
1

Java ThreadsJava Threads

2

Topics
● What is a thread?
● Thread states
● Thread priorities
● Thread class
● Two ways of creating Java threads

– Extending Thread class
– Implementing Runnable interface

● ThreadGroup
● Synchronization
● Inter-thread communication
● Scheduling a task via Timer and TimerTask

3

 What is a Thread? What is a Thread?

4

Threads
● Why threads?

– Need to handle concurrent processes
● Definition

– Single sequential flow of control within a program
– For simplicity, think of threads as processes executed by

a program
– Example:

● Operating System
● HotJava web browser

5

Threads

6

Multi-threading in Java Platform
● Every application has at least one thread — or

several, if you count "system" threads that do
things like memory management and signal
handling

● But from the application programmer's point of
view, you start with just one thread, called the main
thread. This thread has the ability to create
additional threads

7

 Thread StatesThread States

8

Thread States
● A thread can in one of several possible states:

1.Running
● Currently running
● In control of CPU

2.Ready to run
● Can run but not yet given the chance

3.Resumed
● Ready to run after being suspended or block

4.Suspended
● Voluntarily allowed other threads to run

5.Blocked
● Waiting for some resource or event to occur

9

 Thread PrioritiesThread Priorities

10

Thread Priorities

● Why priorities?
– Determine which thread receives CPU control and gets

to be executed first
● Definition:

– Integer value ranging from 1 to 10
– Higher the thread priority → larger chance of being

executed first
– Example:

● Two threads are ready to run
● First thread: priority of 5, already running
● Second thread = priority of 10, comes in while first thread

is running

11

Thread Priorities

● Context switch
– Occurs when a thread snatches the control of CPU from

another
– When does it occur?

● Running thread voluntarily relinquishes CPU control
● Running thread is preempted by a higher priority thread

● More than one highest priority thread that is ready
to run
– Deciding which receives CPU control depends on the

operating system
– Windows 95/98/NT: Uses time-sliced round-robin
– Solaris: Executing thread should voluntarily relinquish

CPU control

12

 Thread ClassThread Class

13

The Thread Class: Constructor

● Has eight constructors

14

The Thread Class: Constants

● Contains fields for priority values

15

The Thread Class: Methods

● Some Thread methods

16

 Two Ways of Creating Two Ways of Creating
Java ThreadsJava Threads

17

Two Ways of Creating and Starting
a Thread

1.Extending the Thread class
2.Implementing the Runnable interface

18

 Extending Thread Extending Thread
ClassClass

19

Extending Thread Class

● The subclass extends Thread class
– The subclass overrides the run() method of Thread class

● An object instance of the subclass can then be
created

● Calling the start() method of the object instance
starts the execution of the thread
– Java runtime starts the execution of the thread by

calling run() method of object instance

20

Two Schemes of starting a thread
from a subclass

1.The start() method is not in the constructor of the
subclass
– The start() method needs to be explicitly invoked after

object instance of the subclass is created in order to start
the thread

2.The start() method is in the constructor of the
subclass
– Creating an object instance of the subclass will start the

thread

21

Scheme 1: start() method is Not in
the constructor of subclass

1 class PrintNameThread extends Thread {
2 PrintNameThread(String name) {
3 super(name);
4 }
5 public void run() {
6 String name = getName();
7 for (int i = 0; i < 100; i++) {
8 System.out.print(name);
9 }
10 }
11 }
12 //continued

22

Scheme 1: start() method needs to
be called explicitly

14 class ExtendThreadClassTest1 {
15 public static void main(String args[]) {
16 PrintNameThread pnt1 =
17 new PrintNameThread("A");
18 pnt1.start(); // Start the first thread
19 PrintNameThread pnt2 =
20 new PrintNameThread("B");
21 pnt2.start(); // Start the second thread
22
23 }
24 }

23

Scheme 2: start() method is in a
constructor of the subclass

1 class PrintNameThread extends Thread {
2 PrintNameThread(String name) {
3 super(name);
4 start(); //runs the thread once instantiated
5 }
6 public void run() {
7 String name = getName();
8 for (int i = 0; i < 100; i++) {
9 System.out.print(name);
10 }
11 }
12 }
13 //continued

