Chulalongkorn University Name

International School of Engineering Student ID
Department of Computer Engineering Station No.
2140105 Computer Programming Lab. Date

Lab 3 - Debugging

Objectives:
e Understand various debugging techniques.
e Learn to use Eclipse’s Java Scrapbook to view, evaluate, and run Java expression.
e Learnto use Eclipse’s Java debugger.
e Use debugger to control the execution of the program.

1. Scrapbook

The Java Development Toolkit (JDT) contributes a scrapbook facility that can be used to
experiment and evaluate Java code snippets before building a complete Java program.
Snippets are edited and evaluated in the Scrapbook page editor, with resultant problems
reported in the editor.

From a Java scrapbook editor, you can select a code snippet, evaluate it, and display the
result as a string. You can also show the object that result from evaluating a code snippet in
the debuggers' Expressions View.

Creating a Java Scrapbook Page
The scrapbook allows Java expressions, to be run, inspected, and displayed under the
control of the debugger. Breakpoints and exceptions behave as they do in a regular debug
session.
Code is edited on a scrapbook page. A VM is launched for each scrapbook page in which
expressions are being evaluated. The first time an expression is evaluated in a scrapbook
page after it is opened, a VM is launched. The VM for a page will remain active until the
page is closed, terminated explicitly (in the debugger or via the Stop the Evaluation button
in the editor toolbar), or when a System.exit() is evaluated.
There are several ways to open the New Java Scrapbook Page wizard.

e Create afile with a . jpage extension

e From the menu bar, select File > New > Other.... Then select Java > Java Run/Debug >

Scrapbook Page. Then click Next.

Once you've opened the New Java Scrapbook Page wizard:.
1. Inthe Enter or select the folder field, type or click Browse to select the container for
the new page.
2. Inthe File name field, type a name for the new page as in Figure 1. The . jpage
extension will be added automatically if you do not type it yourself.

Page 1 of 18

& New Scrapbook Page =

Create Jawva Scrapbook Page (33w

Enter or select the parent Folder:
| 1ab |

5

1= labe

.
File namd; | test.ipagel) +

advanced >
(] Mext = Finish cancel

Figure 1 New Scrapbook Page

3. Click Finish when you are done. The new scrapbook page opens in an editor as

in Figure 2.
m =

Figure 2 Scrapbook Editor

Inspecting the result of evaluating an expression
Inspecting shows the result of evaluating an expression in the Expressions view.
1. Inthe scrapbook page, either type an expression or highlight an existing expression
to be inspected. Figure 3 shows an example: System.getProperties();

Figure 3 An expression in Scrapbook editor

Page 2 of 18

2. Click the Inspect button in the toolbar (or select Inspect from the selection's pop-up
menu) as in Figure 4.

®
e

Figure 4 Inspection Button

w

The result of the inspection appears in a pop-up as shown in Figure 5.
4. The result can be inspected like a variable in the debugger (for example, children of
the result can be expanded).

=, "System.getProperties()"= Properties (jd=31)
B count= 52

defaults= rull

entry3et= null

kewSet= rnull

loadFactor=0.75

modCount= 57

table= Hashtable$Entry <k, W =[95] (id=36)

threshold= 71

values= null

EEEEE@R @ &

Figure 5 Inspection's Result

Displaying the result of evaluating an expression
Displaying shows the result of evaluating an expression in the scrapbook editor.
1. Inthe scrapbook page, either type an expression or highlight an existing expression
to be displayed. For example: System.getProperties();
2. Click the Display button (as shown in Figure 6) in the toolbar (or select Display from
the selection's pop-up menu.)

W@ s -

Figure 6 Display Button

3. The result of the evaluation appears highlighted in the scrapbook editor as shown
in Figure 7. The result displayed is either
e the value obtained by sending toString() to the result of the evaluation, or
e when evaluating a primitive data type (e.g., an int), the result is the simple
value of the result.

Jvstem. getPr -k- =Rl [Java.util.Propertie 1 Java. runt ime . name=.]
T

; Java.vm.specification.vendor=3un MNicrosystemsz uZer .wvarian

Figure 7 The result of the evaluation

Page 3 of 18

For example:

e Type and highlight new java.util.Date() in the editor, and click Display. A
result such as (Java.util.Date) Tue Jun 12 14:03:17 CDT 2001 appearsin
the editor.

e Asanother example, type and highlight 3 + 4 in the editor, and press Display.
The result (int) 7 is displayed in the editor.

