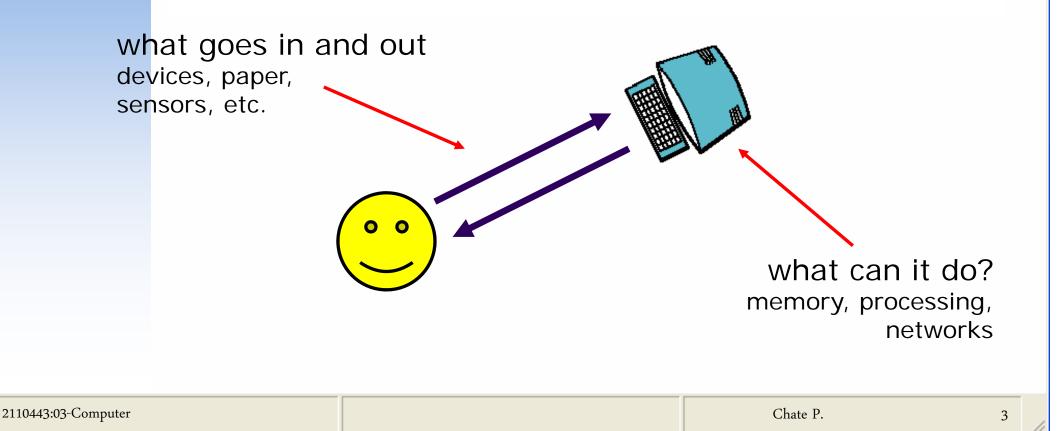


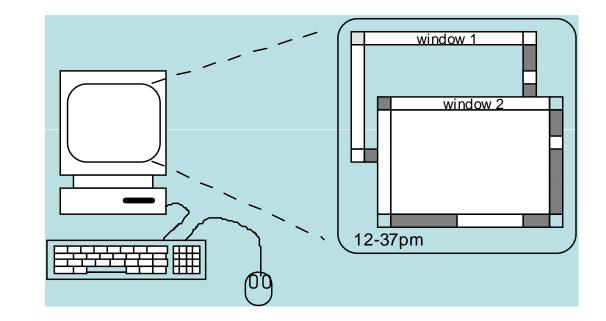
211043 Human Computer Interaction Chate Patanothai

THE COMPUTER


a computer system is made up of various elements

each of these elements affects the interaction

- input devices text entry and pointing
- output devices screen (small&large), digital paper
- virtual reality special interaction and display devices
- physical interaction e.g. sound, haptic, bio-sensing
- paper as output (print) and input (scan)
- memory RAM & permanent media, capacity & access
- processing speed of processing, networks


INTERACTING WITH COMPUTERS

to understand human–*computer* interaction ... need to understand computers!

A 'TYPICAL' COMPUTER SYSTEM

- screen, or monitor, on which there are windows
- keyboard
- mouse/touchpad
- variations
 - ✤ desktop
 - laptop
 - PDA

the devices dictate the styles of interaction that the system supports If we use different devices, then the interface will support a different style of interaction

Computers in your house?
hands up, ...
.... none, 1, 2, 3, more!!

>computers in your pockets?

are you thinking PC, laptop, PDA ??

How MANY COMPUTERS ...

in your house?

- → PC
- TV, VCR, DVD, HiFi, cable/satellite TV
- microwave, cooker, washing machine
- central heating
- security system

in your pockets?

- PDA
- phone, camera
- smart card, card with magnetic strip?
- electronic car key
- USB memory

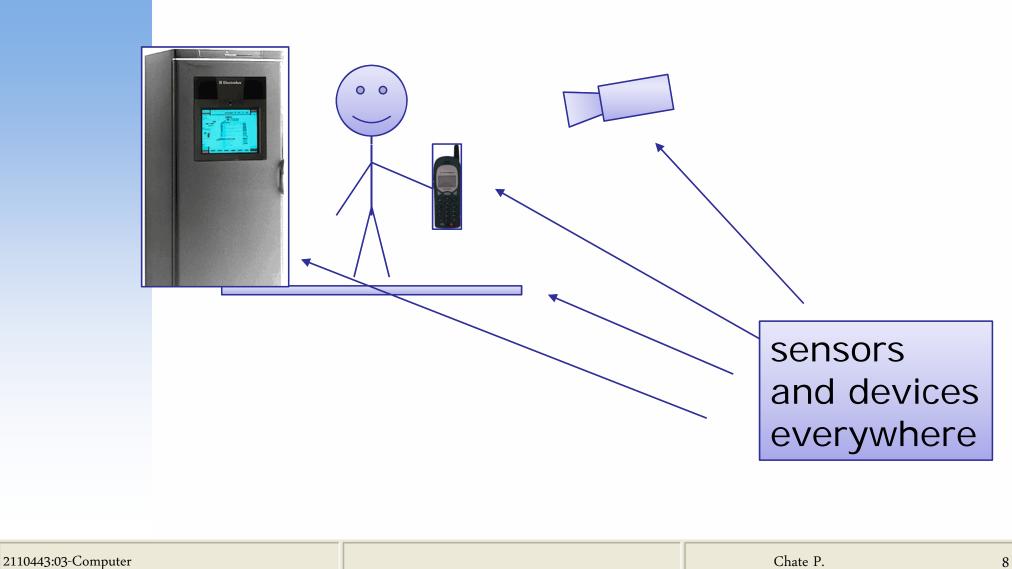
try your pockets and bags

can you think of more?

INTERACTIVITY?

Long ago in a galaxy far away ... batch processing

- punched card stacks or large data files prepared
- Iong wait ….
- line printer output
 - ... and if it is not right ...


