216

CHAPTER 3

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

* TRANSPORT LAYER

provides error checking, it does not do anything to recover from an error. Some
implementations of UDP simply discard the damaged segment; others pass the dam-
aged segment to the application with a warning.

That wraps up our discussion of UDP. We will soon see that TCP offers reliable
data transfer to its applications as well as other services that UDP doesn’t offer. Natu-
rally, TCP is also more complex than UDP. Before discussing TCP, however, it will be
useful to step back and first discuss the underlying principles of reliable data transfer.

3.4 Principles of Reliable Data Transfer

In this section, we consider the problem of reliable data transfer in a general con-
text. This is appropriate since the problem of implementing reliable data transfer
occurs not only at the transport layer, but also at the link layer and the application
layer as well. The general problem is thus of central importance to networking.
Indeed, if one had to identify a “top-ten” list of fundamentally important problems
in all of networking, this would be a candidate to lead the list. In the next section
we’ll examine TCP and show, in particular, that TCP exploits many of the principles
that we are about to describe.

Figure 3.8 illustrates the framework for our study of reliable data transfer. The
service abstraction provided to the upper-layer entities is that of a reliable channel
through which data can be transferred. With a reliable channel, no transferred data
bits are corrupted (flipped from O to 1, or vice versa) or lost, and all are delivered in
the order in which they were sent. This is precisely the service model offered by
TCP to the Internet applications that invoke it.

It is the responsibility of a reliable data transfer protocol to implement this
service abstraction. This task is made difficult by the fact that the layer below the
reliable data transfer protocol may be unreliable. For example, TCP is a reliable data
transfer protocol that is implemented on top of an unreliable (IP) end-to-end net-
work layer. More generally, the layer beneath the two reliably communicating end
points might consist of a single physical link (as in the case of a link-level data
transfer protocol) or a global internetwork (as in the case of a transport-level proto-
col). For our purposes, however, we can view this lower layer simply as an unreli-
able point-to-point channel.

In this section, we will incrementally develop the sender and receiver sides of a
reliable data transfer protocol, considering increasingly complex models of the under-
lying channel. Figure 3.8(b) illustrates the interfaces for our data transfer protocol. The
sending side of the data transfer protocol will be invoked from above by a call to
rdt_send(). It will pass the data to be delivered to the upper layer at the receiving
side. (Here rdt stands for reliable data transfer protocol and _send indicates that the
sending side of rdt is being called. The first step in developing any protocol is to
choose a good name!) On the receiving side, rdt rcv () will be called when a packet

8 '8

Sending
Application process

Receiver
process
o~ ‘

X

PRINCIPLES OF RELIABLE DATA TRANSFER

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

217

Figure 3.8 ¢ Reliable data transfer: Service model and service
implementation

arrives from the receiving side of the channel. When the rdt protocol wants to deliver
data to the upper layer, it will do so by calling deliver data(). In the following
we use the terminology “packet” rather than transport-layer “segment.” Because the
theory developed in this section applies to computer networks in general and not just to
the Internet transport layer, the generic term “packet” is perhaps more appropriate here.
In this section we consider only the case of unidirectional data transfer, that is,
data transfer from the sending to the receiving side. The case of reliable bidirectional
(that is, full-duplex) data transfer is conceptually no more difficult but considerably
more tedious to explain. Although we consider only unidirectional data transfer, it is
important to note that the sending and receiving sides of our protocol will nonetheless
need to transmit packets in both directions, as indicated in Figure 3.8. We will see
shortly that, in addition to exchanging packets containing the data to be transferred, the
sending and receiving sides of rdt will also need to exchange control packets back and

layer
= ==
v
A S PR LY. (WSSO WU | PSR AS— | . T
» rdt_send () | IR deliver data | I
v
Transport Reliable data Reliable data
layer —4 ; s transfer protocol transfer protocol
, (sending side) (receiving side)
Reliable channel
EY s 4
udt_send() - rdt_rcv () -
_________________ 4 A
e T - e T e &
Network 7
layer ? p—
Unreliable channel
| | I
| |
a. Provided service b. Service implementation
Key:
Boata T packet

218

CHAPTER 3

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

* TRANSPORT LAYER

forth. Both the send and receive sides of rdt send packets to the other side by a call to
udt _send() (where udt stands for unreliable data transfer).

3.4.1 Building a Reliable Data Transfer Protocol

We now step through a series of protocols, each one becoming more complex, arriv-
ing at a flawless, reliable data transfer protocol.