Executing an expression

Executing an expression evaluates an expression but does not display a result.

If you select the expression to execute and click the Execute button in the toolbar
(see Figure 8), no result is displayed, but the code is executed.

Figure 8 Execute Button

For example, if you type and highlight System.out.printIn('Hello World™), and click
the Execute button, Hello World appears in the Console view, but no result is displayed in
the scrapbook editor or the Expressions view.

£ *rest,jpage X =4
SysStem.out.println("Hello World");
Prablems | Javadoc | Declaration BSNEEEE Expressions % & o ci- =0

C:\Program FilesiJavaljrel.6.0bintjavaw exe (1 A.w. 2007, 14:54:30)
Hello World

Figure 9 The result of execution in Console View

Your turn

1. Using Java Scrapbook in Eclipse to
1.1. Evaluate the following expressions:
e System.getenv(“CLASSPATH™)
e System.getevn(“ComSpec™)
e System.getenv()

1.2. Execute the following statements

double s = 0.0;
for (int i = 0; i < 10; i++) {
s += Math.random();

}

System.out.printIn(’'s = " + s);

Page 4 of 18

2. Debugger

The Eclipse’s Java Development Toolkit (JDT) includes a debugger that enables you to detect
and diagnose errors in your programs running either locally or remotely. The debugger
allows you to control the execution of your program by setting breakpoints, suspending
launched programs, stepping through your code, and examining the contents of variables.

The Fundamentals of Debugging
When you debug Java, your basic activities are
e Stepping through the execution of your program with actions in the Debug view
e Following the source in the editor as it executes
e Managing your breakpoints from the editor and the Breakpoints view
e Examining variable values in the Variables view
e Evaluating expressions and viewing the results in the Expressions and Display views
e Following the output of your program in the Console view

Getting started with debugging is simple. You set a breakpoint (or breakpoints) in your code,
start a debugging session, control execution of your code, and examine the state of your
program as it runs.

Breakpoints
A breakpoint suspends the execution of a program at the location where the breakpoint is
set.

Breakpoints can be enabled and disabled via the context menu in the Breakpoints View, or
via the context menu in the Java Editor ruler.

e An enabled breakpoint causes a thread to suspend whenever the breakpoint is
encountered. Enabled breakpoints are drawn with a blue circle [®] and have a
checkmark overlay once successfully installed. A breakpoint can only be installed
when the class the breakpoint is located in has been loaded by the VM.

e Adisabled breakpoint will not cause threads to suspend. Disabled breakpoints are
drawn with a white circle [“].

Breakpoints are displayed in the vertical editor ruler and in the Breakpoints view.

The simplest way to set a breakpoint is to double-click in the editor’s marker bar on the line
you want the breakpoint defined. You can also position the insertion cursor in a line and
then press Ctrl+Shift+B

Adding Line Breakpoints
Line breakpoints are set on an executable line of a program.
1. Inthe editor area, open the file where you want to add the breakpoint.
2. Directly to the left of the line where you want to add the breakpoint, open the
marker bar (vertical ruler) pop-up menu (right-click) and select Toggle
Breakpoint. You can also double-click on the marker bar next to the source code
line. A new breakpoint marker appears on the marker bar, directly to the left of the
line where you added the breakpoint.

Removing Line Breakpoints
Breakpoints can be easily removed when you no longer need them.

Page 5 of 18

1.
2.

In the editor area, open the file where you want to remove the breakpoint.
Directly to the left of the line where you want to remove the breakpoint, open the
marker bar pop-up menu and select Toggle Breakpoint. The breakpoint is removed
from the workbench. You can also double-click directly on the breakpoint icon to
remove it.

Setting Method Breakpoints
Method breakpoints are used when working with types that have no source code (binary

types).
1.

Open the class in the Outline View, and select the method where you want to add a
method breakpoint.

From the method's pop-up menu, select Toggle Method Breakpoint.

A breakpoint appears in the Breakpoints View. If source exists for the class, then a
breakpoint also appears in the marker bar in the file's editor for the method that was
selected.

While the breakpoint is enabled, thread execution suspends when the method is
entered, before any line in the method is executed.