Now most computing is interactive

- rapid feedback
- the user in control (most of the time)
- doing rather than thinking ...

Is faster always better?

RICHER INTERACTION

keyboards (QWERTY et al.) chord keyboards, phone pads handwriting, speech

TEXT ENTRY DEVICES

Most common text input device

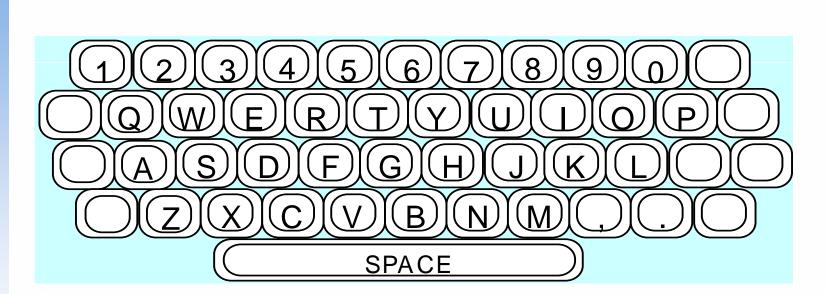
> Allows rapid entry of text by experienced users

- Beginner: < 1 keystroke / second</p>
- Average: ~ 5 keystrokes / second (~ 50 words / minutes)
- Courtroom recorder: ~ 300 words / min

Keypress closes connection, causing a character code to be sent

> Usually connected by cable, but can be wireless

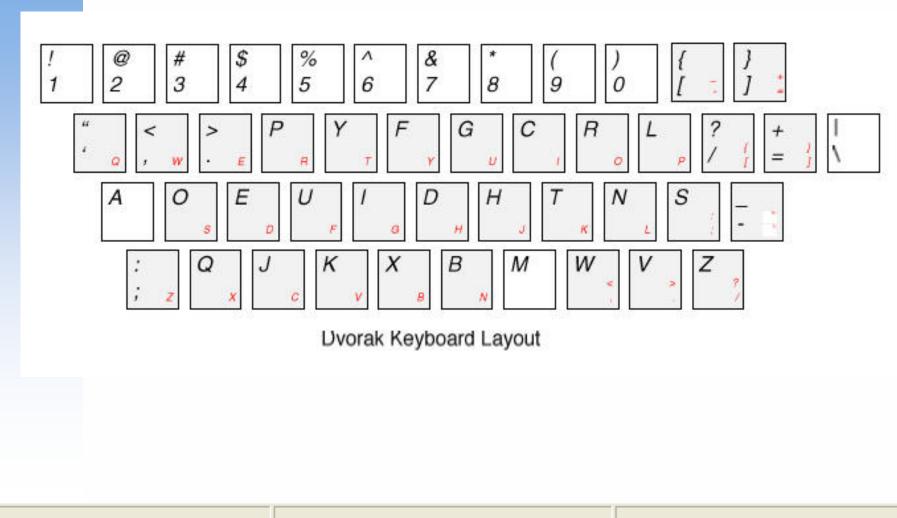
LAYOUT – QWERTY


Standardised layout

but ...

- non-alphanumeric keys are placed differently
- accented symbols needed for different scripts
- minor differences between UK and USA keyboards
- QWERTY arrangement not optimal for typing – layout to prevent typewriters jamming!
- Alternative designs allow faster typing but large social base of QWERTY typists produces reluctance to change.

ALTERNATIVE KEYBOARD LAYOUTS


Alphabetic

- keys arranged in alphabetic order
- not faster for trained typists
- not faster for beginners either!

Dvorak

- common letters under dominant fingers
- biased towards right hand
- common combinations of letters alternate between hands
- 10-15% improvement in speed and reduction in fatigue
- But large social base of QWERTY typists produce market pressures not to change

ALTERNATIVE KEYBOARD LAYOUTS

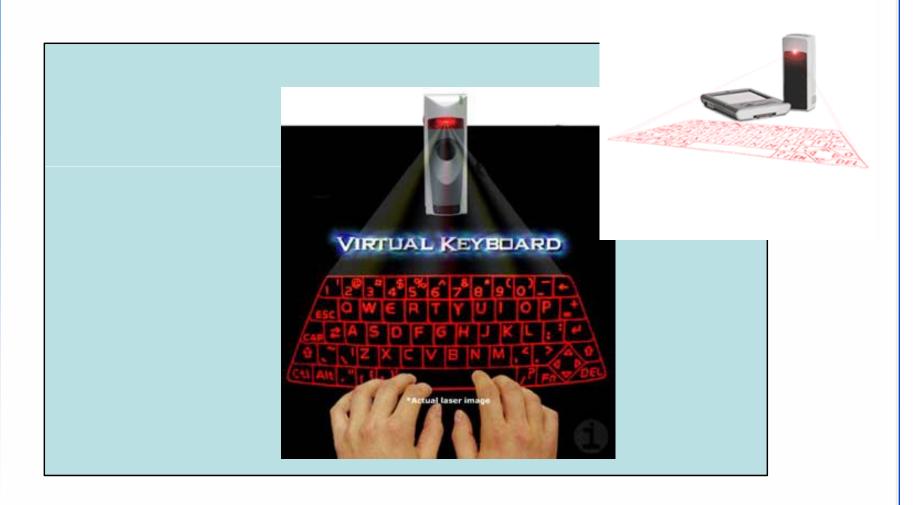
2110443:03-Computer

.

