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Objectives
• Knowing thread: 3W1H

C   h d• Create separate threads
• Control the execution of a threadControl the execution of a thread
• Communicate between threads
• Protect shared data
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What are threads?
• An execution context

 i t l CPU– a virtual CPU
– the code for executing
– the data

• A process is a program in execution• A process is a program in execution
• A process has one or more threads

C. Patanothai Threads 3



Thread code and data
• In Java, the virtual CPU is encapsulated in an 

instance of the Thread classinstance of the Thread class
• Two threads share the same code when 

they execute from instances of the same class
• Two threads share the same data when they • Two threads share the same data when they 

share access to a common object
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Making a thread
• New class extends Thread

– simple
– cannot extend from other class

C ti    l  th t i l bl• Creating a new class that implements Runnable
interface (preferred)
– better OOD– better OOD
– single inheritance
– consistencyy

• Overriding run() method 
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Creating the thread
• create an instance of Runnable

• the Thread class already implemented y p
Runnable interface
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Starting the Thread
• Using the start method

Pl i  h  h d i  bl• Placing the thread in runnable state
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Subclass of  Thread

public class SomeThread extends Thread {public class SomeThread extends Thread {

public void run() {
// code for thread execution

}

}

public class ThreadTester {

}

p {
public static void main(String[] args) {

// creating a thread
SomeThread t = new SomeThread();

// start the thread
t.start();

}
}
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Implementing Runnable

public class RunningClass [extends XXX] implements Runnable {

public void run() { // must be overridden
// code for thread execution

}
}

public class ThreadTester {public class ThreadTester {
public static void main(String[] args) {

// creating an instance of a Runnable
RunningClass rc = new RunningClass();

// creating a new thread for the Runnable instance
Thread t = new Thread(rc);

// starting the thread
t.start();

}
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Basic Thread States

Thread t = new Thread();Thread t = new Thread();

t.start();t.start();

Blocked
New Dead

blocking eventunblocked

start() run() completes

Runnable Running
scheduler

() p
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Sleeping (ZZZZZZZZZZ)
• allow other threads a chance to execute
• sleep is a static method in the Thread class
• throws InterruptedException

public class Runner implements Runnable {
public void run() {

while (true) {( ) {
// do lots of interesting stuff
:
// Give other threads a chance
t {try {
Thread.sleep(10);  // time in milliseconds

} catch (InterruptedException e) {
// This thread’s sleep was interrupted by another threadp p y

}
}

}
}
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Terminating a Thread

• when a thread 
completes  it cannot

public class Runner implements Runnable {
private boolean done = false;

completes, it cannot
run again

• using a flag to indicate 

public void run() {
while (!done) {

. . .
}g g

the exit condition }
}

public void stopRunning() {
done = true;

}
}public class ThreadController {

i t R R ()private Runner r = new Runner();
private Thread t = new Thread(r);

public void startThread() {
t t t()t.start();

}

public void stopThread() {
t R i ()
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}

}



Basic Control of  Threads
• Testing threads:

– isAlive()– isAlive()
• Accessing thread priority:

– getPriority()
– setPriority()

• Putting threads on hold:
– Thread.sleep()Thread.sleep()
– join()
– Thread yield()– Thread.yield()
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Thread Priority
• Thread.MIN_PRIORITY (1)

h d ( )• Thread.NORM_PRIORITY (5)
• Thread.MAX PRIORITY (10)_ ( )
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The join Method

bli t ti id i (St i [] ) {• wait until the 
thread on which 
h  h d 

public static void main(String[] args) {
Thread t = new Thread(new Runner());
t.start();

the join method 
is called 

. . .
// do stuff in parallel
. . .

terminates // wait for t to finish
try {

t.join();
} catch (InterruptedException e) {

// t came back early
}
// continue this thread
. . .

}
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The Thread.yield Method
• give other runnable threads a chance to 

execute

• places the calling thread into the runnable• places the calling thread into the runnable
pool if there are thread(s) in runnable,

• if not, yield does nothing

• sleep gives lower priority threads a chance

• yield gives other runnable threads a chancey g
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Shared data

bli l M St k {  th d (A) hi  public class MyStack {
int idx = 0;
char[] data = new char[6];

• one thread (A) pushing 
data onto the stack

• one thread (B) popping 
public void push(char c) {
data[idx] = c;

one thread (B) popping 
data off the stack

buffer p q
idx++;

}
A just finished push a character, then 

t d

buffer p q

idx = 2 ^

public char pop() {
idx--;
return data[idx];

preempted
buffer p q r

idx = 2 ^
return data[idx];

}
} B is now in Running
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The Object Lock Flag
• Every object has a “lock flag”

• use synchronized to enable interaction y
with this flag
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Using synchronized

bli l M St k {

public void push(char c) {

public class MyStack {
. . .
public void push(char c) {

synchronized(this) {
data[idx] = c;
idx++;

synchronized(this) {
data[idx] = c;
idx++;

}
}

}
}
. . .

}

C. Patanothai Threads 19



Releasing the Lock Flag
• A thread waiting for the lock flag of an object 

cannot resume running until it get the flagcannot resume running until it get the flag
• Released when the thread passes the end of 

the synchronized code block
• Automatically released when a break  return  • Automatically released when a break, return, 

or exception is thrown by the 
h i d d  bl ksynchronized code block
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Shared Data
• All access to shared data should be 
synchronizedsynchronized

• Shared data protected by synchronized
should be privateshould be private
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Thread States (synchronized)

Blocked
New Dead

blocking eventunblocked

start() run() completes

Runnable Running
scheduler

() run() completes

synchronizedacquires lock

Blocked in 
object’s 

lock pool
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Deadlock
• Two threads waiting for a lock from other

Thread A locks , and waits for 

Thread A locks , and waits for 

• no detection or avoidance by Java
• Can be avoided byCan be avoided by

– the order to obtain locks
l i  th  d  th h t th  – applying the order throughout the program

– releasing the lock in the reverse order
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Thread Interaction
• wait and notify
• methods from java lang Object• methods from java.lang.Object
• if a thread issues a wait call on an object x, it 

 i  i  il h  h d i   pauses its execution until another thread issues a 
notify call on the same object x

• the thread MUST have the lock for that object 
(wait and notify are called only from within a 
synchronized block on the instance being called)
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The pools

• Wait pool
– execute wait()

Running

• Lock pool
– thread moved from synchronized

wait()
[must have lock]/
release lock

wait pool
– notify()

• arbitrary thread

– notifyAll()
Blocked in 

object’s 
l k l

Blocked in 
object’s 
ait poolnotify()or

• all threads lock pool wait poolnotify()or
interrupt()
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Thread States (wait/notify)

Blocked
New Dead

blocking eventunblocked

start() run() completes

Runnable Running
scheduler

() run() completes

()

synchronizedacquires lock

wait()
[must have lock]/
release lock

Blocked in 
object’s 

lock pool

Blocked in 
object’s 

wait pool
notify()or
i t t()
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lock pool wait poolinterrupt()