Method breakpoints can also be setup to break on method exit. In the Breakpoints view,
select the breakpoint and toggle the Exit item in its context menu.

Method breakpoints can be removed, enabled, and disabled just like line breakpoints.

Applying Hit Counts
A hit count can be applied to line breakpoints, exception breakpoints, watchpoints and
method breakpoints. When a hit count is applied to a breakpoint, the breakpoint suspends
execution of a thread the n'” time it is hit, but never again, until it is re-enabled or the hit
count is changed or disabled.

To set a hit count on a breakpoint:

1.
2.
3.

Select the breakpoint to which a hit count is to be added.

From the breakpoint's pop-up menu, select Hit Count.

In the Enter the new hit count for the breakpoint field, type the number of times
you want to hit the breakpoint before suspending execution.

Note: When the breakpoint is hit for the n" time, the thread that hit the breakpoint
suspends. The breakpoint is disabled until either it is re-enabled or its hit count is
changed.

Managing conditional breakpoints
An enabling condition can be applied to a line breakpoint such that the breakpoint suspends
execution of a thread in one of these cases:

1.
2.

when the enabling condition is true
when the enabling condition changes

To set a condition on a breakpoint:

1.

Find the breakpoint to which an enabling condition is to be applied (in the
Breakpoints View or in the editor marker bar).

From the breakpoint's pop-up menu, select Breakpoint Properties.... The
Breakpoint properties dialog will open.

In the properties dialog, check the Enable Condition checkbox.

Page 6 of 18

http://127.0.0.1:64354/help/topic/org.eclipse.jdt.doc.user/reference/views/breakpoints/ref-exit_contextaction.htm
http://127.0.0.1:64354/help/topic/org.eclipse.jdt.doc.user/reference/views/breakpoints/ref-remove_viewaction.htm

4. In the Condition field enter the expression for the breakpoint condition.

Do one of the following:

6. If you want the breakpoint to stop every time the condition evaluates to true, select
the condition is 'true' option. The expression provided must be a boolean
expression.

7. If you want the breakpoint to stop only when the result of the condition changes,
select the value of condition changes option.

8. Select OK to close the dialog and commit the changes. While the breakpoint is
enabled, thread execution suspends before that line of code is executed if the
breakpoint condition evaluates to true.

b

A conditional breakpoint has a question mark overlay on the breakpoint icon.

Starting a Debugging Session

To start a debugging session, select a Java program or a Java element containing the main
method you want to debug, and select Debug > Debug As > Java Application from the menu
or the toolbar. JDT executes the Java program, suspends execution prior to the line with a
breakpoint you defined, and opens the Debug perspective. If you do not start execution
with one of the Debug actions, execution will not suspend on breakpoints you have defined.

Controlling Program Execution
You control program execution from the Debug view with the following actions.

= Step Over or F6 executes a statement and suspends execution on the statement
after that.
e Step Into or F5, for method invocations, creates a new stack frame, invokes the

method in the statement, and suspends execution on the first statement in the method. For
other statements, like assignments and conditions, the effect is the same as Step Over.

. Step Return or F7 resumes execution to the end of the current method and
suspends execution on the statement after the method invocation, or until another
breakpoint is encountered.

1l g Resume or F8 causes execution to continue until the program ends or another
breakpoint is encountered.

= Terminate stops the current execution without executing any more statements.

=] Run to Line or Ctrl+R resumes execution until a specified line is executed.

Examining an Executing Program
When your program’s execution is suspended in the Debugger, you can examine its
execution state in the following ways.
e Manipulating variable values—examine variable values in the Variables view, and
change a value by double-clicking it.
e Viewing field values—see the value of a field by hovering over it in the editor.

Page 7 of 18

e Evaluating expressions—select and expression in the editor or the Display view, and
then select Display or Inspect. The results are shown in the Display view and
Expressions view, respectively.

e Viewing method invocations—see the series of nested method invocations that led
to the current stack frame by selecting previous stack frames in the Debug view.

e Viewing program output—see program output in the Console view as you step
through your program’s execution.

Let start with debugging

(& Your turn
Follow the steps below to practice with the Eclipse’s debugger.