Reliable Data Transfer over a Perfectly Reliable Channel: rdt1.0

We first consider the simplest case, in which the underlying channel is completely
reliable. The protocol itself, which we’ll call rdt1.0, is trivial. The finite-state
machine (FSM) definitions for the rdt1.0 sender and receiver are shown in
Figure 3.9. The FSM in Figure 3.9(a) defines the operation of the sender, while the
FSM in Figure 3.9(b) defines the operation of the receiver. It is important to note
that there are separate FSMs for the sender and for the receiver. The sender and
receiver FSMs in Figure 3.9 each have just one state. The arrows in the FSM
description indicate the transition of the protocol from one state to another. (Since
each FSM in Figure 3.9 has just one state, a transition is necessarily from the one
state back to itself; we’ll see more complicated state diagrams shortly.) The event
causing the transition is shown above the horizontal line labeling the transition, and

Wait for rdt_send(data)

call from packet=make_pkt (data)
above udt send (packet)

a. rdt1.0: sending side

Wait for rdt_rcv (packet)

call from extract (packet,data)
below deliver_data(data)

b. rdt1.0: receiving side

Figure 3.9 ¢ rdt1.0 - A protocol for a completely reliable channel

the actions taken when the event occurs are shown below the horizontal line. When
action is taken on an event, or no event occurs and an action is taken, we’ll use
symbol A below or above the horizontal, respectively, to explicitly denote the
. of an action or event. The initial state of the FSM is indicated by the dashed
w. Although the FSMs in Figure 3.9 have but one state, the FSMs we will see
ly have multiple states, so it will be important to identify the initial state of
each FSM.

The sending side of rdt simply accepts data from the upper layer via the
rdt send(data) event, creates a packet containing the data (via the action
e pkt(data)) and sends the packet into the channel. In practice, the
rdt send(data) event would result from a procedure call (for example, to
rdt send()) by the upper-layer application.

- On the receiving side, rdt receives a packet from the underlying channel via
the rdt rcv(packet) event, removes the data from the packet (via the action
extract (packet, data)) and passes the data up to the upper layer (via the
action deliver data(data)). In practice, the rdt_rcv(packet) event
‘would result from a procedure call (for example, to rdt_rcv()) from the lower-
layer protocol.

In this simple protocol, there is no difference between a unit of data and a
packet. Also, all packet flow is from the sender to receiver; with a perfectly reliable
channel there is no need for the receiver side to provide any feedback to the sender
since nothing can go wrong! Note that we have also assumed that the receiver is able
o receive data as fast as the sender happens to send data. Thus, there is no need for
the receiver to ask the sender to slow down!

|
‘Reliable Data Transfer over a Channel with Bit Errors: rdt2.0

A more realistic model of the underlying channel is one in which bits in a packet
may be corrupted. Such bit errors typically occur in the physical components of a
- network as a packet is transmitted, propagates, or is buffered. We’ll continue to
assume for the moment that all transmitted packets are received (although their bits
| may be corrupted) in the order in which they were sent.
Before developing a protocol for reliably communicating over such a channel,
first consider how people might deal with such a situation. Consider how you your-
self might dictate a long message over the phone. In a typical scenario, the message
laker might say “OK™ after each sentence has been heard, understood, and recorded.
If the message taker hears a garbled sentence, you're asked to repeat the garbled
sentence. This message-dictation protocol uses both positive acknowledgments
~ ("OK™) and negative acknowledgments (“Please repeat that.”). These control mes-
sages allow the receiver to let the sender know what has been received correctly, and
what has been received in error and thus requires repeating. In a computer network
setting, reliable data transfer protocols based on such retransmission are known as
ARQ (Automatic Repeat reQuest) protocols.

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

3.4« PRINCIPLES OF RELIABLE DATA TRANSFER

219

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

220 CHAPTER 3 = TRANSPORT LAYER

Fundamentally, three additional protocol capabilities are required in ARQ
protocols to handle the presence of bit errors:

* Error detection. First, a mechanism is needed to allow the receiver to detect
when bit errors have occurred. Recall from the previous section that UDP uses
the Internet checksum field for exactly this purpose. In Chapter 5 we'll exam-
ine error-detection and -correction techniques in greater detail; these tech-
niques allow the receiver to detect and possibly correct packet bit errors. For
now, we need only know that these techniques require that extra bits (beyond
the bits of original data to be transferred) be sent from the sender to the
receiver; these bits will be gathered into the packet checksum field of the
rdt2.0 data packet.

