Chulalongkorn University Name

International School of Engineering Student ID
Department of Computer Engineering Station No.
2140105 Computer Programming Lab. Date

Lab 11 — CodeRally

Objectives:

e Understanding the concept of object-oriented
e Using inheritance

CodeRally

CodeRally gives you the opportunity to pit your Java programming skills against other teams
in a world of car rally racing. Each team will write a Java class which represents and controls
a RallycCar. Your car (class) will be placed on a simulated race track along with cars from
other teams.

Rally cars can move around on a track and obtain important information such as the
location of various objects on the track and the current capabilities of other cars. Cars can
collide with other cars, throw spare tires to distract other cars, and they can enter a
protected mode to (temporarily) protect themselves from being hurt by other cars.

The rally pits cars against each other in a series of matches. A match consists of up to six
cars competing with each other. Each car starts a match positioned in a random location
and facing a random direction on a finite two-dimensional grid, with the same amount of
fuel and spare tires as the other cars. Driving around the track uses fuel. The track contains
places where cars can go to get additional fuel and different places they can go to pick up
spare tires. If a car runs out of fuel it can no longer move, so it is important to constantly
check your fuel and refuel if necessary.

During each match, a car can accumulate “points.” Cars can earn points in three ways:

e by successfully throwing a spare tire at another car,
e by passing checkpoints in order or out of order around the track,
e and by the amount of fuel remaining at the end of a match.
Cars with the highest point totals from each match advance to subsequent rounds.

¢ Your turn (1)

Let’s start.

1. Goto File > New > Project

Page 1 of 11

2. Select Other > Game Project. Click on Next as shown in Figure 1.

& New Project

Select a wizard

—

Create a project bo compete in a game |

Wizards:

| type filber text

@ Java Project
Java Project From Existing Ant BuildFile
‘é{p‘é Plug-in Project

= General

= cvs

= Java

[Plug-in Development

£

Figure 1 Create new Game Project

& New Game Project

Create game project

Create a new game praject ko compete in a game

Game: QEDdeRaIIv-‘)

Drive a car around & krack

o
Projeck name:ﬂ 402] L |

) "
Use default location

| \ Browse, ..

':'E':' Mext = ﬁ Finish m Cancel

—

Figure 2 New Game Project name

3. Make sure that the game is CodeRally. Enter your student ID. as your project name, and
click Finish as shown in Figure 2.

Page 2 of 11

4. Your project will have the content as shown in Figure 3.

% package ... i

Hierarchy | JUnit = 8
-
=3

= TE‘J- 4 Kx 21

=2 grc
=4 (default package)
+ RallyCar.java
=4 com.ibr.rally
+ Car.java
+ IZar.java
Iobject,java
+ |I| ISpareTire.java
+-By JRE Syskem Library [jrel.6.0]
Lol games.xml

¥

Figure 3 Your game project

5. Select RallycCar.java. This will be the source file that you must modify to make your car
be able to run on the simulated track. In method getColor(), change the returned color
from CAR_BLUE to other colors specified by CAR_Xxxx in Car. java.

6.

Try to run your car in the simulated track by select games.xml.

6.1. Enter your name and organization.

6.2. Click Add My Team to add your car into the track.

6.3. Select other players, i.e. Crazy driver, Right and turn and click Add. To run the rally,
click Run as shown in Figure 4.

RallyCar.jawa

CodeRally

Identification
Mame your submission:

Mame:

Organization:

¥ Matches
Select opponents and run matches:

Available players:

{Chate
Computer Engineering .

Car.java

F Game Server

Players in makch:

Mame Fganization e Marme 2rganization
Chate Computer Engineering |' Chate Computer Engineering
Do nothing Sample — Right hand turn Sample

Corners Sample Crazy driver Sample

Reverser Sample

Right hand turn Sample

Left hand reverser Sample

Crazy driver Sample

Figure 8 Sample

Hit walls Sample

Fuel hog Sample [ﬁ

Checkpaointer Sample << Remove Al

Tire salesman Sample [Run] Debug

Figure 4 Setup your car to the race

7. The simulated track will have the race with the cars you added to the match as shown in

8.