1. Create new Java project called “1ab3”.

2. Import “debug.jar” into your project. If you don’t know or remember how to do it,
please refer to Lab 1. After import, there might be some errors because all files have
been declared to be in debugging package (the concept of package will be introduce
later). Double-click on file DebuggingExample. java in Package Explore View. You
will notice that the first line has an error. Click anywhere within the first line and
press Ctrl+1 (quick fix). A list of possible ways to resolve the error is show in Figure
10. Select Move ‘DebuggingExample.java’ to package ‘debugging’ option by
double-click on it.

8 || [4] ReadFile.java = lab2data.tbet /| DebuggingExamplejava 2

= E 1 package deb‘am;
ST T T IE%MDVE '‘DebuggingExamplejava’ to package 'dehugging_')
4 Remove package declaration 'package debugging'

Figure 10 - Quick fix

3. A new package called debugging is created as shown in Figure 11. Click on
NumberGenerator . java and drag it to package debugging. Repeat the same
procedure for PrimeFactorialGenerator . java and PrimeNumberGenerator . java.

Page 8 of 18

{2 Package Exp 2 s Hierarchy| = O

s

e lab3
i (default package)

| NumberGenerator.java
| PrimeFactorialGenerator.java

al| PrimeMumberGenerator.java

i debugging
wetern Library [jrel 5.0_02]

Figure 11 - Package debugging is created.

4. Edit the class DebuggingExample. java in the package debugging and set
breakpoint on the first statement in the main method by double-clicking on the
marker bar of the editor next to the line (See Figure 12)

DebuggingExample,... X m Mumberizeneratar . java m PrimerfumberGenera. .. z — 8

1 package debugging:
2
3 public class DebuggingExample |

== public static void main(23tring[] args) |

& PrimeMumberGenerator p = new PrimeluwnberGenerator () !
7 p.ZetQuanticy (20)

a I p.generatelumbers () ;

= p.outputBResults (7]

]
1

Figure 12 Setting a Breakpoint

5. From the Run pull-down menu select Run > Debug As > Java Application. The main
method in the class DebuggingExample executes, the Debug perspective opens, and
execution suspends before the line on which you defined the breakpoint, as shown
in Figure 13.

Page 9 of 18

& Debug - DebupgingExample. java - Eclipse SDK.

File Edit Source Refactor Mavigate Search Project Run Window Help
- D& %0 Q- imP - [IE R -E e e
%5 Debug 52 O I T Y7 O 9= Variables 52
1= [1] DebuggingExample (1) [Java Application]
= @ debugging. DebuggingExample at localhost: 1069 @ args String[d] (id=12)
= o Thread [main] (Suspended {breakpaint at line 6 in DebuggingExample))

= DebuggingExample.main(String[]) line: &
B Ci\Program Filestlavaljrel.6.00bin|javaw exe (24 u.m, 2007, 2355010

| %% ebug |8 Java
EBreakpoints 3 ¥~ 0

MNarne value

0 pebuggingExample.... X [J] MumberGenerator.java [J] PrimeFactorialGen...

[3] PrimemumberGenera,..] = 0| 5= outline 2 =0
1 parkage debugging: L 5w s e w ¥
2) # debugging
3 public class DebuggingExample { = @b DebuggingExample
e’ main{Stringl 1y
= public static void main(3tring[] =args) |
I PrimeNurberGenerator p = new PrimeNuwberGenerator () : I
p.setQuantity (20) ;
p.generatelunbers (] ;
p.outputResulcs (")

11 %

B console 32 Tasks

m
I
x
21
"
&
7
(=
‘
0
o

DebuggingExample (1) [Java Application] C:\Program FilesiJavaljrel.6.00binijavaw. exe (24 u.m, 2007, 23:53:01)

Writable Smart Inserk 6:1

Figure 13 Debug Perspective

6. Inthe debug view, select Debug Target debugging.DebuggingExample (see Figure

14) and then select Properties... from the context menu (right-click). You see
information on how the debug session was started, including the input parameters
you defined in the launch configuration (see Figure 15). Select OK.