24

Scheme 2: Just creating an object
instance starts a thread

14 class ExtendThreadClassTest2 {
15 public static void main(String args[]) {
16 PrintNameThread pnt1 =
17 new PrintNameThread("A");
18 PrintNameThread pnt2 =
19 new PrintNameThread("B");
20
21 }
22 }

25

Scheme 2: Just creating an object
instance starts a thread

● Can modify main method as follows:
14 class ExtendThreadClassTest3 {
15 public static void main(String args[]) {
16 new PrintNameThread("A");
17 new PrintNameThread("B");
18 }
19 }

26

 Implementing Implementing
Runnable InterfaceRunnable Interface

27

Runnable Interface

● The Runnable interface should be implemented by
any class whose instances are intended to be
executed as a thread

● The class must define run() method of no
arguments
– The run() method is like main() for the new thread

● Provides the means for a class to be active while
not subclassing Thread
– A class that implements Runnable can run without

subclassing Thread by instantiating a Thread instance
and passing itself in as the target

28

Two Ways of Starting a Thread For
a class that implements Runnable

1.Caller thread creates Thread object and starts it
explicitly after an object instance of the class that
implements Runnable interface is created
– The start() method of the Thread object needs to be

explicitly invoked after object instance is created
2.The Thread object is created and started within the

constructor method of the class that implements
Runnable interface
– The caller thread just needs to create object instances of

the Runnable class

29

Scheme 1: Caller thread creates a
Thread object and starts it explicitly

// PrintNameRunnable implements Runnable interface
class PrintNameRunnable implements Runnable {

 String name;

 PrintNameRunnable(String name) {
 this.name = name;
 }

 // Implementation of the run() defined in the
 // Runnable interface.
 public void run() {
 for (int i = 0; i < 10; i++) {
 System.out.print(name);
 }
 }
}

30

Scheme 1: Caller thread creates a
Thread object and starts it explicitly

public class RunnableThreadTest1 {

 public static void main(String args[]) {

 PrintNameRunnable pnt1 = new PrintNameRunnable("A");
 Thread t1 = new Thread(pnt1);
 t1.start();

 }
}

31

Scheme 2: Thread object is created
and started within a constructor

// PrintNameRunnable implements Runnable interface
class PrintNameRunnable implements Runnable {

 Thread thread;

 PrintNameRunnable(String name) {
 thread = new Thread(this, name);
 thread.start();
 }

 // Implementation of the run() defined in the
 // Runnable interface.
 public void run() {
 String name = thread.getName();
 for (int i = 0; i < 10; i++) {
 System.out.print(name);
 }
 }
}

32

Scheme 2: Thread object is created
and started within a constructor

public class RunnableThreadTest2 {

 public static void main(String args[]) {
 // Since the constructor of the PrintNameRunnable
 // object creates a Thread object and starts it,
 // there is no need to do it here.
 new PrintNameRunnable("A");
 new PrintNameRunnable("B");
 new PrintNameRunnable("C");
 }
}

33

 Extending Thread Class Extending Thread Class
vs. Implementing vs. Implementing

Runnable InterfaceRunnable Interface

34

Extending Thread vs. Implementing
Runnable Interface

● Choosing between these two is a matter of taste
● Implementing the Runnable interface

– May take more work since we still
● Declare a Thread object
● Call the Thread methods on this object

– Your class can still extend other class
● Extending the Thread class

– Easier to implement
– Your class can no longer extend any other class

35

 ThreadGroupThreadGroup

36

ThreadGroup Class

● A thread group represents a set of threads
● In addition, a thread group can also include other

thread groups
– The thread groups form a tree in which every thread

group except the initial thread group has a parent
● A thread is allowed to access information about its

own thread group, but not to access information
about its thread group's parent thread group or any
other thread groups.