* Receiver feedback. Since the sender and receiver are typically executing on differ-
ent end systems, possibly separated by thousands of miles, the only way for the
sender to learn of the receiver’s view of the world (in this case, whether or not a
packet was received correctly) is for the receiver to provide explicit feedback to the
sender. The positive (ACK) and negative (NAK) acknowledgment replies in the
message-dictation scenario are examples of such feedback. Our rdt2 . 0 protocol
will similarly send ACK and NAK packets back from the receiver to the sender. In
principle, these packets need only be one bit long; for example, a () value could indi-
cate a NAK and a value of 1 could indicate an ACK.

* Retransmission. A packet that is received in error at the receiver will be retrans-
mitted by the sender.

Figure 3.10 shows the FSM representation of rdt2 .0, a data transfer protocol
employing error detection, positive acknowledgments, and negative acknowledgments.

The send side of rdt2. 0 has two states. In the leftmost state, the send-side proto-
col is waiting for data to be passed down from the upper layer. When the
rdt send(data) event occurs, the sender will create a packet (sndpkt)
containing the data to be sent, along with a packet checksum (for example, as discussed
in Section 3.3.2 for the case of a UDP segment), and then send the packet via the
udt send(sndpkt) operation. In the nghtmost state, the sender protocol is wait-
ing for an ACK or a NAK packet from the receiver. If an ACK packet is received (the
notation rdt_rcv(rcvpkt) && isACK (rcvpkt) in Figure 3.10 corresponds
to this event), the sender knows that the most recently transmitted packet has been
received correctly and thus the protocol returns to the state of waiting for data from the
upper layer. If a NAK is received, the protocol retransmits the last packet and waits for
an ACK or NAK to be returned by the receiver in response to the retransmitted data
packet. It is important to note that when the sender is in the wait-for-ACK-or-NAK
state, it cannot get more data from the upper layer; that is, the rdt _send() event can
not occur; that will happen only after the sender receives an ACK and leaves this state.
Thus, the sender will not send a new piece of data until it is sure that the receiver has

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

3.4 + PRINCIPLES OF RELIABLE DATA TRANSFER

rdt_send (data)

sndpkt=make_pkt (data, checksum)
udt_send (sndpkt)

A
Wait for Wait for rdt rcv({rcvpkt) && igNAK (rcvpkt)
call from ACK or udt_send (sndpkt)
above NAK

-

rdt_rcv(rcvpkt) && isACK (rcvpkt)

A

a. rdt2.0: sending side

rdt_rcv(rcvpkt) && corrupt (rcvpkt)

sndpkt=make_pkt (NAK)
P udt_send (sndpkt)
~

A
Wait for
call from

below

u rdt_rcv(rcvpkt) && notcorrupt (revpkt)

extract (rcvpkt, data)
deliver_data(data)
sndpkt=make pkt (ACK)
udt _send (sndpkt)

b. rdt2.0: receiving side

Figure 3.10 ¢ rdt2.0-A protocol for a channel with bit errors

‘correctly received the current packet. Because of this behavior, protocols such as
rdt2.0 are known as stop-and-wait protocols.

The receiver-side FSM for rdt2. 0 still has a single state. On packet arrival,
the receiver replies with either an ACK or a NAK, depending on whether or not the
received packet is corrupted. In Figure 3.10, the notation rdt rcv(rcvpkt) &&
corrupt (rcvpkt) corresponds to the event in which a packet is received and is
found to be in error.

Protocol rdt2.0 may look as if it works but, unfortunately, it has a fatal
flaw. In particular, we haven't accounted for the possibility that the ACK or NAK
packet could be corrupted! (Before proceeding on, you should think about how this

221

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

222 CHAPTER 2= TRANSPORT LAYER

problem may be fixed.) Unfortunately, our slight oversight is not as innocuous as it
may seem. Minimally, we will need to add checksum bits to ACK/NAK packets in
order to detect such errors. The more difficult question is how the protocol should
recover from errors in ACK or NAK packets. The difficulty here is that if an ACK
or NAK is corrupted, the sender has no way of knowing whether or not the receiver
has correctly received the last piece of transmitted data.

Consider three possibilities for handling corrupted ACKs or NAKs:

* For the first possibility, consider what a human might do in the message-
dictation scenario. If the speaker didn’t understand the “OK” or “Please repeat
that” reply from the receiver, the speaker would probably ask, “What did you
say?” (thus introducing a new type of sender-to-receiver packet to our protocol).
The speaker would then repeat the reply. But what if the speaker’s “What did you
say?” is corrupted? The receiver, having no idea whether the garbled sentence
was part of the dictation or a request to repeat the last reply, would probably then
respond with “What did you say?” And then, of course, that response might be
garbled. Clearly, we’re heading down a difficult path.