%5 Debug 52 e T T EA
= [DebuggingExample {13 [Java Application]
@ debugaing. DebuggingExample 3t localhost: 1069
: EI---.;|]'EI Thread [main] (Suspended (breakpaint at line & in DebuggingExample))
= DebuggingExample.mainiString[) line: &
g C:iProgram Files)lavaljrel .6.00binljavaw. exe (24 1.m, 2007, 23:53:01)

Figure 14 Debug View

& Properties for

Process properties

ss Information

Run-at time:
{24 n.m. 2007, 23:53:01)

Path:

C:\Program Files)Javaljrel .6.0binljavaw. exe

Command Line:

"C:\Program Files\Javaljrel.6.0lbinljavaw.exe" -classpath "C:\Documents and
Settingstchateiwarkspaceibest” -

agentlib: jdwp=transport=dt_socket, suspend=y, address=localhost: 1069
debugging. DebuggingExample

Ok l[Cancel]

+
Figure 15 Debug Target Properties

Page 10 of 18

7. Inthe next several steps you’ll use debugging commands to control program
execution.

Select the current stack frame in the Debug view [=], and then select Step Over or
F6 [=]. One line executes and execution suspends on the next line. The variable p
appears in the Variables view (see Figure 16). Write down the value of the variable p
in the lab answer sheet.

= Debug - lab3/debugging/DebuggingExample java - Eclipse

File Edit Source Refactor Mavigate Search Project Run Window Help

il Rl Gy 0% B[E& O I [35 Debug | &' 1ova
35 Debug 82 . 4 Servers b= | Sl ‘ T 7 T O |8 Variables £2 . 9 Breakpoints $#E YO
[3] DebuggingExample [Java Application] Mame Value
debugging‘Deb.uggingExample at localhost:53059 © args String[0] (id=16)
o Thread [main] (Suspended) ® p PrimeNumberGenerator (id=35]
= DebuggingExample.main(String[]) line: 13 & quantity 0
pol C\Program Files\Java\jrel 6.0_02\bin\javaw.exe (14 sin. 2008, 21:37:51) & results null

Asksrmine BrimalnmherGanaratar@1 F2E605

1 1] 3 K b
ebuggingExamplejav H rimeNumberGenerator answer.bd = Launcher! assLoa 1 = o= Outline =
[J] DebuggingExamplejav £2 . U] PrimeNumberG E] LauncherSAppClassL i O |[B2 Outline 2 =]
> drives class <code>PFrimeNumberGen i - lﬂz }k \5 @ \‘- =7
debugging

®,, DebuggingExample

5
St
public static void main(String[] args) { @ * main(String]])

PrimeNumberGenerator p = new PrimeNumberGenerator():
p.setQuantity (20) ;

p.generateNumbers () ;

p.outputResulcs("");

Figure 16 Step Over

8. Select Step Into [=-] or press F5. A new stack frame is created for the method
invocation setQuantity(), the editor opens on NumberGenerator.java, and
execution suspends on the first statement in the method (see Figure 17).

& Debug - NumberGenerator. java - Eclipse SDK

File Edit Source Refactor Mavigate Search Project Run Window Help

Wil -0 Q- @™ B i LeRERS [| %5 Debug | &7 1ava
¥ pebug 52 il 3 I pTF HFY O MreaKUnints #EF ¥ =0
= (3] bebuggingExample (1) [Java Application] Marne Walue

= debugaging. DebuggingExample at localhost: 1065 = @ this PrimefumberGenerator (id=15)
2o Thread [main] (Suspended) quantity a
= PrimeNumberGenerator{NumberGenerator),setuantitylint) line: 66 < results null
= DebuggingExample.main(Stringl 1) line: 7 © quan 20

B CProgram Files\Javatjre L6, 0\binjavaw, exe (24 ./, 2007, 23:53:01)

m DebuggingExample.... m MumberGenerator.java £ m PrimeFactorialGen. .. m PrimeMumberGenera, .. >y =8 EE Outline 2 =B
a_ Bw e wt”
E2s
/ H# debugging -~
+ Method <codersecQuantity</codes secs the number of numbers ©To Feherate. a_ import declarations =
* @param quan Nuwdber of oubers to be generated = @‘ MumberGeneratar
*
/)) .) @ generateNumbers()
public void setouanticy(int quan] { © outputResults(String)
this.quantity = cquan; B @ sortResuls()
¥ nev Comparakor() 4.}
san E @ getResults()
@ setResults{Object[])
* Method <codesrgetQuantity</code> returns the nuwber of nunbers to generate. o setQuantity(int) 2=
*
@return int b @ getQuantity()
< quankiy : int b
B consale 22 Tasks Ga BH | f-—8

