number
from the segment it receives from the client; it then sends a new segment to the
client, with the extracted source port number serving as the destination port number
in this new segment.

Connection-Oriented Multiplexing and Demultiplexing

In order to understand TCP demultiplexing, we have to take a close look at TCP
sockets and TCP connection establishment. One subtle difference between a TCP
socket and a UDP socket is that a TCP socket is identified by a four-tuple: (source
IP address, source port number, destination IP address, destination port number).
Thus, when a TCP segment arrives from the network to a host, the host uses all four
values to direct (demultiplex) the segment to the appropriate socket. In particular,
and in contrast with UDP, two arriving TCP segments with different source IP

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

3.2« MULTIPLEXING AND DEMULTIPLEXING

Client process

_-Socket
Host A Server B

——

source port: dest. port:
19157 46428

-
—

source pért: desf. p’on:'
46428 193157

?_ngure 3.4 ¢ The inversion of source and destination port numbers

addresses or source port numbers will (with the exception of a TCP segment carry-
ing the original connection-establishment request) be directed to two different sock-
~ets. To gain further insight, let’s reconsider the TCP client-server programming
- example in Section 2.7:

+ The TCPserver application has a “welcoming socket,” which waits for connection-
establishment requests from TCP clients (see Figure 2.29) on port number 6789.

-+ The TCP client generates a connection-establishment segment with the line
Socket clientSocket = new Socket(“serverHostName”, 6789);

* A connection-establishment request is nothing more than a TCP segment with desti-
nation port number 6789 and a special connection-establishment bit set in the TCP
header (discussed in Section 3.5). The segment also includes a source port number,
which was chosen by the client. The line above also creates a TCP socket for the
client process, through which data can enter and leave the client process.

When the host operating system of the computer running the server process
receives the incoming connection-request segment with destination port 6789, it
locates the server process that is waiting to accept a connection on port number
6789. The server process then creates a new socket:

Socket connectionSocket = welcomeSocket.accept();

207

Generated by Foxit PDF Creator © Foxit Software 1
http://www.foxitsoftware.com For evaluation only.

208 CHAPTER 3« TRANSPORT LAYER

« Also, the transport layer at the server notes the following four values in the con-
nection-request segment: (1) the source port number in the segment, (2) the IP
address of the source host, (3) the destination port number in the segment, and
(4) its own IP address. The newly created connection socket is identified by these
four values; all subsequently arriving segments whose source port, source [P
address, destination port, and destination IP address match these four values will
be demultiplexed to this socket. With the TCP connection now in place, the client
and server can now send data to each other.

The server host may support many simultaneous TCP sockets, with each socket
attached to a process, and with each socket identified by its own four-tuple. When a
TCP segment arrives at the host, all four fields (source IP address, source port,
destination IP address, destination port) are used to direct (demultiplex) the segment
to the appropriate socket.

FOCUS ON SECURITY

PORT SCANNING

We've seen that a server process waits patiently on an open port for contact by a
remote client. Some ports are reserved for wellknown applications {e.g., Web, FTP,
DNS, and SMTP servers); other ports are used by convention by popular applications
[e.g., the Microsoft 2000 SQL server listens for requests on UDP port 1434). Thus, if
we determine that a port is open on a host, we may be able to map that port to a
specific application running on the host. This is very useful for system administrators,
who are often inferested in knowing which network applications are running on the
hosts in their networks. But attackers, in order to “case the joint,” also want to know
which ports are open on target hosts. If a host is found to be running an application
with a known security flaw [e.g., a SQL server listening on port 1434 was subject to
a buffer overflow, allowing a remote user to execute arbitrary code on the vulnerable
host, a flaw exploited by the Slammer worm [CERT 2003-04]), then that host is ripe
for attack.

