Chulalongkorn University Name

International School of Engineering Student ID
Department of Computer Engineering Station No.
2140105 Computer Programming Lab. Date

Lab 10 — OO Concept (Episode V)

Objectives:

e Understand inheritance
e Be able to use inheritance for reusability

Inheritance

In the preceding lessons, you have seen inheritance mentioned several times. In the Java
language, classes can be derived from other classes, thereby inheriting fields and methods
from those classes.

Definitions:

A class that is derived from another class is called a subclass (also a derived
class, extended class, or child class). The class from which the subclass is
derived is called a superclass (also a base class or a parent class).

Excepting object, which has no superclass, every class has one and only one direct
superclass (single inheritance). In the absence of any other explicit superclass, every class is
implicitly a subclass of object.

Classes can be derived from classes that are derived from classes that are derived from
classes, and so on, and ultimately derived from the topmost class, Object. Such a class is
said to be descended from all the classes in the inheritance chain stretching back to Object.

The idea of inheritance is simple but powerful: When you want to create a new class and
there is already a class that includes some of the code that you want, you can derive your
new class from the existing class. In doing this, you can reuse the fields and methods of the
existing class without having to write (and debug!) them yourself.

A subclass inherits all the non-private members (fields, methods, and nested classes) from
its superclass. Constructors are not members, so they are not inherited by subclasses, but
the constructor of the superclass can be invoked from the subclass.

The Java Platform Class Hierarchy

The Object class, defined in the java.lang package, defines and implements behavior
common to all classes—including the ones that you write. In the Java platform, many
classes derive directly from object, other classes derive from some of those classes, and so
on, forming a hierarchy of classes.

Page 1 of 12

Figure 1 All Classes in the Java Platform are Descendants of Object

At the top of the hierarchy, object is the most general of all classes. Classes near the
bottom of the hierarchy provide more specialized behavior.

An Example of Inheritance

Here is the sample code for a possible implementation of a Bicycle class that was presented
in Lab 8:

public class Bicycle {

b

// the Bicycle class has three fields
public int cadence;

public int gear;

public int speed;

// the Bicycle class has one constructor

public Bicycle(int startCadence, int startSpeed, int startGear) {
gear = startGear;
cadence = startCadence;
speed = startSpeed;

}

// the Bicycle class has four methods

public void setCadence(int newValue) {
cadence = newValue;

}

public void setGear(int newValue) {
gear = newValue;

}

public void applyBrake(int decrement) {
speed -= decrement;

}

public void speedUp(int increment) {
speed += increment;
}

A class declaration for a MountainBike class that is a subclass of Bicycle might look like this:

Page 2 of 12

public class MountainBike extends Bicycle {

// the MountainBike subclass adds one field
public int seatHeight;

// the MountainBike subclass has one constructor
public MountainBike(int startHeight, int startCadence,
int startSpeed, int startGear) {
super(startCadence, startSpeed, startGear);
seatHeight = startHeight;

}

// the MountainBike subclass adds one method

public void setHeight(int newVvalue) {
seatHeight = newValue;

3

b

MountainBike inherits all the fields and methods of Bicycle and adds the field seatHeight
and a method to set it. Except for the constructor, it is as if you had written a new
MountainBike class entirely from scratch, with four fields and five methods. However, you
didn't have to do all the work. This would be especially valuable if the methods in the
Bicycle class were complex and had taken substantial time to debug.

What You Can Do in a Subclass

A subclass inherits all of the public and protected members of its parent, no matter what
package the subclass is in. If the subclass is in the same package as its parent, it also inherits
the package-private members of the parent. You can use the inherited members as is,
replace them, hide them, or supplement them with new members:

e The inherited fields can be used directly, just like any other fields.

e You can declare a field in the subclass with the same name as the one in the superclass,
thus hiding it (not recommended).

e You can declare new fields in the subclass that are not in the superclass.

e The inherited methods can be used directly as they are.

e You can write a new instance method in the subclass that has the same signature as the
one in the superclass, thus overriding it.

e You can write a new static method in the subclass that has the same signature as the
one in the superclass, thus hiding it.

e You can declare new methods in the subclass that are not in the superclass.

e You can write a subclass constructor that invokes the constructor of the superclass,
either implicitly or by using the keyword super.