DebuggingExample {13 [Java Application] C:\Program FilesiJavaljrel 6, 0bbintjavaw. exe (24 u.m, 2007, 23:55:01)

Figure 17 Step Into

Page 11 of 18

9. Step Over this line and the next one to exit the method. The top stack frame is
discarded and execution suspends on the statement following the one you just
stepped into. Step into p.generateNumbers(). Select Step Return [-i:] or press
F7. Execution resumes to the end of the method in the current stack frame, returns
from the method execution, and suspends on p.outputResults(*”), the statement
following the method invocation.

10. Step Into p.outputResult(), Set a breakpoint on the line with the for statement
and select Step Return. Execution suspends at the breakpoint rather that after the
methods returns, because the breakpoint is encountered first.

11. Step over the for statement. Hover the cursor over the variable i. The value of the
variables is displayed as shown in Figure 18.

m DebuggingExample. ... m MumberGenerator java &4 m PrimeFactorialen. .. PrimeMumberGenera, ., 2 =08
S A
* Method <coderoutputResults </code> outputs the generated prime numbers. P
* prefix String added to the front of each line of output. Used

¥ to distinguish output from different threads.
*f
public woid outputResults (3tring prefix) |
Date d = new Date(]:
System. out.println(prefix + d.toString()):
for (int i = 0O; i< getResults () . lengthy i+4+) {

dystem. out.pf_ g ix + getResulcs() [1]):
}

Figure 18 Hovering to View a Variable Value

12. Select Run to Line from the context menu or press Ctrl+R. Execution resumes and
then suspends on the line that was selected, after an iteration loop. You did not
have to define a breakpoint. You can verify this by the increase in value of variable

13. Select Step Return to complete the method outputResults. The output appearsin
the Console view. Select Terminate to stop execution or select Resume to continue
execution to the end of the program. The status of your program in the Debug view
shows it has terminated (see Figure 19). Remove the terminated entries in the
Debug view with Remove All Terminated [%].

<terminated =debugging, DebuggingExample at localbost: 1054
B <terminated, exit walue: 1=C:\Program Files\Javaijrel.6.0\binljavaw exe (25 u.m, 2007,

—
L]

Figure 19 Terminated Debug Sessions

14. Now You'll see how to view and change variable values. Select Run or press F11 to
restart a debugging session on DebuggingExample. Step Over the first line and then
Step Into p.setQuantity(20).

15. Switch to the Variables view and select Show Detail Pane. Successively select the
variables and watch as the values display in the Detail pane in the bottom of the
view. These are the values of the variables’ toString() methods. You can provide
useful debug information overriding this method in your own classes to display your

Page 12 of 18

16.

17.

18.

19.

objects’ state. Select the variable quan, select Change Value from the context
menu, and enter a new value (see Figure 20). You can also double-click on a variable
to change it. You cannot change a variable’s value from the Detail pane.

Mame Yalue
@ this Primefumbercenerator (id=15)
(L] quan 20

30

Figure 20 Changing a Variable's Value

Select Step Return, then Step Into on the line p.generateNumbers(). In the
variables view, expand this and verify that the field quantity has the changed value.

With the variables view visible, Step Over lines to continue through iteration on the
while loop. The colors of the entries in the Variables view change as the values
change.

Breakpoints can have hit counts. To see this, set a breakpoint on the second line of
the outer while loop, prime = true;. From the context menu on the breakpoint
on the marker bar, select Breakpoint Properties... In the Java Line Breakpoint
Properties dialog, select Enable Hit Count and set Hit Count to 5 (see Figure 21).
Select OK. This will cause execution to suspend the fifth time the breakpoint is
encountered.

o

_mﬁhrde ewcyrrocs, Pri

| type filter text Line Breakpoint * w

Ereakpoint Properties
Filteting

Type: debugging PrimeliumberGenerator
Line Number: 24
Member generateMlumbersd)

o | Enabled
o | Hit Count @

Figure 21 Setting a Breakpoint Hit Count

Hover over the breakpoint icon to verify its hit count (see Figure 22). Hover over the
variable candidate in the editor and remember its current value.