37

Example: ThreadGroup
1 // Start three threads
2 new SimpleThread("Jamaica").start();
3 new SimpleThread("Fiji").start();
4 new SimpleThread("Bora Bora").start();
5
6 ThreadGroup group
7 = Thread.currentThread().getThreadGroup();
8
9 Thread[] tarray = new Thread[10];
10 int actualSize = group.enumerate(tarray);
11 for (int i=0; i<actualSize;i++){
12 System.out.println("Thread " +
13 tarray[i].getName() + " in thread group "
14 + group.getName());
15 }

38

 SynchronizationSynchronization

39

Race condition & How to Solve it

● Race conditions occur when multiple,
asynchronously executing threads access the same
object (called a shared resource) returning
unexpected (wrong) results

● Example:
– Threads often need to share a common resource ie a

file, with one thread reading from the file while another
thread writes to the file

● They can be avoided by synchronizing the threads
which access the shared resource

40

An Unsynchronized Example
1 class TwoStrings {
2 static void print(String str1, String str2) {
3 System.out.print(str1);
4 try {
5 Thread.sleep(500);
6 } catch (InterruptedException ie) {
7 }
8 System.out.println(str2);
9 }
10 }
11 //continued...

41

An Unsynchronized Example
12 class PrintStringsThread implements Runnable {
13 Thread thread;
14 String str1, str2;
15 PrintStringsThread(String str1, String str2) {
16 this.str1 = str1;
17 this.str2 = str2;
18 thread = new Thread(this);
19 thread.start();
20 }
21 public void run() {
22 TwoStrings.print(str1, str2);
23 }
24 }
25 //continued...

42

An Unsynchronized Example
26 class TestThread {
27 public static void main(String args[]) {
28 new PrintStringsThread("Hello ", "there.");
29 new PrintStringsThread("How are ", "you?");
30 new PrintStringsThread("Thank you ",
31 "very much!");
32 }
33 }

43

An Unsynchronized Example
● Sample output:

Hello How are Thank you there.
you?
very much!

44

Synchronization:
Locking an Object

● A thread is synchronized by becoming an owner of
the object's monitor
– Consider it as locking an object

● A thread becomes the owner of the object's monitor
in one of three ways
– Option 1: Use synchronized method
– Option 2: Use synchronized statement on a common

object

45

Option 1: Use synchronized method

1 class TwoStrings {
2 synchronized static void print(String str1,
3 String str2) {
4 System.out.print(str1);
5 try {
6 Thread.sleep(500);
7 } catch (InterruptedException ie) {
8 }
9 System.out.println(str2);
10 }
11 }
12 //continued...

46

Option 1: Use synchronized method
13 class PrintStringsThread implements Runnable {
14 Thread thread;
15 String str1, str2;
16 PrintStringsThread(String str1, String str2) {
17 this.str1 = str1;
18 this.str2 = str2;
19 thread = new Thread(this);
20 thread.start();
21 }
22 public void run() {
23 TwoStrings.print(str1, str2);
24 }
25 }
26 //continued...

47

Option 1: Use synchronized method

27 class TestThread {
28 public static void main(String args[]) {
29 new PrintStringsThread("Hello ", "there.");
30 new PrintStringsThread("How are ", "you?");
31 new PrintStringsThread("Thank you ",
32 "very much!");
33 }
34 }

48

Option 1: Executing Synchronized
Method

● Sample output:
Hello there.
How are you?
Thank you very much!

49

Option 2: Use synchronized
statement on a common object

1 class TwoStrings {
2 static void print(String str1, String str2) {
3 System.out.print(str1);
4 try {
5 Thread.sleep(500);
6 } catch (InterruptedException ie) {
7 }
8 System.out.println(str2);
9 }
10 }
11 //continued...

50

Option 2: Use synchronized
statement on a common object

12 class PrintStringsThread implements Runnable {
13 Thread thread;
14 String str1, str2;
15 TwoStrings ts;
16 PrintStringsThread(String str1, String str2,
17 TwoStrings ts) {
18 this.str1 = str1;
19 this.str2 = str2;
20 this.ts = ts;
21 thread = new Thread(this);
22 thread.start();
23 }
24 //continued...