Determining which applications are listening on which ports is a relatively easy
task. Indeed there are a number of public domain programs, called port scanners,
that do just that. Perhaps the most widely used of these is nmap, freely available at
http:/ /insecure.org/nmap and included in most Linux distributions. For TCP, nmap
sequentially scans ports, looking for ports that are accepting TCP connections. For
UDP, nmap again sequentially scans ports, looking for UDP ports that respond to
transmitted UDP segments. In both cases, nmap returns a list of open, closed, or
unreachable ports. A host running nmap can attempt to scan any target host any-
where in the Internet. We'll revisit nmap in Section 3.5.6, when we discuss TCP con-
nection management,

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

3.2+ MULTIPLEXING AND DEMULTIPLEXING 209

Web client Web
host C server B

Per-connection
HTTP
processes

— Transport-
source port: dest. port: source port: dest. port: layer
7582 80 26145 80 demultiplexing
source |P: dest. IP: source IP: dest. IP:
C B £ B
Web client \ J
host A g5 ")

1 o
‘ —

source port: dest. port:

26145 80
source IP: dest. IP:
A B

Figure 3.5 ¢ Two clients, using the same destination port number (80) to
communicate with the same Web server application

The situation is illustrated in Figure 3.5, in which Host C initiates two HTTP ses-
sions to server B, and Host A initiates one HTTP session to B. Hosts A and C and server
B each have their own unique IP address—A, C, and B, respectively. Host C assigns
two different source port numbers (26145 and 7532) to its two HTTP connections.
Because Host A is choosing source port numbers independently of C, it might also
assign a source port of 26145 to its HTTP connection. But this is not a problem—server
B will still be able to correctly demultiplex the two connections having the same source
port number, since the two connections have different source IP addresses.

Web Servers and TCP

Before closing this discussion, it’s instructive to say a few additional words about
Web servers and how they use port numbers. Consider a host running a Web server,
such as an Apache Web server, on port 80. When clients (for example, browsers)
send segments to the server, all segments will have destination port 80. In particu-
lar, both the initial connection-establishment segments and the segments carrying
HTTP request messages will have destination port 80. As we have just described,

210

CHAPTER 3

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

* TRANSPORT LAYER

the server distinguishes the segments from the different clients using source IP
addresses and source port numbers.

Figure 3.5 shows a Web server that spawns a new process for each connection.
As shown in Figure 3.5, each of these processes has its own connection socket
through which HTTP requests arrive and HTTP responses are sent. We mention,
however, that there is not always a one-to-one correspondence between connection
sockets and processes. In fact, today’s high-performing Web servers often use only
one process, and create a new thread with a new connection socket for each new
client connection. (A thread can be viewed as a lightweight subprocess.) If you did
the first programming assignment in Chapter 2, you built a Web server that does just
this. For such a server, at any given time there may be many connection sockets
(with different identifiers) attached to the same process.

If the client and server are using persistent HTTP, then throughout the duration
of the persistent connection the client and server exchange HTTP messages via the
same server socket. However, if the client and server use non-persistent HTTP, then
a new TCP connection is created and closed for every request/response, and hence
a new socket is created and later closed for every request/response. This frequent
creating and closing of sockets can severely impact the performance of a busy Web
server (although a number of operating system tricks can be used to mitigate
the problem). Readers interested in the operating system issues surrounding per-
sistent and non-persistent HTTP are encouraged to see [Nielsen 1997; Nahum
2002].

Now that we’ve discussed transport-layer multiplexing and demultiplexing,
let’s move on and discuss one of the Internet’s transport protocols, UDP. In the next
section we’ll see that UDP adds little more to the network-layer protocol than a mul-
tiplexing/demultiplexing service.

3.3 Connectionless Transport: UDP

In this section, we'll take a close look at UDP, how it works, and what it does.
We encourage you to refer back to Section 2.1, which includes an overview of
the UDP service model, and to Section 2.8, which discusses socket programming
using UDP.

To motivate our discussion about UDP, suppose you were interested in design-
ing a no-frills, bare-bones transport protocol. How might you go about doing this?
You might first consider using a vacuous transport protocol. In particular, on the
sending side, you might consider taking the messages from the application process
and passing them directly to the network layer; and on the receiving side, you might
consider taking the messages arriving from the network layer and passing them
directly to the application process. But as we learned in the previous section, we
have to do a little more than nothing! At the very least, the transport layer has to