Page 13 of 18

m DebuggingExample, java PrimeMumberGenerator java X =8

int candidate = 2: M
while (count < getQuantity()) {
|Line breakpoint:PrimefumberGenerator [line; 25] [hit count; 57 - generateNumbers()l
int factor = 2;
while [(factor <= candidate / factor £& prime)
if (candidste % factor == 0) {
prime = false:
+ else |
factor++;
i
i
if (prime] { P
< >

Figure 22 Viewing a Breakpoint Hit Count

20. Select Resume. Execution resumes and then suspends on the breakpoint after five
iterations of the while loop. Hover again over the variable candidate to verify this;
its value should be incremented by five (or four, depending on where you were in
the loop). The breakpoint shows as disabled (a white dot appears in the left margin).
Enable it for five more iterations by selecting Enable Breakpoint from the context
menu. Select Resume again. Execution suspends on the same line after another five
iterations. Hover over the variable candidate to verify this (write it down in the
answer sheet task 2).

21. Close the editor on the class PrimeNumberGenerator and go to the Breakpoints
view. You can quickly get back to the source where you’ve set a breakpoint by
double-clicking on one in the Breakpoints view. This will open the associated source
file and select the line containing the breakpoint. Do this for the disabled
breakpoint.

22. Let’s change this breakpoint to suspend execution when a condition (Java
expression) evaluates to true. In the Breakpoint view, select the disabled
breakpoint and then select Properties... from the context menu. In the Java Line
Breakpoint Properties dialog, select Enabled, deselect Enable Hit Count, and select
Enable Condition to make this a conditional breakpoint (see Figure 23). Enter

candidate == 40 for the condition and select OK.
@ Properties for dabugging PrirmeNumberGenerator |line:24] - gensratebumbers() ey
type filter fext Line Breakpoint = -

Breakpoint Properies

Type debugging PrimeMNumberGenerater
Filtering

Line Humber: 24

Member generateumbers()
Enabled
Hat Count:

| Enable Conditicn (Ctri« Space for code assist)

candidate == 40

cmand ol an

& condition is nge’

value of condition chgnges

Suspend Policy: | Suspend Thread -~

i/ 0K | Cancel

Figure 23 Setting a Breakpoint Condition

Page 14 of 18

In the editor, the question-mark label decoration on the breakpoint indicates it is a
conditional one. Hover over the breakpoint icon in the editor to see the condition
expression.

23. Select Resume. Execution resumes and then suspends. Hover over the variable
candidate in the editor to verify that its value is 40.

24. Finally, let’s look at evaluating expression. Step Over lines until you are inside the
inner while loop on the line, if (candidate % factor == 0) {. Inthe editor,
select the candidate % facter == 0 expression. From the context menu, select
Display to evaluate the expression and show the result in the Display view
(see Figure 24).

|J] DebuggingExample.java 1J] X

ArraylList numbers = new ArrayList ()
hoolean prime:

int candidate = 2:

while ([count < getQuantityi(l) 1

[y

prime = true:
int factor = Z:
while (factor <= candidate / factor && prime) {

| S R N N S I O) Y S

i andidate 5 factor == O
prime = f£al|{boolean) true
! else | Prezz Ctl+Shift +0 to Mawe to Display Yiew
factor++;
B
£
Console | Tasks J, Display &4
candidate ¥ factor == 0 I

iboolean) true

Figure 24 Displaying an Evaluated Expression

25. Enter an expression in the Detail pane of the Display view that can be evaluated in
the context of the current stack frame, like numbers.toArray(). Content assist is
available here. Select the expression you entered and then select Inspect Result of
Evaluated Selected Text to display the results in the Expression view. Select to
display the Detail pane (See Figure 25).

26. In the Detail pane, enter numbers.get(1), select it, and then select Inspect from the
context menu. Another entry is added to the Expressions view with the result
(see Figure 26).

27. Expend the numbers.toArray() entry in the Expressions view and modify the value
of the first entry to a number that is obviously not prime, like 100. The result of
evaluating numbers. toArray() returned an array of Integers, or more precisely an
array of references to the Integers of the variable numbers. In the Expressions view,
when you change a value to a referenced object, you change the value in the current
stack frame. The point here is that with object references, you are not just changing
a value in the Expressions view. While you make the change there, you are actually
changing the value of an object in your executing program and altering its behavior.

