Chulalongkorn University Name

International School of Engineering Student ID
Department of Computer Engineering Station No.
2140105 Computer Programming Lab. Date

Lab 4 — Unit Testing

Objectives:

e Study concept of unit test.
e Practice development under JUnit framework.

Test-Driven Development

Test-driven development is an approach to program software. This methodology builds
program towards testing and simplicity.

e Before writing any code, build an automated-test (unit test) that fails.

e You write only as much code as required for passing the test.

e [f you want more functionality, write the test first and then implement the code to make
the test passed.

e Any change to the previous code must pass the test.

e All unit tests have to run successfully to guarantee that the program run correctly due to
the API specification.

Unit Testing

Unit testing is a procedure used to validate the behavior of a distinct unit of work (a single
method, in Java application, but not always). A unit may be an individual program, function,
procedure, etc. in a procedural design, while may be a class in object-oriented design.

Unit tests usually focus on whether a method is following the terms of its APl contract or
specification.

JUnit
JUnit is a unit testing framework for the Java programming language created by Kent Beck
and Erich Gamma.

The Eclipse’s JDT (Java Development Toolkit) tools include a plug-in that integrates JUnit
into the Java IDE. The JUnit plug-in allows you to define regression tests for your code and
run them from the Java IDE.

To enable the Java IDE to run JUnit, you need to add JUnit library into your project as
following steps:

Adding JUnit library into the project.

1. Inthe explore view, right-click the project name to add the JUnit runtime library (in this
case will be lab4) and select “Properties”.

Page 1 of 16

2. The Properties dialog will show up as shown in Figure 1. Click on “Java Build Path”, and
“Libraries” | = Ubraries | 4 apgq Library...” [addibrary.. |

P D T

» L8B3 3 sy dpider o The budd path:
e Cocle Sty B RE Gt Libeary (00 6.8 0] 1'i [T
et Cempser % L : d
Rividdes Lodition ‘-‘ [y
e Bdee r .
Przyect Prtepmee \-\.‘ [AddXerisbde. |
St
Frary Tibus Settinsgs S
Tk Bepetosy | i Claea Frokdes .
Taik Tigs 2
Yahdien

t [ok || coms |

Figure 1 Adding JUnit

3. Inthe “Add Library” dialog, select “JUnit” and click “Next” and then select “JUnit 4” in

the JUnit library version and then click “Finish”. You will see the result as in Figure 2.
Click “OK”.

Tt A i Jevon Build Path

[- L2 Boures [Lok Posgacts| B Lisranes |, D pod Iipon.
Aot Bl Fathy Lty and clam doiden on e busdd path:

B Syteem Libnry [6.0 3]
bl LD
Bevarioc Leptseny

Figure 2 After JUnit library is added

4. If you have done all previous steps correctly, you will see that the JUnit library will be
added into your project in Explorer view as shown in Figure 3.

M, 1t ey~ O

-1}|<,}=='lr>|g-v

4 =2 labdUnitTest

B IRE Syctern Library [jdkl.6.0_02]
- = JUnitd

Figure 3 JUnit library is added in Java Project

Page 2 of 16

Now your project is ready for running JUnit.

We will introduce the concept of Test-Driven Development (TDD). In TDD, you write the

test for your program first and then implement the program according to the test. The test
consists of test cases. A test case is a set of conditions or variables under which a tester will
determine that the requirement is satisfied.

The cycle in the development will be:

Create a test case,
Implement the program,
Test it,

vk wnheE

passed.

Let’s start the exercise

- Your turn

Complete the following steps.

1. To begin our tutorial, import IntegerSet. java into your project.

Repeat 2 — 3 until the test is passed.
Add more tests to satisfy the requirements, and repeat 2 — 3 —4 -5, until all tests are

2. Inthe package explore view, click on “IntegerSet. java.”
3. Create new JUnit test case from menu File > New > JUnit Test Case as shown in Figure 4.

& Java - IntegerSet.java - Eclipse SDK

FIEW Edit Source Refactor Mawigate Search Project Rum Window Help

Cpen File, ..

Close
Close Al

L.:.J Save As..,

Mowve...
Rename..,
Refresh

Alk-+Shift-Hh

Chri-w

ChrH-ShifE-

Fz
F5

Caonvert Line Delimiters To

]

[

A

[77 Project...