* Asecond alternative is to add enough checksum bits to allow the sender not only
to detect, but also to recover from, bit errors. This solves the immediate problem
for a channel that can corrupt packets but not lose them.

* A third approach is for the sender simply to resend the current data packet when
it receives a garbled ACK or NAK packet. This approach, however, introduces
duplicate packets into the sender-to-receiver channel. The fundamental diffi-
culty with duplicate packets is that the receiver doesn’t know whether the ACK
or NAK it last sent was received correctly at the sender. Thus, it cannot know a
priori whether an arriving packet contains new data or is a retransmission!

A simple solution to this new problem (and one adopted in almost all existing
data transfer protocols, including TCP) is to add a new field to the data packet and
have the sender number its data packets by putting a sequence number into this
field. The receiver then need only check this sequence number to determine whether
or not the received packet is a retransmission. For this simple case of a stop-and-
wait protocol, a 1-bit sequence number will suffice, since it will allow the receiver
to know whether the sender is resending the previously transmitted packet (the
sequence number of the received packet has the same sequence number as the most
recently received packet) or a new packet (the sequence number changes, moving
“forward” in modulo-2 arithmetic). Since we are currently assuming a channel that
does not lose packets, ACK and NAK packets do not themselves need to indicate
the sequence number of the packet they are acknowledging. The sender knows that
a received ACK or NAK packet (whether garbled or not) was generated in response
to its most recently transmitted data packet.

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

J.4 « PRINCIPLES OF RELIABLE DATA TRANSFER

- Figures 3.11 and 3.12 show the FSM description for rdt2. 1, our fixed version
'rdt2.0. The rdt2. 1 sender and receiver FSMs each now have twice as many
es as before. This is because the protocol state must now reflect whether the packet
currently being sent (by the sender) or expected (at the receiver) should have a
sequence number of 0 or 1. Note that the actions in those states where a O-numbered
ket is being sent or expected are mirror images of those where a 1-numbered
packet is being sent or expected; the only differences have to do with the handling of
the sequence number.
Protocol rdt2. 1 uses both positive and negative acknowledgments from the
receiver to the sender. When an out-of-order packet is received, the receiver sends a
positive acknowledgment for the packet it has received. When a corrupted packet is
received, the receiver sends a negative acknowledgment. We can accomplish the
same effect as a NAK if, instead of sending a NAK, we send an ACK for the last
correctly received packet. A sender that receives two ACKs for the same packet (that
is, receives duplicate ACKs) knows that the receiver did not correctly receive the
packet following the packet that is being ACKed twice. Our NAK-free reliable data
|

rdr_send(data)

sndpkt=make pkt (0,data,checksum)
udt_send (sndpkt)

rdt_rcv(rcvpkt) &&
.
S {corrupt (rcvpkt) |

ok isNAK (rcvpkt))
Wait for Wait for udt_send (sndpkt)
call 0 from ACK or
above NAK 0
rdt rcv(rcvpkt) rdt_rcv(rcvpkt)
&& notcorrupt (rcevpkt) && notcorrupt (revpkt)
&& 1sACK (rovpkt) && 1sACK (rcvpkt)
A A
Wait for Wait for
ACK or call 1 from
NAK 1 above
rdt rev(rcvpkt) &&
(corrupt (revpkt) | |
isNAK (rcvpkt))
udt_send (sndpkt) rdt_send (data)

sndpkt=make pkt(1,data,checksum)
udt_send (sndpkt)

* Figure 3.11 ¢ rdt2.1 sender
|

J
\

223

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

224 CHAPTER 3 = TRANSPORT LAYER

rdt rcv(rcvpkt) && notcorrupt (rcvpkt)
&& has_ seq0 (rcvpkt)

extract (rcvpkt,data)
deliver_data(data)
sndpkt=make pkt (ACK, checksum)

rdt rev{rcvpkt) udt_send (sndpkt) rdt_rcv(rcvpkt) && corrupt (revpke)
&& corrupt (rcvpkt) \\
M sndpkt=make pkt (NAK, checksum)
sndpkt=make_pkt (NAK, checksum) \\ udt_send (sndpkt)
udt_send (sndpkt)
Wait for Wait for
0 from 1 from

rdt_rcv(rcvpkt) && notcorrupt below below
(revpkt) &&has_seql (rcvpkt) rdt_rcv(rcvpkt) && notcorrupt
i (rcvpkt) &&has_seqg0 (rcvpkt)
sndpkt=make_pkt (ACK, checksum)

sndpkt=make_ pkt {(ACK, checksum)
udt send (sndpkt) udt send {sndpkt)

rdt_rcv(rcvpkt) && notcorrupt (rcvpkt)
&& has_seql (rcvpkt)

extract (revpkt ,data)

deliver data(data)
sndpkt=make_ pkt (ACK, checksum)
udt_send (sndpkt)