Private Members in a Superclass

A subclass does not inherit the private members of its parent class. However, if the
superclass has public or protected methods for accessing its private fields, these can also be
used by the subclass.

Page 3 of 12

Casting Objects

We have seen that an object is of the data type of the class from which it was instantiated.
For example, if we write

public MountainBike myBike = new MountainBike();

then myBike is of type MountainBike.

MountainBike is descended from Bicycle and Object. Therefore, a MountainBike is a
Bicycle and is also an Object, and it can be used wherever Bicycle or Object objects are
called for.

The reverse is not necessarily true: a Bicycle may be a MountainBike, but it isn't necessarily.
Similarly, an Object may be a Bicycle or a MountainBike, but it isn't necessarily.

Casting shows the use of an object of one type in place of another type, among the objects
permitted by inheritance and implementations. For example, if we write

Object obj = new MountainBike();

then obj is both an Object and a Mountainbike (until such time as obj is assigned another
object that is not a Mountainbike). This is called implicit casting.

If, on the other hand, we write
MountainBike myBike = obj;

we would get a compile-time error because obj is not known to the compiler to be a
MountainBike. However, we can tell the compiler that we promise to assign a MountainBike
to obj by explicit casting:

MountainBike myBike = (MountainBike)obj;

This cast inserts a runtime check that obj is assigned a MountainBike so that the compiler
can safely assume that obj is a MountainBike. If obj is not a Mountainbike at runtime, an
exception will be thrown.

Note: You can make a logical test as to the type of a particular object using the instanceof
operator. This can save you from a runtime error owing to an improper cast. For example:

if (obj instanceof MountainBike) {
MountainBike myBike = (MountainBike)obj;

}

Here the instanceof operator verifies that obj refers to a MountainBike so that we can make
the cast with knowledge that there will be no runtime exception thrown.

Page 4 of 12

Overriding and Hiding Methods

Instance Methods

An instance method in a subclass with the same signature (name, plus the number and the
type of its parameters) and return type as an instance method in the superclass overrides
the superclass's method.

The ability of a subclass to override a method allows a class to inherit from a superclass
whose behavior is "close enough" and then to modify behavior as needed. The overriding
method has the same name, number and type of parameters, and return type as the
method it overrides. An overriding method can also return a subtype of the type returned
by the overridden method. This is called a covariant return type.

Class Methods
If a subclass defines a class method with the same signature as a class method in the
superclass, the method in the subclass hides the one in the superclass.

The distinction between hiding and overriding has important implications. The version of
the overridden method that gets invoked is the one in the subclass. The version of the
hidden method that gets invoked depends on whether it is invoked from the superclass or
the subclass. Let's look at an example that contains two classes. The first is Animal, which
contains one instance method and one class method:

(= Your turn (1)

1. Create a new Java project called lab1e.
Create a new package called inheritance.
3. Create a new class called Animal in package inheritance and copy the following code:

N

public class Animal {
public static void testClassMethod() {
System.out.printIn(*'The class method in Animal."™);

public void testlnstanceMethod() {
System.out.printIn(*'The instance method in Animal."™);
}

b

4. Create a new class as a subclass of Animal called cat in package inheritance and copy
the follwing code:

public class Cat extends Animal {
public static void testClassMethod() {
System.out.printIn(*"'The class method in Cat.');

}
public void testlnstanceMethod() {
System.out.printIn("'The instance method in Cat.");

Page 5 of 12

}

public static void main(String[] args) {
Cat myCat = new Cat(Q);
Animal myAnimal = myCat;
Animal . testClassMethod();
myAnimal . testlnstanceMethod();

}
+

The cat class overrides the instance method in Animal and hides the class method in
Animal. The main method in this class creates an instance of Cat and calls
testClassMethod() on the class and testInstanceMethod() on the instance.

5. Run the Cat class and see the output, compare to the following text:

The class method in Animal.

The instance method in Cat.

As promised, the version of the hidden method that gets invoked is the one in the
superclass, and the version of the overridden method that gets invoked is the one in the
subclass.