51

Option 2: Use synchronized
statement on a common object

25 public void run() {
26 synchronized (ts) {
27 ts.print(str1, str2);
28 }
29 }
30 }
31 class TestThread {
32 public static void main(String args[]) {
33 TwoStrings ts = new TwoStrings();
34 new PrintStringsThread("Hello ", "there.", ts);
35 new PrintStringsThread("How are ", "you?", ts);
36 new PrintStringsThread("Thank you ",
37 "very much!", ts);
38 }}

52

 Inter-threadInter-thread
SynchronizationSynchronization

53

Inter-thread Communication:
Methods from Object Class

54

wait() method of Object Class

● wait() method causes a thread to release the lock it
is holding on an object; allowing another thread to
run

● wait() method is defined in the Object class
● wait() can only be invoked from within synchronized

code
● it should always be wrapped in a try block as it

throws IOExceptions
● wait() can only invoked by the thread that own's the

lock on the object

55

wait() method of Object Class
● When wait() is called, the thread becomes disabled for

scheduling and lies dormant until one of four things
occur:
– another thread invokes the notify() method for this object

and the scheduler arbitrarily chooses to run the thread
– another thread invokes the notifyAll() method for this

object
– another thread interrupts this thread
– the specified wait() time elapses

● When one of the above occurs, the thread becomes re-
available to the Thread scheduler and competes for a
lock on the object

● Once it regains the lock on the object, everything
resumes as if no suspension had occurred

56

notify() method
● Wakes up a single thread that is waiting on this

object's monitor
– If any threads are waiting on this object, one of them is

chosen to be awakened
– The choice is arbitrary and occurs at the discretion of the

implementation
● Can only be used within synchronized code
● The awakened thread will not be able to proceed

until the current thread relinquishes the lock on this
object

57

 Inter-threadInter-thread
Communication:Communication:

Producer-Consumer Producer-Consumer
ExampleExample

58

Inter-thread Communication

59

Producer-Consumer

● Imagine a scenario in which there exists two
distinct threads both operating on a single shared
data area

● One thread, the Producer inserts information into
the data area whilst the other thread, the
Consumer, removes information from that same
area

● In order for the Producer to insert information into
the data area, there must be enough space
– The Producer's sole function is to insert data into the

data-area, it is not allowed to remove any data from the
area.

60

Producer-Consumer

● For the Consumer to be able to remove information
from the data area, there must be information there
in the first place
– The sole function of the Consumer is to remove data

from the data area
● The solution of the Producer-Consumer problem

lies with devising a suitable communication protocol
through which the two processes may exchange
information.

● The definition of such a protocol is the main factor
that makes the Producer-Consumer problem
interesting in terms of concurrent systems

61

Unsynchronized Producer-Consumer
Example: CubbyHole.java

1 public class CubbyHole {
2 private int contents;
3
4 public int get() {
5 return contents;
6 }
7
8 public synchronized void put(int value) {
9 contents = value;
10 }
11 }

62

Unsynchronized Producer-
Consumer Example: Producer.java
1 public class Producer extends Thread {
2 private CubbyHole cubbyhole;
3 private int number;
4
5 public Producer(CubbyHole c, int number) {
6 cubbyhole = c;
7 this.number = number;
8 }
9
10 public void run() {
11 for (int i = 0; i < 10; i++) {
12 cubbyhole.put(i);
13 System.out.println("Producer #" + this.number
14 + " put: " + i);
15 try {
16 sleep((int)(Math.random() * 100));
17 } catch (InterruptedException e) { }
18 }
19 }
20 }

63

Unsynchronized Producer-Consumer
Example: Consumer.java

1 public class Consumer extends Thread {
2 private CubbyHole cubbyhole;
3 private int number;
4
5 public Consumer(CubbyHole c, int number) {
6 cubbyhole = c;
7 this.number = number;
8 }
9
10 public void run() {
11 int value = 0;
12 for (int i = 0; i < 10; i++) {
13 value = cubbyhole.get();
14 System.out.println("Consumer #" + this.number
15 + " got: " + value);
16 }
17 }
18 }
19