SPECIAL KEYBOARDS

designs to reduce fatigue for RSI for one handed use e.g. the Maltron left-handed keyboard

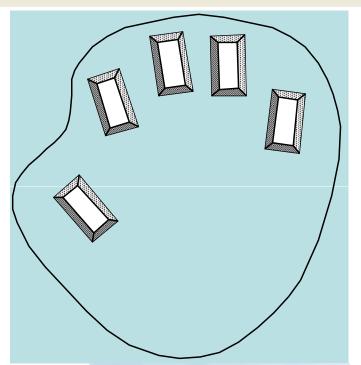
Special keyboards



2110443:03-Computer

Special Keyboards

KEYBOARD LAYOUTS



only a few keys - four or 5 letters typed as combination of keypresses compact size

ideal for portable applications
 short learning time

 keypresses reflect letter shape fast

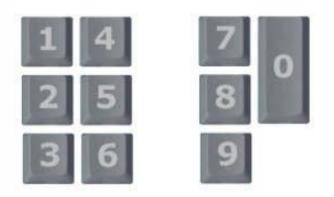
- once you have trained

BUT - social resistance, plus fatigue after extended NEW – niche market for some wearables

use numeric keys with multiple presses

2 – a b c	6 - m n o
3 - d e f	7 - p q r s
4 - g h i	8 - t u v
5 - j k l	9 - w x y z
hello = 4433555[pause]555666	
surprisingly fast!	

- T9 predictive entry
 - type as if single key for each letter
 - use dictionary to 'guess' the right wora
 - Image whether the hello = 43556 ...
 - but 26 -> menu 'am' or 'an'


The Global Keyboard Optimised for Small Wireless Devices

GKOS CHARACTER SETS

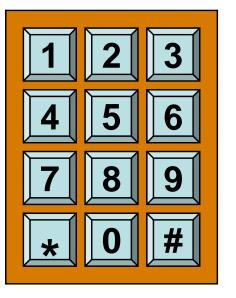
2110443:03-Computer

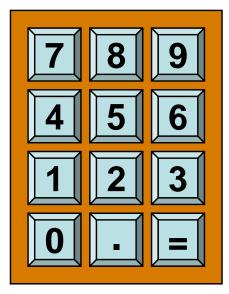
HANDWRITING RECOGNITION

- Text can be input into the computer, using a pen and a digesting tablet
 - natural interaction
- > Technical problems:
 - capturing all useful information stroke path, pressure, etc. in a natural manner
 - segmenting joined up writing into individual letters
 - interpreting individual letters
 - coping with different styles of handwriting
- Used in PDAs, and tablet computers leave the keyboard on the desk!

SPEECH RECOGNITION

- Improving rapidly
- Most successful when:
 - single user initial training and learns peculiarities
 - Iimited vocabulary systems
- Problems with
 - external noise interfering
 - imprecision of pronunciation
 - Iarge vocabularies
 - different speakers




NUMERIC KEYPADS

for entering numbers quickly:
 calculator, PC keyboard
 for telephones

not the same!!

ATM like phone

telephone

calculator

mouse, touchpad trackballs, joysticks etc. touch screens, tablets eyegaze, cursors

POSITIONING, POINTING AND DRAWING

POINTING TASKS

- select chooses from a set of items
- position chooses a point in a one-, two-, three-, or higher dimension
- > orient chooses a direction
- path series of position and orient operations
- > quantify specifies a numeric value
- text enters, moves, and edits text in a 2D space

>Handheld pointing device

- very common
- easy to use

Two characteristics

planar movement

buttons

(usually from 1 to 3 buttons on top, used for making a selection, indicating an option, or to initiate drawing etc.)

Mouse located on desktop

- requires physical space
- no arm fatigue

Relative movement only is detectable. Movement of mouse moves screen cursor

Screen cursor oriented in (x, y) plane, mouse movement in (x, z) plane ...

... an *indirect* manipulation device.

 device itself doesn't obscure screen, is accurate and fast.

hand-eye coordination problems for novice users

How does it work?

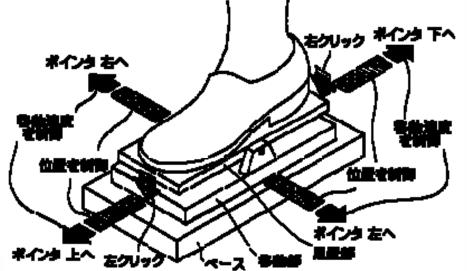
Two methods for detecting motion

> Mechanical

- Ball on underside of mouse turns as mouse is moved
- Rotates orthogonal potentiometers
- Can be used on almost any flat surface

Optical

- light emitting diode on underside of mouse
- may use special grid-like pad or just on desk
- less susceptible to dust and dirt
- detects fluctuating alterations in reflected light intensity to calculate relative motion in (x, z) plane



EVEN BY FOOT

- controlling mouse
 movement with feet ...
- not very common :-)
- but foot controls are common elsewhere:
 - ✤ car pedals
 - sewing machine speed control
 - organ and piano pedals

Touchpad

small touch sensitive tablets
 'stroke' to move mouse pointer
 used mainly in laptop computers

>good 'acceleration' settings important

- fast stroke
 - Iots of pixels per inch moved
 - initial movement to the target
- slow stroke
 - less pixels per inch
 - for accurate positioning

TRACKBALL AND THUMBWHEELS

Trackball

- ball is rotated inside static housi
 - like an upsdie down mouse!
- relative motion moves cursor
- indirect device, fairly accurate
- separate buttons for picking
- very fast for gaming
- used in some portable and notebc computers.

Thumbwheels ...