Figure 3.12 ¢ rdt2.1 receiver

transfer protocol for a channel with bit errors is rdt2 . 2, shown in Figures 3.13 and
3.14. One subtle change between rtdt2.1 and rdt2. 2 is that the receiver must
now include the sequence number of the packet being acknowledged by an ACK
message (this is done by including the ACK,0 or ACK,1 argument in make pkt ()
in the receiver FSM), and the sender must now check the sequence number of the
packet being acknowledged by a received ACK message (this is done by including
the 0 or 1 argument in 1SACK()in the sender FSM). |

Reliable Data Transfer over a Lossy Channel with Bit Errors: rdt3.0

Suppose now that in addition to corrupting bits, the underlying channel can lose
packets as well, a not-uncommon event in today’s computer networks (including the
Internet). Two additional concerns must now be addressed by the protocol: how to
detect packet loss and what to do when packet loss occurs. The use of checksum-
ming, sequence numbers, ACK packets, and retransmissions—the techniques
already developed in rdt2.2—will allow us to answer the latter concern. Han-
dling the first concern will require adding a new protocol mechanism.

There are many possible approaches toward dealing with packet loss (several
more of which are explored in the exercises at the end of the chapter). Here, we'll
put the burden of detecting and recovering from lost packets on the sender. Suppose

rdt_send (data)

sndpkt=make pkt (0,data, chacksum)
udt_send (sndpkt)

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

3.4« PRINCIPLES OF RELIABLE DATA TRANSFER

rdt_rcv(rcvpkt) &&
~
Na (corrupt (revpkt) | |

sndpkt=make_pkt (1,data, checksum)
udt_send (sndpkt)

Figure 3.13 ¢\rdt2.2 sender |

L

s

that the sender transmits a data packet and either that packet, or the receiver’s ACK
of that packet, gets lost. In either case, no reply is forthcoming at the sender from
the receiver. If the sender is willing to wait long enough so that it is certain that a
packet has been lost, it can simply retransmit the data packet. You should convince
yourself that this protocol does indeed work.

But how long must the sender wait to be certain that something has been lost?
The sender must clearly wait at least as long as a round-trip delay between the
sender and receiver (which may include buffering at intermediate routers) plus
whatever amount of time is needed to process a packet at the receiver. In many net-
works, this worst-case maximum delay is very difficult even (o estimate, much less
“know with certainty. Moreover, the protocol should ideally recover from packet
loss as soon as possible; waiting for a worst-case delay could mean a long wait
until error recovery is initiated. The approach thus adopted in practice is for the
- sender to judiciously choose a time value such that packet loss is likely, although
not guaranteed, to have happened. If an ACK is not received within this time, the
‘packet is retransmitted. Note that if a packet experiences a particularly large delay,
the sender may retransmit the packet even though neither the data packet nor its
ACK have been lost. This introduces the possibility of duplicate data packets in

S isACK (rcvpkt,1))
anétffor Wait for udt_send (sndpkt)
ca rom
above ACK O
rdt_rcv(rcvpkt) rdt_rcv{rcvpkt)

&& notcorrupt (revpkt) && notcorrupt (revpkt)
&bk 1sACK (rcvpkt, 1) && 18ACK (revpkt, 0)
A A

{ Wait for
ancan;:r call 1 from
above
rdt_rcv(rcvpkt) &&
(corrupt (rcvpkt) | |
isACK(rcvpkt,0))
udt_send (sndpkt) rdc_send (data)

225

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

226 CHAPTER 3 = TRANSPORT LAYER

rdt_rcv(rcvpkt) && notcorrupt (rcvpkt)
&& has_seqO (rcvpkt)

extract (rcvpkt,data)
deliver_ data(data)
sndpkt=make pkt (ACK, 0, checksum)