64

Unsynchronized Producer-
Consumer Example: Main program
1 public class ProducerConsumerUnsynchronized {
2
3 public static void main(String[] args) {
4
5 CubbyHole c = new CubbyHole();
6
7 Producer p1 = new Producer(c, 1);
8 Consumer c1 = new Consumer(c, 1);
9
10 p1.start();
11 c1.start();
12 }
13 }

65

Result of Unsynchronized
Producer-Consumer

● Results are unpredictable
– A number may be read before a number has been

produced
– Multiple numbers may be produced with only one or two

being read

66

Result of Unsynchronized
Producer-Consumer

Consumer #1 got: 0
Producer #1 put: 0
Consumer #1 got: 0
Consumer #1 got: 0
Consumer #1 got: 0
Consumer #1 got: 0
Consumer #1 got: 0
Consumer #1 got: 0
Consumer #1 got: 0
Consumer #1 got: 0
Consumer #1 got: 0
Producer #1 put: 1
Producer #1 put: 2
Producer #1 put: 3
Producer #1 put: 4
Producer #1 put: 5
Producer #1 put: 6
Producer #1 put: 7
Producer #1 put: 8
Producer #1 put: 9

67

Synchronized Producer-Consumer
Example: CubbyHole.java

1 public class CubbyHole {
2 private int contents;
3 private boolean available = false;
4
5 public synchronized int get() {
6 while (available == false) {
7 try {
8 wait();
9 } catch (InterruptedException e) { }
10 }
11 available = false;
12 notifyAll();
13 return contents;
14 }
15 // continued
16

68

Synchronized Producer-Consumer
Example: CubbyHole.java

1
2 public synchronized void put(int value) {
3 while (available == true) {
4 try {
5 wait();
6 } catch (InterruptedException e) { }
7 }
8 contents = value;
9 available = true;
10 notifyAll();
11 }
12 }

69

Result of Synchronized Producer-
Consumer

Producer 1 put: 0
Consumer 1 got: 0
Producer 1 put: 1
Consumer 1 got: 1
Producer 1 put: 2
Consumer 1 got: 2
Producer 1 put: 3
Consumer 1 got: 3
Producer 1 put: 4
Consumer 1 got: 4
Producer 1 put: 5
Consumer 1 got: 5
Producer 1 put: 6
Consumer 1 got: 6
Producer 1 put: 7
Consumer 1 got: 7
Producer 1 put: 8
Consumer 1 got: 8
Producer 1 put: 9
Consumer 1 got: 9

70

 Scheduling a task Scheduling a task
via Timer & via Timer &

TimerTask ClassesTimerTask Classes

71

Timer Class
● Provides a facility for threads to schedule tasks for

future execution in a background thread
● Tasks may be scheduled for one-time execution, or

for repeated execution at regular intervals.
● Corresponding to each Timer object is a single

background thread that is used to execute all of the
timer's tasks, sequentially

● Timer tasks should complete quickly
– If a timer task takes excessive time to complete, it "hogs"

the timer's task execution thread. This can, in turn, delay
the execution of subsequent tasks, which may "bunch
up" and execute in rapid succession when (and if) the
offending task finally completes.

72

TimerTask Class
● Abstract class with an abstract method called run()
● Concrete class must implement the run() abstract

method

73

Example: Timer Class
public class TimerReminder {

 Timer timer;

 public TimerReminder(int seconds) {
 timer = new Timer();
 timer.schedule(new RemindTask(), seconds*1000);
 }

 class RemindTask extends TimerTask {
 public void run() {
 System.out.format("Time's up!%n");
 timer.cancel(); //Terminate the timer thread
 }
 }

 public static void main(String args[]) {
 System.out.format("About to schedule task.%n");
 new TimerReminder(5);
 System.out.format("Task scheduled.%n");
 }
}

74

Thank You!Thank You!