- for accurate CAD two dials for X-Y cursor position
- for fast scrolling single dial on mouse

JOYSTICK AND KEYBOARD NIPPLE

Joystick

- indirect
 - pressure of stick = <u>velocity</u> of movement
- buttons for selection on top or on front like a trigger
- often used for computer games aircraft controls and 3D navigation

Keyboard nipple

- for laptop computers
- miniature joystick in the middle of the keyboard

TOUCH-SENSITIVE SCREEN

- Detect the presence of finger or stylus on the screen.
 - works by interrupting matrix of light beams, capacitance changes or ultrasonic reflections
 - direct pointing device
- > Advantages:
 - fast, and requires no specialised pointe
 - good for menu selection
 - suitable for use in hostile environment: clean and safe from damage.

> Disadvantages:

- finger can mark screen
- imprecise (finger is a fairly blunt instrument!)
 - difficult to select small regions or perform accurate drawing
- lifting arm can be tiring

STYLUS AND LIGHT PEN

Stylus

- small pen-like pointer to draw directly on screen
- may use touch sensitive surface or mentic determinant
- used in PDA, tablets PCs and drawing tables

Light Pen

- now rarely used
- uses light from screen to detect location

BOTH ...

- very direct and obvious to use
- but can obscure screen

DIGITIZING TABLET

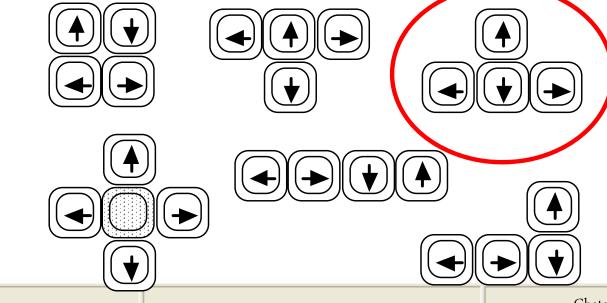
Mouse like-device with cross hairs

- > used on special surface
 - rather like stylus

very accurate
- used for digitizing map

> control interface by eye gaze direction e.g. look at a menu item to select it > uses laser beam reflected off retina … a very low power laser! > mainly used for evaluation > potential for hands-free control > high accuracy requires headsot > cheaper and lower accuracy devices available

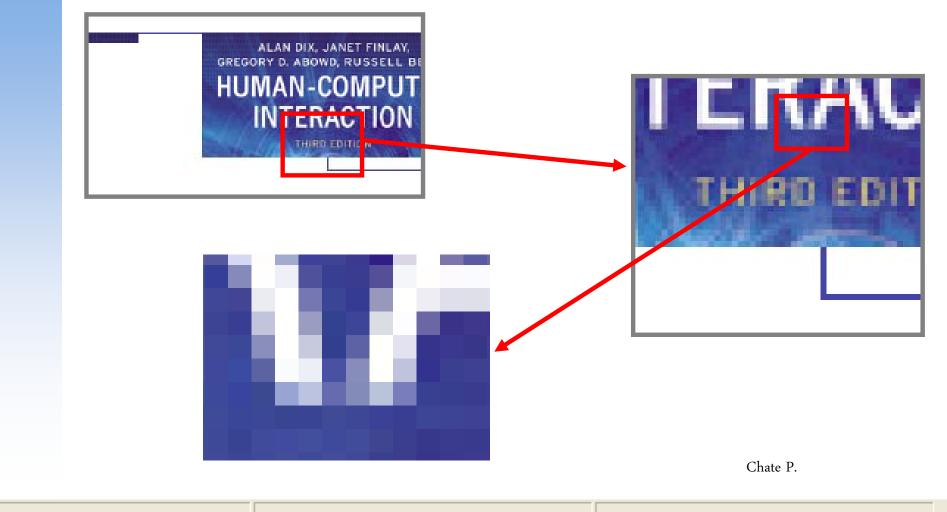
sit under the screen like a small webcam


WII REMOTE

- > Four keys (up, down, left, right) on keyboard.
- > Very, very cheap, but slow.
- > Useful for not much more than basic motion for textediting tasks.
- No standardised layout, but inverted "T", most common

DISCRETE POSITIONING CONTROLS

in phones, TV controls etc.
 cursor pads or mini-joysticks
 discrete left-right, up-down
 mainly for menu selection


bitmap screens (CRT & LCD) large & situated displays digital paper

DISPLAY DEVICES

BITMAP DISPLAYS

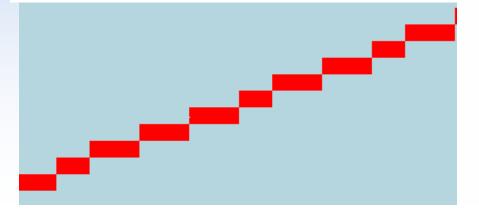
>screen is vast number of coloured dots

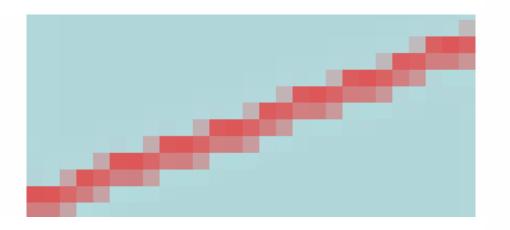
2110443:03-Computer

RESOLUTION AND COLOUR DEPTH

Resolution ... used (inconsistently) for

- number of pixels on screen (width x height)
 - e.g. SVGA 1024 x 768, PDA perhaps 240x400
- density of pixels (in pixels or dots per inch dpi)
 typically between 72 and 96 dpi
- >Aspect ratio
 - ration between width and height
 - 4:3 for most screens, 16:9 for wide-screen TV
- > Colour depth:
 - how many different colours for each pixel?
 - black/white or greys only
 - 256 from a pallete
 - 8 bits each for red/green/blue = millions of colours

