
Threads

Chate PatanothaiChate Patanothai

Objectives
• Knowing thread: 3W1H

C h d• Create separate threads
• Control the execution of a threadControl the execution of a thread
• Communicate between threads
• Protect shared data

C. Patanothai Threads 2

What are threads?
• An execution context

 i t l CPU– a virtual CPU
– the code for executing
– the data

• A process is a program in execution• A process is a program in execution
• A process has one or more threads

C. Patanothai Threads 3

Thread code and data
• In Java, the virtual CPU is encapsulated in an

instance of the Thread classinstance of the Thread class
• Two threads share the same code when

they execute from instances of the same class
• Two threads share the same data when they • Two threads share the same data when they

share access to a common object

C. Patanothai Threads 4

Making a thread
• New class extends Thread

– simple
– cannot extend from other class

C ti l th t i l bl• Creating a new class that implements Runnable
interface (preferred)
– better OOD– better OOD
– single inheritance
– consistencyy

• Overriding run() method

C. Patanothai Threads 5

Creating the thread
• create an instance of Runnable

• the Thread class already implemented y p
Runnable interface

C. Patanothai Threads 6

Starting the Thread
• Using the start method

Pl i h h d i bl• Placing the thread in runnable state

C. Patanothai Threads 7

Subclass of Thread

public class SomeThread extends Thread {public class SomeThread extends Thread {

public void run() {
// code for thread execution

}

}

public class ThreadTester {

}

p {
public static void main(String[] args) {

// creating a thread
SomeThread t = new SomeThread();

// start the thread
t.start();

}
}

C. Patanothai Threads 8

Implementing Runnable

public class RunningClass [extends XXX] implements Runnable {

public void run() { // must be overridden
// code for thread execution

}
}

public class ThreadTester {public class ThreadTester {
public static void main(String[] args) {

// creating an instance of a Runnable
RunningClass rc = new RunningClass();

// creating a new thread for the Runnable instance
Thread t = new Thread(rc);

// starting the thread
t.start();

}

C. Patanothai Threads 9

}

Basic Thread States

Thread t = new Thread();Thread t = new Thread();

t.start();t.start();

Blocked
New Dead

blocking eventunblocked

start() run() completes

Runnable Running
scheduler

() p

C. Patanothai Threads 10

Sleeping (ZZZZZZZZZZ)
• allow other threads a chance to execute
• sleep is a static method in the Thread class
• throws InterruptedException

public class Runner implements Runnable {
public void run() {

while (true) {() {
// do lots of interesting stuff
:
// Give other threads a chance
t {try {
Thread.sleep(10); // time in milliseconds

} catch (InterruptedException e) {
// This thread’s sleep was interrupted by another threadp p y

}
}

}
}

C. Patanothai Threads 11

}

Terminating a Thread

• when a thread
completes it cannot

public class Runner implements Runnable {
private boolean done = false;

completes, it cannot
run again

• using a flag to indicate

public void run() {
while (!done) {

. . .
}g g

the exit condition }
}

public void stopRunning() {
done = true;

}
}public class ThreadController {

i t R R ()private Runner r = new Runner();
private Thread t = new Thread(r);

public void startThread() {
t t t()t.start();

}

public void stopThread() {
t R i ()

C. Patanothai Threads 12

r.stopRunning()
}

}

Basic Control of Threads
• Testing threads:

– isAlive()– isAlive()
• Accessing thread priority:

– getPriority()
– setPriority()

• Putting threads on hold:
– Thread.sleep()Thread.sleep()
– join()
– Thread yield()– Thread.yield()

C. Patanothai Threads 13

Thread Priority
• Thread.MIN_PRIORITY (1)

h d ()• Thread.NORM_PRIORITY (5)
• Thread.MAX PRIORITY (10)_ ()

C. Patanothai Threads 14

The join Method

bli t ti id i (St i []) {• wait until the
thread on which
h h d

public static void main(String[] args) {
Thread t = new Thread(new Runner());
t.start();

the join method
is called

. . .
// do stuff in parallel
. . .

terminates // wait for t to finish
try {

t.join();
} catch (InterruptedException e) {

// t came back early
}
// continue this thread
. . .

}

C. Patanothai Threads 15

The Thread.yield Method
• give other runnable threads a chance to

execute

• places the calling thread into the runnable• places the calling thread into the runnable
pool if there are thread(s) in runnable,

• if not, yield does nothing

• sleep gives lower priority threads a chance

• yield gives other runnable threads a chancey g

C. Patanothai Threads 16

Shared data

bli l M St k { th d (A) hi public class MyStack {
int idx = 0;
char[] data = new char[6];

• one thread (A) pushing
data onto the stack

• one thread (B) popping
public void push(char c) {
data[idx] = c;

one thread (B) popping
data off the stack

buffer p q
idx++;

}
A just finished push a character, then

t d

buffer p q

idx = 2 ^

public char pop() {
idx--;
return data[idx];

preempted
buffer p q r

idx = 2 ^
return data[idx];

}
} B is now in Running

C. Patanothai Threads 17

The Object Lock Flag
• Every object has a “lock flag”

• use synchronized to enable interaction y
with this flag

C. Patanothai Threads 18

Using synchronized

bli l M St k {

public void push(char c) {

public class MyStack {
. . .
public void push(char c) {

synchronized(this) {
data[idx] = c;
idx++;

synchronized(this) {
data[idx] = c;
idx++;

}
}

}
}
. . .

}

C. Patanothai Threads 19

Releasing the Lock Flag
• A thread waiting for the lock flag of an object

cannot resume running until it get the flagcannot resume running until it get the flag
• Released when the thread passes the end of

the synchronized code block
• Automatically released when a break return • Automatically released when a break, return,

or exception is thrown by the
h i d d bl ksynchronized code block

C. Patanothai Threads 20

Shared Data
• All access to shared data should be
synchronizedsynchronized

• Shared data protected by synchronized
should be privateshould be private

C. Patanothai Threads 21

Thread States (synchronized)

Blocked
New Dead

blocking eventunblocked

start() run() completes

Runnable Running
scheduler

() run() completes

synchronizedacquires lock

Blocked in
object’s

lock pool

C. Patanothai Threads 22

lock pool

Deadlock
• Two threads waiting for a lock from other

Thread A locks , and waits for

Thread A locks , and waits for

• no detection or avoidance by Java
• Can be avoided byCan be avoided by

– the order to obtain locks
l i th d th h t th – applying the order throughout the program

– releasing the lock in the reverse order

C. Patanothai Threads 23

Thread Interaction
• wait and notify
• methods from java lang Object• methods from java.lang.Object
• if a thread issues a wait call on an object x, it

 i i il h h d i pauses its execution until another thread issues a
notify call on the same object x

• the thread MUST have the lock for that object
(wait and notify are called only from within a
synchronized block on the instance being called)

C. Patanothai Threads 24

The pools

• Wait pool
– execute wait()

Running

• Lock pool
– thread moved from synchronized

wait()
[must have lock]/
release lock

wait pool
– notify()

• arbitrary thread

– notifyAll()
Blocked in

object’s
l k l

Blocked in
object’s
ait poolnotify()or

• all threads lock pool wait poolnotify()or
interrupt()

C. Patanothai Threads 25

Thread States (wait/notify)

Blocked
New Dead

blocking eventunblocked

start() run() completes

Runnable Running
scheduler

() run() completes

()

synchronizedacquires lock

wait()
[must have lock]/
release lock

Blocked in
object’s

lock pool

Blocked in
object’s

wait pool
notify()or
i t t()

C. Patanothai Threads 26

lock pool wait poolinterrupt()