Page 15 of 18

m DebugaingE xample, java

[y

PrimeMumberGenerakar, java oo

ArrayList numbers =
hoolean prime;

int candidate = 2:
while [(count < getouahtity())l {

F

[I Y T NS B O 4 B O AL I o8

o R [oy O Y O B
ke

S| =

Consale | Tas

nurmbers.

ﬂ:‘_ ‘ "numbers, todrray)'= Object[12] (i

[0]= Inteqer (id=34)
[1]= Integer (id=32)
[2]= Integer (id=37)
[3]= Inteqer (id=3&)
[4]= Inteqer (id=39)
[5]= Inteqer (id=<0)
[&]=Inteaer (id=41)

new ArrayListi):

ate / factor &£& prime) |

]

Prass Ctl+Shift+I ta Move to Expressions '-.-'iey

Yariables | Breakpoints

& Expressions 2

"= Ohject[12] (id=30)

+

¥
EEFEERERERFRER

T B T R B

+

Yariables | Breakpoints Eﬁ‘;‘:fE><|:urnE!ssiu:uns &3

= ", "numbers.todrra9"= Object[12] (id=30)

&

o R [Y R O O Y Oy B
EEEEEEFE

Y

A "numhers.ta.ﬁ.rra%
4 & [0]= Integer (id=34)

[1]= Integer (id=32)
[2]= Integer ({id=37)
[3]= Inteqer (id=38)
[4]= Inteqer (id=39)
[5]= Inteqer (id=<0)
[6]= Inteqer (id==1)
[7]= Inteqer (id=42)
[B]= Integer (id=43)
[O= Tntener fid=44!

Figure 25 Inspecting an Evaluated Expression

[0]= Integer[:%d=34]|
[1]= Integer {id=32)
[2]= Integer {id=37)
[3]= Integer {id=33)
[4]= Integer (id=3%)
[5]= Integer (id=40)
[6]= Integer (id=41)
[7]= Integer (id=42)
[B]= Integer (id=43)
[3= Trtener (id=44"

Figure 26 Evaluating an Expression in the Detail Pane

{

28. Select Resume to continue execution to the end of the program. Verify that your

changed value appears in the Console view.

When you’re through, don’t forget to close all open editors, terminate and remove

existing debugging sessions, and remove your existing breakpoints.

Page 16 of 18

Lab 3 Exercise

- Your turn
1. Without changing anything in the source file, use debug to find the 500"
prime number.
Find the smallest prime number which is greater than 10000.
How many prime numbers smaller than the answer from (2)?
Finish the rest of the remaining exercises you have not finished from Lab
1 and Lab 2.

(Optional) A palindrome is a word, phrase, number or other sequence of
units (such as a strand of DNA) that has the property of reading the same
in either direction where the punctuations and spaces are generally
ignored. For example, “civic”, “level”, “Was it a cat | saw?”, and “A man, a
plan, a canal: Panama” are palindromes.

Write a recursive Java method that returns true if the String passed to the
method is a palindrome. Otherwise, it returns false.

Page 17 of 18

Chulalongkorn University Name
International School of Engineering Student ID.
Department of Computer Engineering Station No.
2140-105 Computer Programming Lab. Data
Lab
Task | Description Result Note
System.getenv(“CLASSPATH™)
1 System.getenv(“ComSpec™)
System.getenv()
2 Use Scrapbook to execute statements
3 The value of variable p
4 The value of variable candidate after five
iterations twice.
5 The 500" prime number.
6 The smallest prime number which is greater
than 10000.
2 The number of prime smaller than the

answer in task 4.

Page 18 of 18

	Objectives:
	1. Scrapbook
	Creating a Java Scrapbook Page
	Inspecting the result of evaluating an expression
	Displaying the result of evaluating an expression
	Executing an expression

	Your turn
	2. Debugger
	The Fundamentals of Debugging
	Breakpoints
	Adding Line Breakpoints
	Removing Line Breakpoints
	Setting Method Breakpoints
	Applying Hit Counts
	Managing conditional breakpoints
	Starting a Debugging Session
	Controlling Program Execution
	Examining an Executing Program

	Let start with debugging
	Your turn
	Lab 3 Exercise
	Your turn
	Task
	Description
	Result
	Note