Figure 5.

To get the document for the classes in the project,
8.1. click on the project name and select menu File > Export.

8.2. select Java > Javadoc

Page 3 of 11

8.3. click Next and the Finish.

9. You will see that the doc subfolder will be added to your project. Explore the document
to see the Javadoc of all classes.

10. Your job is to add statements to the method move() in RallyCar.java to make your car
get as much points as possible. The following section will help you in coding your car.

Coding Your Car - Overview

When you start Eclipse on your machine and open the CodeRally project, you will find a
skeleton for the class RallyCar.java. This is the class that will contain the code making up
your car. You may add fields and declare additional methods, as well as create other Java
classes.

The RallycCar class contains stubs for certain methods required in cars; you will have to fill in
the code in these methods. Modifying these methods is the primary manner in which you
create the “personality” of your car. You may also add other fields and methods to the
RallycCar class to further define its characteristics.

When you have a version of the RallycCar class that you wish to test it, save your RallyCar
code, select the games.xml in your project, and repeat the step (6) and (7) in exercise 1.

The class Car. java is the superclass of RallycCar. It defines a number of methods that are
inherited by RallyCar. These methods can be extremely useful in controlling your car.

You should NOT modify anything in the Car class. In fact, when you run your car, it will
actually run with a different version of the car class from the one you see in your
environment. In particular, the Car class you will see contains some dummy initialization
and return value code that will be replaced when you run in the simulated track.

In addition to the above classes, your environment will contain three Java interfaces that
define the interfaces presented by various components of the track:

e |ODbject.java
This is the interface of all objects in the simulated track. Every object implements
this interface, which declares methods getX() and getY() that return the location of

the object on the track. All track coordinates are non-negative values of type
double.

e ISpareTire.java

This interface extends I0bject and defines the interface of all spare tires that are
currently active in the simulated track. Every spare tire implements this interface,
which declares methods getHeading() and getSpeed(). Thus every spare tire
contains methods that allow cars to determine important characteristics of the spare
tire as the tire moves across the track.

Page 4 of 11

e ICar.java

This interface extends I0bject and defines the interface for all cars on the simulated
track. Thus it defines methods your car can invoke either on itself or on an
opponent’s car. These methods are described in further detail below and in the
JavaDocs for the CodeRally environment.

The CodeRally Track Simulation

Identification

There is a method stubs in the RallyCar class that you must fill to identify your car. This
method is getColor(), which must return a byte constant chosen from the predefined car
colors given in the Car class. You can use this method to assign a color to your car, which
determines its appearance in the graphical display of the CodeRally environment. The
default value returned by getColor() is CAR_BLUE.

The identification method must not do any computations other than returning the specified
constant values.

Initialization

When your car is placed into a track, the simulator invokes the initialize() method in your
car. Put any initialization code you want to have executed into this method. You may make
use of the entire API at this time. Be aware that the simulator will provide only a limited
amount of time (1 second) for your initialization code to execute before it begins the game.
If your initialization code fails to complete within the time limit, your car will enter the track
in an uninitialized state, with unpredictable results.

Moving Your Car

Once the simulator finishes its timed calls to each car’s initialize() routine, it calls the
move () method in each car in sequential order. This happens once every clock tick. The code
in your car’s move () method determines what actions it takes during the course of a game.
In addition to the input parameters to move (), which give some status information, methods
are available to your car to query its own status, to change variables such as the desired
direction and speed at which it should move, to query the status of other cars, to find the
location of objects on the track (for example, the gas stations which can be used to refuel or
places where you can pick up spare tires), and to throw spare tires from your car.

move () has four parameters that provide information about what happened during the
previous movement cycle. These parameters specify:

(1) how much time (in milliseconds) your move() method used the previous time it was
called;

(2) whether your car hit a wall during the previous cycle,

(3) whether your car collided with another car during the previous cycle, and

(4) whether your car was hit by a spare tire from another car during the previous cycle.