Hiding Fields

Within a class, a field that has the same name as a field in the superclass hides the
superclass's field, even if their types are different. Within the subclass, the field in the
superclass cannot be referenced by its simple name. Instead, the field must be accessed
through super, which is covered in the next section. Generally speaking, we don't
recommend hiding fields as it makes code difficult to read.

Using the Keyword super

Accessing Superclass Members

If your method overrides one of its superclass's methods, you can invoke the overridden
method through the use of the keyword super. You can also use super to refer to a hidden
field (although hiding fields is discouraged).

6. Create a new class called Superclass in package inheritance:

public class Superclass {

public void printMethod() {
System.out.printIn("'Printed in Superclass.™);
}

3

7. Create a subclass called subclass, that overrides printMethod():

public class Subclass extends Superclass {

public void printMethod() { //overrides printMethod in Superclass
super.printMethod();
System.out.printIn("'Printed in Subclass™);

Page 6 of 12

public static void main(String[] args) {
Subclass s = new Subclass();
s.printMethod();
}
}

Within Subclass, the simple name printMethod() refers to the one declared in Subclass,
which overrides the one in Superclass. So, to refer to printMethod() inherited from
Superclass, Subclass must use a qualified name, using super as shown.

8. Run Subclass and see the output compare to the following:

Printed in Superclass.

Printed in Subclass

Subclass Constructors

The following example illustrates how to use the super keyword to invoke a superclass's
constructor. Recall from the Bicycle example that MountainBike is a subclass of Bicycle.
Here is the MountainBike (subclass) constructor that calls the superclass constructor and
then adds initialization code of its own:

public MountainBike(int startHeight, int startCadence,
int startSpeed, int startGear) {
super(startCadence, startSpeed, startGear);
seatHeight = startHeight;

3

Invocation of a superclass constructor must be the first line in the subclass constructor.
The syntax for calling a superclass constructor is

super();
—-Or--

super(parameter list);

With super(), the superclass no-argument constructor is called. With super(parameter
list), the superclass constructor with a matching parameter list is called.

Note: If a constructor does not explicitly invoke a superclass constructor, the Java compiler
automatically inserts a call to the no-argument constructor of the superclass. If the super
class does not have a no-argument constructor, you will get a compile-time error. Object
does have such a constructor, so if Object is the only superclass, there is no problem.

If a subclass constructor invokes a constructor of its superclass, either explicitly or implicitly,
you might think that there will be a whole chain of constructors called, all the way back to
the constructor of object. In fact, this is the case. It is called constructor chaining, and you
need to be aware of it when there is a long line of class descent.

Page 7 of 12

Abstract Methods and Classes

An abstract class is a class that is declared abstract—it may or may not include abstract
methods. Abstract classes cannot be instantiated, but they can be subclassed.

An abstract method is a method that is declared without an implementation (without
braces, and followed by a semicolon), like this:

abstract void moveTo(double deltaX, double deltaY);

If a class includes abstract methods, the class itself must be declared abstract, as in:

public abstract class GraphicObject {
// declare fields
// declare non-abstract methods
abstract void draw();

}

When an abstract class is subclassed, the subclass usually provides implementations for all
of the abstract methods in its parent class. However, if it does not, the subclass must also
be declared abstract.

Note: All of the methods in an interface (see the Interfaces section) are implicitly abstract,
so the abstract modifier is not used with interface methods (it could be—it's just not
necessary).

Abstract Classes versus Interfaces

Unlike interfaces, abstract classes can contain fields that are not static and final, and they
can contain implemented methods. Such abstract classes are similar to interfaces, except
that they provide a partial implementation, leaving it to subclasses to complete the
implementation. If an abstract class contains only abstract method declarations, it should
be declared as an interface instead.

By comparison, abstract classes are most commonly subclassed to share pieces of
implementation. A single abstract class is subclassed by similar classes that have a lot in
common (the implemented parts of the abstract class), but also have some differences (the
abstract methods).