A udt send (sndpkt)
oncethru=0 oncethru=1
\\ /—_—\
N
b
™~
R
rdt_rcvircvpkt) &é& rdt_rcv{rcvpkt) &&
(corrupt (revpke) | | Wait for Wait for (corrupt (revpkt) | |
has seql (rcvpkt)) 0 from 1 from has_seqO (rcvpkt))
below below

if (oncethru==1) udt send (sndpkt)
udt _send{sn

. v

rdt_rcv(rcvpkt) && notcorrupt (rcvpkt)
&& has_seql (rcvpkt)

extract (rcvpkt,data)

deliver data(data)
sndpkt=make_ pkt (ACK, 1, checksum)
udt_send (sndpkt)

Figure 3.14 ¢ rdt2.2 receiver

the sender-to-receiver channel. Happily, protocol rdt2.2 already has enough
functionality (that is, sequence numbers) to handle the case of duplicate packets.

From the sender’s viewpoint, retransmission is a panacea. The sender does not
know whether a data packet was lost, an ACK was lost, or if the packet or ACK was
simply overly delayed. In all cases, the action is the same: retransmit. Implementing
a time-based retransmission mechanism requires a countdown timer that can
interrupt the sender after a given amount of time has expired. The sender will thus
need to be able to (1) start the timer each time a packet (either a first-time packet or
a retransmission) is sent, (2) respond to a timer interrupt (taking appropriate
actions), and (3) stop the timer.

Figure 3.15 shows the sender FSM for rdt 3. 0, a protocol that reliably transfers
data over a channel that can corrupt or lose packets; in the homework problems, you'll
be asked to provide the receiver FSM for rdt3. 0. Figure 3.16 shows how the proto-
col operates with no lost or delayed packets and how it handles lost data packets. In
Figure 3.16, time moves forward from the top of the diagram toward the bottom of the
diagram; note that a receive time for a packet is necessarily later than the send time
for a packet as a result of transmission and propagation delays. In Figures 3.16(b)-(d),
the send-side brackets indicate the times at which a timer is set and later times out.
Several of the more subtle aspects of this protocol are explored in the exercises at the
end of this chapter. Because packet sequence numbers alternate between () and 1, pro-
tocol rdt3.0 is sometimes known as the alternating-bit protocol.

N
B
5
N

rdt rcv(rcvpkt)
&& notcorrupt (revpkt)
&& 18ACK (rcvpkt, 1)

stop_timer

timeout
udt_send(sndpkt)‘
start timer

isACK (rcvpkt, 0))

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

3.4 « PRINCIPLES OF RELIABLE DATA TRANSFER

rdt_send(data)

rdt rev(rcvpkt) R
A (Wait for

sndpkt=make pkt (0,data, checksum)
udt_send (sndpkt) rdt_rcv(rcvpkt) &&
start_timer {corrupt (rcvpkt) | |

isACK(rcvpkt,1))
/‘\ O 3
timeout
Wait for
ACK 0 udt_send (sndpkt)

call 0 from

above start_timer
rdt_rcv(rcvpkt)
&& notcorrupt (rcvpkt)
&& isACK (rcvpkt, 0)
stop_timer

b Wait for
Wait for call 1 from

ACK 1

above
rdt_xrcv (rcvpkt)
rdt_rcv(rcvpkt) && A
{corrupt (revpkt) | |

rdt_send (data)

sndpkt=make_pkt (1,data, checksum)

‘ A
udt_send(sndpkt)
” start timer

""": 3.15 ¢ rdt3.0 sender

- We have now assembled the key elements of a data transfer protocol. Check-
sums, sequence numbers, timers, and positive and negative acknowledgment pack-
els each play a crucial and necessary role in the operation of the protocol. We now
‘have a working reliable data transfer protocol!

_,3.4.2 Pipelined Reliable Data Transfer Protocols

Protocol rdt3. 0 is a functionally correct protocol, but it is unlikely that anyone would
be happy with its performance, particularly in today’s high-speed networks. At the heart
of rdt 3. 0’s performance problem is the fact that it is a stop-and-wait protocol.

To appreciate the performance impact of this stop-and-wait behavior, consider
an idealized case of two hosts, one located on the West Coast of the United States
‘and the other located on the East Coast, as shown in Figure 3.17. The speed-of-light
round-trip propagation delay between these two end systems, RTT, is approxi-
‘mately 30 milliseconds. Suppose that they are connected by a channel with a trans-
mission rate, R, of 1 Gbps (10 bits per second). With a packet size, L, of 1,000 bytes

227