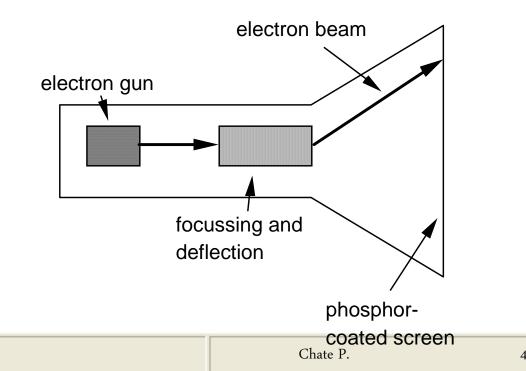

ANTI-ALIASING


Jaggies

 diagonal lines that have discontinuities in due to horizontal raster scan process.

Anti-aliasing

- softens edges by using shades of line colour
- also used for text



CATHODE RAY TUBE

- Stream of electrons emitted from electron gun, focused and directed by magnetic fields, hit phosphor-coated screen which glows
- used in TVs and computer monitors

LIQUID CRYSTAL DISPLAYS

Smaller, lighter, and ... no radiation problems.

- Found on PDAs, portables and notebooks, ... and increasingly on desktop and even for home TV
- > also used in dedicted displays: digital watches, mobile phones, HiFi controls

> How it works …

- Top plate transparent and polarised, bottom plate reflecting.
- Light passes through top plate and crystal, and reflects back to eye.
- Voltage applied to crystal changes polarisation and hence colour
- N.B. light reflected not emitted => less eye strain

SPECIAL DISPLAYS

Random Scan (Directed-beam refresh, vector display)

- draw the lines to be displayed directly
- no jaggies
- lines need to be constantly redrawn
- rarely used except in special instruments

Direct view storage tube (DVST)

- Similar to random scan but persistent => no flicker
- Can be incrementally updated but not selectively erased
- Used in analogue storage oscilloscopes

LARGE DISPLAYS

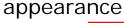
- >used for meetings, lectures, etc.
- >technology
 - plasma usually wide screen
 - video walls lots of small screens together
 - **projected** RGB lights or LCD projector
 - hand/body obscures screen
 - may be solved by 2 projectors + clever software

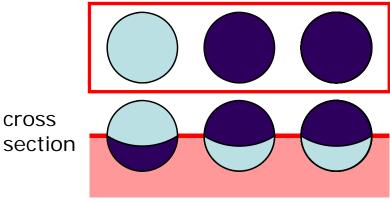
back-projected

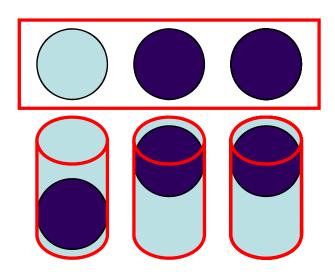
- frosted glass + projector behind

SITUATED DISPLAYS

- >displays in 'public' places
 - large or small
 - very public or for small group
- >display only
 - for information relevant to location
- > or interactive
 - use stylus, touch sensitive screem
- > in all cases ... the location matters
 - meaning of information or interaction is related to the location


HERMES A SITUATED DISPLAY


small displays beside office doors Alan is handwritten office owner notes left reads notes using stylus using web interface 2110443:03-Computer Chate P. 52


DIGITAL PAPER

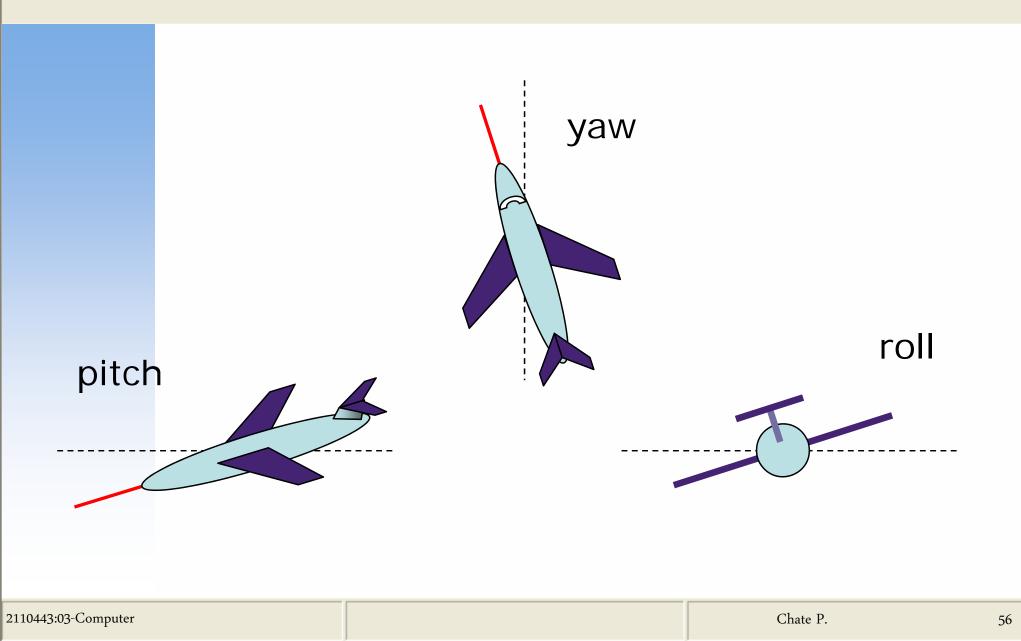
> what?

