Chate Patanothal



Objectives

Knowing thread: 3W1H

Create separate threads

Control the execution of a thread
Communicate between threads
Protect shared data



e An execution context
—a virtual CPU
— the code for executing
— the data

e A process is a program in execution
* A process has one or more threads

C. Patanothai Threads

w



Thread code and data

* In Java, the virtual CPU is encapsulated in an
Instance of the Thread class

 Two threads share the same code when
they execute from instances of the same class

e Two threads share the same data when they
share access to a common object

C. Patanothai Threads



Making a thread

e New class extends Thread
— simple
— cannot extend from other class

e Creating a new class that implements Runnable
Interface (preferred)
— better OOD
— single inheritance
— consistency

e Overriding run() method



Creating the thread

e create an instance of Runnable

e the Thread class already implemented
Runnable interface



Starting the Thread

e Using the start method
* Placing the thread in runnable state



Subclass of Thread

public class SomeThread extends Thread {

public void run() {
// code for thread execution

public class ThreadTester {
public static void main(String[] args) {
// creating a thread
SomeThread t = new SomeThread();

// start the thread
t.start();

+
}



Implementing Runnable

public class RunningClass [extends XXX] implements Runnable {

public void run(Q) { // must be overridden
// code for thread execution

}
}

public class ThreadTester {
public static void main(String[] args) {
// creating an instance of a Runnable
RunningClass rc = new RunningClass();

// creating a new thread for the Runnable instance
Thread t = new Thread(rc);

// starting the thread
t.start();



Thread t = new Thread();

t.start();

unblogked blocking event

run() completes

scheduler

C. Patanothai Threads 10



Sleeping (£ZZ2z2zzzz..)

« allow other threads a chance to execute
» sleep is a static method in the Thread class
o throws InterruptedException

public class Runner implements Runnable {
public void run() {
while (true) {
// do lots of interesting stuff

// Give other threads a chance
try {
Thread.sleep(10); // time in milliseconds
} catch (InterruptedException e) {
// This thread’s sleep was interrupted by another thread

}
}
}
}



Terminating a Thread

public class Runner implements Runnable {
private boolean done = false;

e when a thread

COmplet_eS, It cannot public void runQ {
Frun again while (Ydone) {

* using a flag to indicate y
the exit condition 3

public void stopRunning() {
done = true;

}

public class ThreadController {
private Runner r = new Runner();
private Thread t = new Thread(r);

public void startThread() {
t.start();

}

public void stopThread() {
r.stopRunning()
+
+



Basic Control of Threads

e Testing threads:
—isAlive()

e Accessing thread priority:
—getPriority()
—setPriority()

e Putting threads on hold:
— Thread.sleep()

—join()
— Thread.yield()



e Thread.MIN PRIORITY (1)
 Thread_.NORM_PRIORITY (5)
 Thread.MAX PRIORITY (10)

C. Patanothai Threads 14



The join Method

public static void main(String[] args) {
Thread t = new Thread(new Runner());

e walt until the

thread on which t.startQ;
the Jjoin method - - - _
- // do stuff in parallel
Is called o
terminates // wait for t to finish
try {
t_joinQ;

} catch (InterruptedException e) {
// t came back early

s
// continue this thread



The Thread.yield Method

give other runnable threads a chance to
execute

places the calling thread into the runnable
pool If there are thread(s) in runnable,

If not, yield does nothing
sleep gives lower priority threads a chance

yield gives other runnable threads a chance



Shared data

public class MyStack { e one thread (A) pushing
int idx = 0; data onto the stack

char[] data = new char[6]; one thread (B) popping

public void push(char c) { data off the stack
data[1dx] = c; —— ——

idX++; 1dx = 2 N
¥ \ A just finished push a character, then
pblic char pop0 (PR
returr’l daiaKidx =2 .
}

} B is now in Running




The Object Lock Flag

* Every object has a “lock flag”

e Use synchronized to enable interaction
with this flag



Using synchronized

public class MyStack {

public void push(char c) { public void push(char c) {

synchronized(this) { synchronized(this) {
data[1dx] = c; data[1dx] = c;
1dXx++; 1dX++;
} }
} }




Releasing the Lock Flag

* A thread waliting for the lock flag of an object
cannot resume running until it get the flag

* Released when the thread passes the end of
the synchronized code block

o Automatically released when a break, return,

or exception iIs thrown by the
synchronized code block



Shared Data

e All access to shared data should be
synchronized

e Shared data protected by synchronized
should be private



New

unblogked blocking event

pmpletes

scheduler

synchronized

C. Patanothai Threads 22



Deadlock

 Two threads waiting for a lock from other

Thread A locks , and waits for

Thread A locks L, and waits for

e No detection or avoidance by Java

« Can be avoided by
— the order to obtain locks
— applying the order throughout the program
— releasing the lock in the reverse order



Thread Interaction

waltand notify
methods from java. lang.Object

If a thread issues a wait call on an object x, it

pauses its execution until another thread issues a
noti Ty call on the same object x

the thread MUST have the lock for that object
(wart and notifty are called only from within a

synchronized block on the instance being called)



 Wait pool
— execute wairt()

e Lock pool

— thread moved from
wait pool

— notify()

 arbitrary thread

— notifyAll1Q)

e all threads

syrichronized release lock

notify(or
interrupt()

C. Patanothai Threads 25



New

unblogked blocking event

scheduler

[must have lock]/
release Mock

acquire synchronized

notify()or
interrupt()

C. Patanothai Threads 26