The first parameter is an int, the second is a boolean, the third and fourth parameters are
an ICar reference to the corresponding car (or null, if no collision or hit occurred). The first

Page 5 of 11

parameter is useful in determining whether your car is in danger of exceeding the maximum
amount of time allowed to complete a move.

CodeRally Track Details

A CodeRally track is a two-dimensional world of 1010 units in X by 580 units in Y, with the
origin in the top left corner. There is a wall around the outside edge of the track, and cars
cannot go beyond the wall. There are no walls on the interior of the world. Cars can move
freely about the world, unless they bump into another car. Objects move in directions called
headings, which are measured in integer degrees. Zero degrees is “straight up”. All headings
are positive numbers in the range 0..359 and increase in the clockwise direction.

The figure 5 below describes the world:

#21: Chate #03: Right handturn f #05: Crazy

driver
Computer Engineering Sample Sample

Points: 0 Points: 2 Points: 10

Figure 5 Simulated track world

The world has the following characteristics:

e The world is driven by a ticking clock whose value can be read using
getClockTicks().
e Each car starts the match with 100 fuel units and 3 spare tires.

Page 6 of 11

Setting steering and throttle causes a car to move continuously with those settings
until it is instructed to do otherwise, although it may be blocked by walls or other
cars.

Cars can change throttle and steering instantaneously. Speed and direction will not
change instantaneously because the cars have inertia.

The minimum throttle of a car (MIN_THROTTLE) is -50 units and the maximum throttle
(MAX_THROTTLE) is 100; the maximum rate of change of speed from a stopped position
(except in collisions) is 8 units per tick.

The minimum steering setting (MAX_STEER_LEFT) is -10, and the maximum steering
setting (MAX_STEER_RIGHT) is 10. The rate of change of heading is dependant on speed
and can be found via the getChangeInHeading() method.

The location of a car on the track is a point. Cars are 60 units long and 40 units wide,
centered at their location.

To keep the detection of a round spare tire hitting a rectangular car simple, a spare
tire will hit a car when its location passes within 40 units of the car’s location.

Spare tires thrown by a car move at a constant velocity of 12 units per tick until they
hit a car or a wall, at which time they disappear. Checkpoints, fuel depots, and spare
tire depots do not affect spare tires as they move across the world. Spare tires do
not hit each other if they pass over the same location.

The maximum amount of fuel a car can have is 100 units.

The maximum number of spare tires a car can have is 5.

Whenever a car’s location is within 25 units of a fuel depot, the car’s fuel is increased
at a constant rate of 1 unit per clock tick up to the maximum. There are 3 randomly
placed fuel depots during each match.

Whenever a car’s location is within 25 units of a spare tire depot, and the car has less
than 5 spare tires, the car will pick up a spare tire every 5 clock ticks. There are 3
randomly placed spare tire depots during each match.

Cars can protect themselves against collisions with spare tires or other cars by
entering “protect mode”. A car moving in protect mode consumes fuel at twice the
normal rate. Protect mode lasts for 50 clock ticks.

Colliding with another car will cause your momentum to be transferred to the other
car and both cars will loose 10 fuel units.

Throwing a spare tire and successfully hitting another car will increase your points by
10. The car that is hit will loose 10 fuel units, its move () method will not be called for
10 clock ticks, and it will be pushed in the direction that the spare tire was traveling.
You will not get any points for hitting a car which is in protected mode, nor will it
affect that other car.

Once a car throws a spare tire, that car will be unable to throw another spare tire for
25 clock ticks from the time the tire was thrown.

The time limit to complete a single move is 500 milliseconds. If a car’s move()
method does not return within 500 milliseconds of the time when it is called, the
move () will not be called again for the rest of the match and the most recent steering
and throttle settings will be maintained.