- thin flexible sheets
- updated electronically
- but retain display
- > how?
 - small spheres turned
 - or channels with coloured liquid and contrasting spheres
 - rapidly developing area

positioning in 3D space moving and grasping

seeing 3D (helmets and caves)

VIRTUAL REALITY AND 3D INTERACTION


POSITIONING IN 3D SPACE

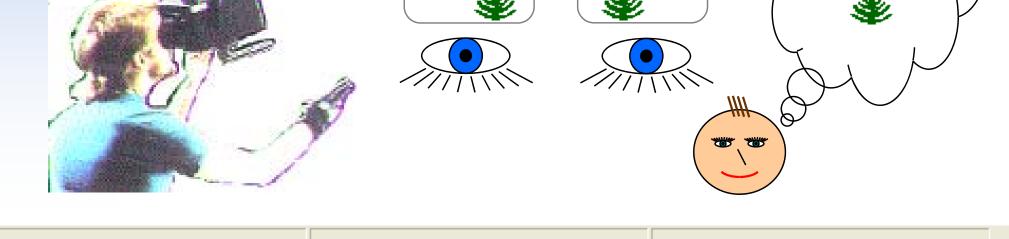
> cockpit and virtual controls

- steering wheels, knobs and dials ... just like real!
- the 3D mouse
 - six-degrees of movement: x, y, z + roll, pitch, yaw
- >data glove
 - fibre optics used to detect finger position
- VR helmets
 - detect head motion and possibly eye gaze
- > whole body tracking
 - accelerometers strapped to limbs or reflective dots and video processing

3D DISPLAYS

>desktop VR

 ordinary screen, mouse or keyboard control

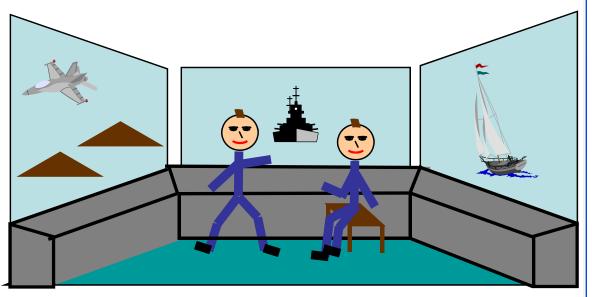

perspective and motion give 3D effect

- >seeing in 3D
 - use stereoscopic vision
 - VR helmets
 - screen plus shuttered specs, etc.

VR HEADSETS

small TV screen for each eye slightly different angles 3D effect

VR MOTION SICKNESS


time delay

move head ... lag ... display moves conflict: head movement vs. eyes >depth perception headset gives different stereo distance but all focused in same plane conflict: eye angle vs. focus >conflicting cues => sickness helps motivate improvements in technology

SIMULATORS AND VR CAVES

- >scenes projected on walls
- >realistic environment
- >hydraulic rams!
- real controls
- >other people

special displays and gauges sound, touch, feel, smell physical controls environmental and bio-sensing

PHYSICAL CONTROLS, SENSORS ETC.

DEDICATED DISPLAYS

digital displays:
small LCD screens, LED lights, etc.

head-up displays
 found in aircraft cockpits
 show most important controls
 ... depending on context

>beeps, bongs, clonks, whistles and whirrs

>used for error indications

>confirmation of actions e.g. keyclick

> for visually-impaired users

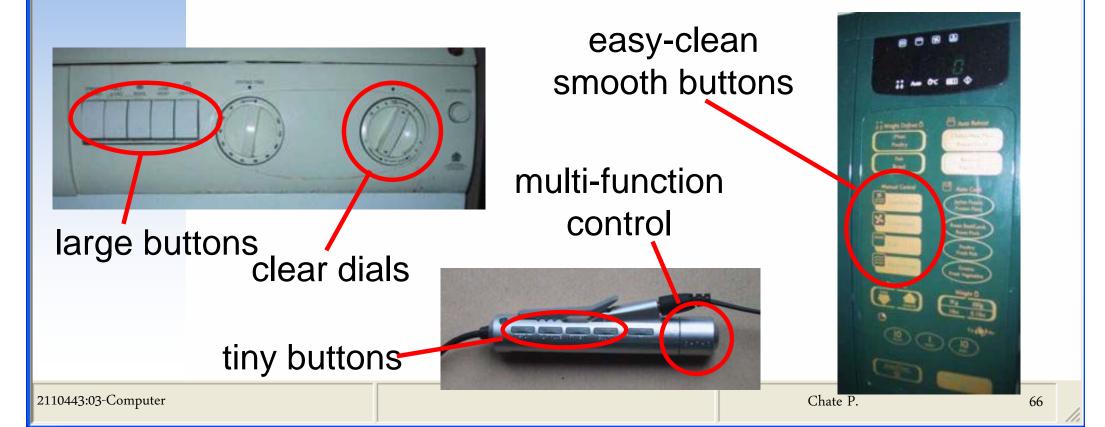
>music used for provide mood context, e.g., in games

TOUCH, FEEL, SMELL

touch and feeling important
 in games ... vibration, force feedback
 in simulation ... feel of surgical instruments
 called *haptic* devices

texture, smell, taste
current technology very limited

BMW IDRIVE


- > for controlling menus
- > feel small 'bumps' for each item
- > makes it easier to select options by feel
- > uses haptic technology from Immersion Corp.

PHYSICAL CONTROLS

specialist controls needed ... industrial controls, consumer products, etc.