An Abstract Class Example

In an object-oriented drawing application, you can draw circles, rectangles, lines, Bezier
curves, and many other graphic objects. These objects all have certain states (for example:
position, orientation, line color, fill color) and behaviors (for example: moveTo, rotate,
resize, draw) in common. Some of these states and behaviors are the same for all graphic
objects—for example: position, fill color, and moveTo. Others require different
implementations—for example, resize or draw. All GraphicObjects must know how to draw
or resize themselves; they just differ in how they do it. This is a perfect situation for an
abstract superclass. You can take advantage of the similarities and declare all the graphic
objects to inherit from the same abstract parent object—for example, GraphicObject, as
shown Figure 2.

Page 8 of 12

GraphicObject

I
I I I I

Rectangle Line Bezier Circle

Figure 2 Classes Rectangle, Line, Bezier, and Circle inherit from GraphicObject

First, you declare an abstract class, GraphicObject, to provide member variables and
methods that are wholly shared by all subclasses, such as the current position and the
moveTo method. GraphicObject also declares abstract methods for methods, such as draw or
resize, that need to be implemented by all subclasses but must be implemented in different
ways. The GraphicObject class can look something like this:

abstract class GraphicObject {
int x, y;

void moveTo(int newX, int newY) {

}

abstract void draw(Q);
abstract void resize();

}

Each non-abstract subclass of GraphicObject, such as Circle and Rectangle, must provide
implementations for the draw and resize methods:

class Circle extends GraphicObject {
void draw() {

void resize() {
}
¥ -
class Rectangle extends GraphicObject {
void draw() {

void resize() {

,
}

When an Abstract Class Implements an Interface

In the section on Interfaces, it was noted that a class that implements an interface must
implement all of the interface's methods. It is possible, however, to define a class that does
not implement all of the interface methods, provided that the class is declared to be
abstract. For example,

abstract class X implements Y {
// implements all but one method of Y

}

class XX extends X {
// implements the remaining method in Y

Page 9 of 12

}

In this case, class X must be abstract because it does not fully implement v, but class XX
does, in fact, implement v.

Class Members

An abstract class may have static fields and static methods. You can use these static
members with a class reference—for example, AbstractClass.staticMethod()—as you
would with any other class.

¢ Your turn (2)

Create a new package called exercise2.

Write a class called card, whose instances represent a single playing card from a deck of
cards. Playing cards have two distinguishing properties: rank and suit.

e rank-2,3,4,5,6,7,8,9,10,J,Q,K,and A

e suit—spades(a), heart (¥), diamond (¢), and club (&)

Write a class called Deck, whose instances represent a full deck of cards (52 cards). Hint:
This class has a field that is an array of card.

Add the following methods to class Deck:

e shuffle — shuffle the deck

e pick — pick the top class from a deck

Write an application which implements Game interface:

public interface Game {
public void start(); // start the game
public void stop(); // stop the game
public void restart();

3

e When start a game,
- create 2 decks of card, deckl for computer, and deck2 for you
- shuffle both decks
- pick a card from each deck and compare the card. Who has the higher rank get 1
point (2 is the lowest and A is the highest), if the rank is the same, see the suit
(spades > heart > diamond > club).

e When complete deck is picked, print the point and the winner (who has the higher
point). Ask the user whether he/she wants to play again or stop. If stop, quit the
program. If play again, call the method restart() which behaves like start() but
does not required to create 2 decks.

Page 10 of 12

Some useful methods:

/**
* Returns a random number between first and last (exclusive last)
*/
public static int random(int first, int last) {
return first + (int)(Math.random()*(last — first))
}

/**
* Returns a random number from O to N (exclusive N)
*/
public static int random(int n) {
return random(0, n);
}

Page 11 of 12

Chulalongkorn University Name

International School of Engineering Student ID.
Department of Computer Engineering Station No.
2140-105 Computer Programming Lab. Data

Lab 10 — OO Concept (Episode V)

Task | Description Result Note
1 Inheritance/Animal

2 Subclass/Superclass

3 Card

4 Deck

5 Game

6

7

Page 12 of 12

	Instance Methods
	Class Methods
	Accessing Superclass Members
	Subclass Constructors
	Abstract Classes versus Interfaces
	An Abstract Class Example
	When an Abstract Class Implements an Interface
	Class Members
	Task
	Description
	Result
	Note