There are a number of ordered checkpoints placed in a route on each track. Passing
within 25 units of any checkpoint will give you 2 points, but going to the next

Page 7 of 11

successive checkpoint will give you 6 points. Returning to the same checkpoint twice
in a row will not give you any points.

e Points are earned according to the following table. Remember that it is total points
earned that determines which cars advance during elimination rounds.

Action Points Earned
Passing any checkpoint 2
Passing a checkpoint in successive order 6
Hitting another car with a spare tire 10
For each 10 units of fuel left after a match 1

General Information, Caveats, Constraints, and Restrictions

e Cars may not define any constructors.

e Cars may not use static initialization blocks to initialize their cars.

e All the Java code for your car must be contained within the RallycCar class.

e Cars may not create their own threads, processes, print jobs, files, or other similar
system functions.

e Cars may use System.out.println() to display information on the Eclipse console,
but the time it takes to do this is charged against the car’s move () time limit. (Actions
like this are relatively time-consuming.)

e Any player that submits a car containing code deemed to be intentionally designed
to damage the CodeRally environment will be disqualified.

Example RallyCar Code

The following code snippets show simple examples of various operations which might be
used inside a move() method. Note that these are separate code snippets, not a single
complete move () method. Note also that these are only examples, intended to give you an
idea of how to do things within your car. Winning cars will undoubtedly utilize sophisticated
strategies which take full advantage of the range of method calls available to them.

The list of methods available to cars is documented in the JavaDoc descriptions of the
classes and interfaces of the CodeRally environment. The primary challenge in the
CodeRally is for you to decide on a strategy which uses the available methods to optimum
advantage for your car.

/**
* Go toward the First spare tire depot.
*/
public void move(int lastMoveTime, boolean hitwall,
ICar collidedWithCar, ICar hitBySpareTire) {
// pick a spare tire depot
I0bject st = getSpareTireDepot()[O0];
// go toward the checkpoint
int h = getHeadingTo(st);
it (getHeading() > h)

Page 8 of 11

setSteeringSetting(MAX_STEER_LEFT);
else

setSteeringSetting(MAX_STEER RIGHT);
setThrottle(MAX _THROTTLE);

3

/**
* Put the car in reverse for a few moves if you collide with another car.
*/
protected int wait;
public void move(int lastMoveTime, boolean hitwall,
ICar collidedWithCar, ICar hitBySpareTire) {
if (collidedWithCar != null)
wait = 10;
if (wait > 0)
setThrottle(MIN_THROTTLE);
else
setThrottle(MAX_THROTTLE);
if (wait > 0)
wait--;

¢ Your turn (2)

Let’s race

1. Make your car move pass the checkpoints in order.
2. You can run your car alone or select your competitors. Try to make as much points as
you can.

To be continued next week. We may have a tournament. Modify your car at
home. Please bring this lab document with you for your reference. To
download goto http://www.alphaworks.ibm.com/tech/coderally

Reference:

http://www.alphaworks.ibm.com/tech/coderally

Page 9 of 11

Page 10 of 11

Chulalongkorn University Name

International School of Engineering Student ID.
Department of Computer Engineering Station No.
2140-105 Computer Programming Lab. Data

Lab 11 — CodeRally

Task | Description Result Note
1 Change color

2 Car can move.

3 Racing

4

5

6

7

Page 11 of 11

	Coding Your Car – Overview
	 IObject.java
	 ISpareTire.java
	 ICar.java

	The CodeRally Track Simulation
	Identification
	Initialization
	Moving Your Car
	CodeRally Track Details
	General Information, Caveats, Constraints, and Restrictions

	Example RallyCar Code
	To be continued next week. We may have a tournament. Modify your car at home. Please bring this lab document with you for your reference. To download goto http://www.alphaworks.ibm.com/tech/coderally
	Task
	Description
	Result
	Note