ENVIRONMENT AND BIO-SENSING

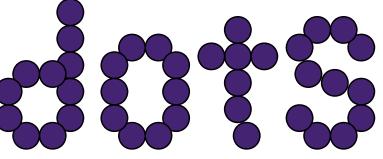
- sensors all around us
 - car courtesy light small switch on door
 - ultrasound detectors security, washbasins
 - RFID security tags in shops
 - temperature, weight, location
- >... and even our own bodies ...

 iris scanners, body temperature, heart rate, galvanic skin response, blink rate

🧝 Computer Engineering - Engineering - Chulalongkorn University

print technology fonts, page description, WYSIWYG scanning, OCR

PAPER: PRINTING AND SCANNING


PRINTING

>image made from small dots

allows any character set or graphic to be printed,

>critical features:

resolution

size and spacing of the dots

measured in dots per inch (dpi)

speed

- usually measured in pages per minute

TYPES OF DOT-BASED PRINTERS

> dot-matrix printers

- use inked ribbon (like a typewriter
- Ine of pins that can strike the ribbon, dotting the paper.
- typical resolution 80-120 dpi
- > ink-jet and bubble-jet printers
 - tiny blobs of ink sent from print head to paper
 - typically 300 dpi or better .
- laser printer
 - like photocopier: dots of electrostatic charge deposited on drum, which picks up toner (black powder form of ink) rolled onto paper which is then fixed with heat
 - typically 600 dpi or better.

PRINTING IN THE WORKPLACE

> shop tills

- dot matrix
- same print head used for several paper rolls
- may also print cheques

> thermal printers

- special heat-sensitive paper
- paper heated by pins makes a dot
- poor quality, but simple & low maintenance
- used in some fax machines

Font – the particular style of text

Courier font Helvetica font Palatino font Times Roman font > §´∝≡,Jℜ⊗,J~ (special symbol)

Size of a font measured in points (1 pt about 1/72") (vaguely) related to its height

> This is ten point Helvetica This is twelve point This is fourteen point This is eighteen point **and this is twenty-four point**

Fonts (CTD)

Pitch

- fixed-pitch every character has the same width e.g. Courier
- variable-pitched some characters wider
 - e.g. Times Roman compare the 'i' and the "m"

Serif or Sans-serif

- sans-serif square-ended strokes
 - e.g. Helvetica
- serif with splayed ends (such as)
 - e.g. Times Roman or Palatino

Readability of text

>lowercase

easy to read shape of words
 UPPERCASE

better for individual letters and non-words
 e.g. flight numbers: BA793 vs. ba793

serif fonts

helps your eye on long lines of printed text
 but sans serif often better on screen

PAGE DESCRIPTION LANGUAGES

- > Pages very complex
 - different fonts, bitmaps, lines, digitised photos, etc.
- Can convert it all into a bitmap and send to the printer
 - ... but often huge !
- > Alternatively Use a page description language
 - sends a description of the page can be sent,
 - instructions for curves, lines, text in different styles, etc.
 - like a programming language for printing!
- PostScript is the most common

SCREEN AND PAGE

> WYSIWYG

- what you see is what you get
- aim of word processing, etc.

> but ...

- screen: 72 dpi, landscape image
- print: 600+ dpi, portrait
- can try to make them similar but never quite the same
- > so ... need different designs, graphics etc, for screen and print

- > Take paper and convert it into a bitmap
- Two sorts of scanner
 - flat-bed: paper placed on a glass plate, whole page converted into bitmap
 - hand-held: scanner passed over paper, digitising strip typically 3-4" wide
- Shines light at paper and note intensity of reflection
 colour or greyscale
- > Typical resolutions from 600–2400 dpi

Used in

- desktop publishing for incorporating photographs and other images
- document storage and retrieval systems, doing away with paper storage
- + special scanners for slides and photographic negatives

OPTICAL CHARACTER RECOGNITION

- OCR converts bitmap back into text
 different fonts
 - create problems for simple "template matching" algorithms
 - more complex systems segment text, decompose it into lines and arcs, and decipher characters that way

>page format

columns, pictures, headers and footers

PAPER-BASED INTERACTION

- > paper usually regarded as *output* only
- > can be *input* too OCR, scanning, etc.
- Xerox PaperWorks
 - glyphs small patterns of /\//\\
 - used to identify forms etc.
 - used with scanner and fax to control applications

> more recently

- papers micro printed like wattermarks
 - identify which sheet and where you are
- special 'pen' can read locations
 - know where they are writing

short term and long term speed, capacity, compression formats, access

MEMORY

SHORT-TERM MEMORY - RAM

> Random access memory (RAM)

- on silicon chips
- 100 nano-second access time
- usually volatile (lose information if power turned off)
- data transferred at around 100 Mbytes/sec

Some non-volatile RAM used to store basic set-up information

Typical desktop computers: 64 to 256 Mbytes RAM

Long-term Memory - Disks

> magnetic disks

- floppy disks store around 1.4 Mbytes
- hard disks typically 40 Gbytes to 100s of Gbytes access time ~10ms, transfer rate 100kbytes/s

> optical disks

- use lasers to read and sometimes write
- more robust that magnetic media
- CD-ROM
 - same technology as home audio, ~ 600 Gbytes
- DVD for AV applications, or very large files

BLURRING BOUNDARIES

>PDAs

often use RAM for their main memory

>Flash-Memory

- used in PDAs, cameras etc.
- silicon based but persistent
- plug-in USB devices for data transfer

SPEED AND CAPACITY

>what do the numbers mean?

Some Sizes (all uncompressed) ... this book, text only ~ 320,000 words, 2Mb the Bible ~ 4.5 Mbytes scanned page ~ 128 Mbytes (11x8 inches, 1200 dpi, 8bit greyscale) digital photo ~ 10 Mbytes (2–4 mega pixels, 24 bit colour) video ~ 10 Mbytes per second (512x512, 12 bit colour, 25 frames per sec)

VIRTUAL MEMORY

> Problem:

running lots of programs + each program large
 not enough RAM

> Solution - Virtual memory :

- store some programs temporarily on disk
- makes RAM appear bigger

> But ... swopping

- program on disk needs to run again
- copied from disk to RAM
- slows things down

- reduce amount of storage required
- > lossless
 - recover exact text or image e.g. GIF, ZIP
 - Iook for commonalities:
 - text: AAAAAAAAABBBBBCCCCCCCC > 10A5B8C
 - video: compare successive frames and store change

> lossy

- recover something like original e.g. JPEG, MP3
- exploit perception
 - JPEG: lose rapid changes and some colour
 - MP3: reduce accuracy of drowned out notes

STORAGE FORMATS - TEXT

- > ASCII 7-bit binary code for to each letter and character
- > UTF-8 8-bit encoding of 16 bit character set
- >RTF (rich text format)
 - text plus formatting and layout information
- > SGML (standardized generalised markup language)
 - documents regarded as structured objects
- > XML (extended markup language)
 - simpler version of SGML for web applications

Storage formats - Media

Images:

- many storage formats : (PostScript, GIFF, JPEG, TIFF, PICT, etc.)
- plus different compression techniques (to reduce their storage requirements)

> Audio/Video

- again lots of formats : (QuickTime, MPEG, WAV, etc.)
- compression even more important
- also 'streaming' formats for network delivery

METHODS OF ACCESS

> large information store

- ✤ long time to search -> use index
- what you index -> what you can access
- > simple index needs exact match
- > forgiving systems:
 - Xerox "do what I mean" (DWIM)
 - SOUNDEX McCloud ~ MacCleod
- >access without structure ...
 - free text indexing (all the words in a document)
 - needs lots of space!!

finite speed (but also Moore's law) limits of interaction networked computing

PROCESSING AND NETWORKS

FINITE PROCESSING SPEED

- Designers tend to assume fast processors, and make interfaces more and more complicated
- But problems occur, because processing cannot keep up with all the tasks it needs to do
 - cursor overshooting because system has buffered keypresses
 - icon wars user clicks on icon, nothing happens, clicks on another, then system responds and windows fly everywhere
- Also problems if system is too fast e.g. help screens may scroll through text much too rapidly to be read

MOORE'S LAW

- > computers get faster and faster!
- > 1965 ...
 - Gordon Moore, co-founder of Intel, noticed a pattern
 - processor speed doubles every 18 months
 - ✤ PC … 1987: 1.5 Mhz, 2002: 1.5 GHz
- > similar pattern for memory
 - but doubles every 12 months!!
 - hard disk ... 1991: 20Mbyte : 2002: 30 Gbyte
- baby born today
 - record all sound and vision
 - by 70 all life's memories stored in a grain of dust!

LIMITATIONS ON INTERACTIVE

PERFORMANCE

Computation bound

Computation takes ages, causing frustration for the user

Storage channel bound

Bottleneck in transference of data from disk to memory

Graphics bound

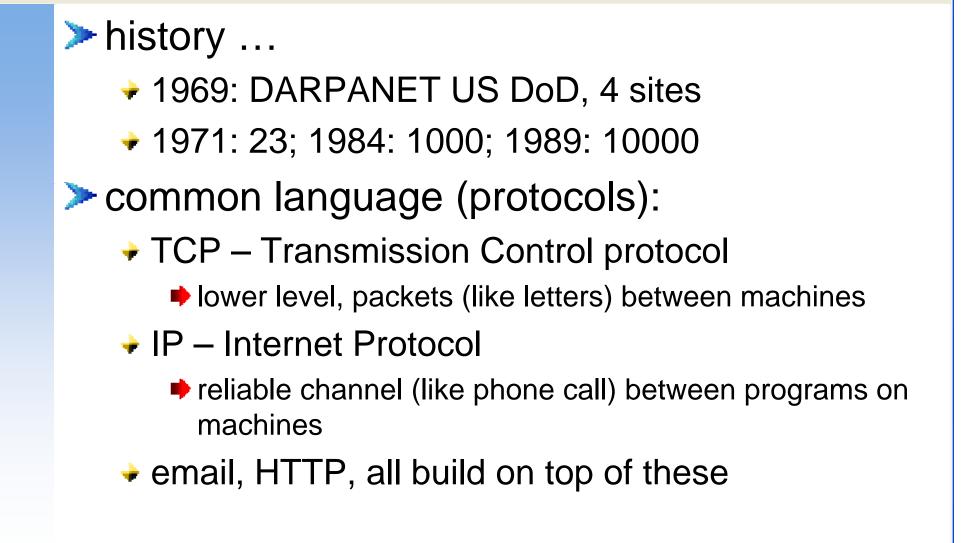
 Common bottleneck: updating displays requires a lot of effort - sometimes helped by adding a graphics co-processor optimised to take on the burden

Network capacity

 Many computers networked - shared resources and files, access to printers etc. - but interactive performance can be reduced by slow network speed

Networked computing

Networks allow access to ...


- Iarge memory and processing
- other people (groupware, email)
- shared resources esp. the web

Issues

- network delays slow feedback
- conflicts many people update data
- unpredictability