B Package
(& Cass
&% Interface
& Erum
(@ Annotation
7 Source Folder
[~ Falder

“ File

=/ Untitled Text File

B Junit Test Case

[Cther...

| g
Figure 4 Creating a new JUnit Test Case

A T

4. A new JUnit Test Case dialog wizard will pop-up. Check that in the “Name:” textbox has
“IntegerSetTest” and “Class under test:” is IntegerSet. Make sure that setup()
and teardown() boxes are selected as shown in Figure 5 and then click Next.

5. Next dialog will show up. Click all methods in the class IntegerSet except the two
constructors as shown in Figure 6 then click Finish.

Page 3 of 16

6. Verify that your JUnit test case has been added to your project by looking in the package
explorer view. You will see that the file “IntergerSetTest. java” has been added to
the project as shown in Figure 7. A JUnit test case is a class that extends from
jJunit.framework.TestCase class. The wizard will create test cases for you by adding
“test” in front of the name of your methods to be tested. For example,
“testlIsEmpty ()~ is added for testing “isEmpty().”

In JUnit 4, a test case is not required to have “test” as prefix in the method name. You
can make a method to be a test case by annotate a method with @Test. For example, in
IntegerSetTest. java, you can see that there is @Test before the method
testisEmpty().

7. Select menu Run > Run As > JUnit Test to run the JUnit test cases. The test will run and
fail because we have not implemented our class. Figure 8 shows the test result.

'w. Mew JUnit TeﬂEu.e

JUnit Test Case
I, The use of the default package is dscouraged. I:j

New JUnit 3 test @ New JUnit 4 test

Source folger labdUnitTes

Package: \ (default] '_HE”"_E'_]

alanag. Obsect
L 1g. Ut

Which method stubs would you like to creste?

.-; IEdurr:Cllsﬂ] HawndfterClass()
Lrpaet VLT A fal

Do you want to add comments as configured in the properties of the cument project?
Generate comments

Class under t

Figure 5 New JUnit Test Case Dialog

Page 4 of 16

4 [@(® IntegerSet
c
[] @ " IntegerSet(IntegerSet) 2 Package Exp 52 % Hierarchy| = O

€ IntegerSet(int(]) = -
O isASet(int(]) ¢ BB

@ | isMember(int) 4 =2 labdUnitTest
@ | isEmpty() 4 i (default package)
@ | isSubsetOf(IntegerSet) fegerat

est.java

@ | equals(IntegerSet) - [J] IntegerSetT
@ | union{IntegerSet) - B IRESysterrbibraryfjdicl 6.0 _02]
@,/ intersect({IntegerSet) - = JUnit 4
a [0 bject
[[] ®° Object()
[e F getClass() Figure 7 IntegerSetTest.java in Package Explorer view

_Figure 6 Selecting Test Methods

[Pack | T2 Hierar |gu JUnit &2 - O

Finished after 0.078 seconds =
&GHEEE|% LEEJ'
Runs: 7/7 HE Errors: 0 B Failures: 7

E?_J IntegerSetTest [Runner: JUnit 4]
gl testlsASet
g testlsMember
gl testlsEmpty

gl testlsSubsetQf

E testEqualsintegerset
E testlnion

g testintersect

. —+
Failure Trace _=

bl
=

java.lang.fssertionError: Mot yet implermer
at IntegerSetTest.testlsASet(IntegerSetTesd

I ...

Figure 8 Test Result

8. Now we will start our development cycle. First we will modify the testlsEmpty() that
test the method isEmpty().

The concept of test case is that we will create know input and compare with expected
output. Here are a few tips for writing effective tests:

e Test for boundary conditions, i.e. check the minimum and maximum indices for
arrays and lists. Also check indices that are just out of range.

e Test for illegal inputs to methods.

e Test for null strings and empty strings. Also test strings containing unexpected
whitespace.

Page 5 of 16

For the method isEmpty(), we know that if the input is an empty set the result must be
true, and false otherwise. The statement fail (*not yet implemented’) causes this
test to fail. We will modify this test (method testlsEmpty() by remove the line
fail(“not yet implemented’) and replace it with the following instructions:

int[] a = { };

int[] b = {1, 2, 3};

IntegerSet emptySet = new IntegerSet(a);
IntegerSet aSet = new IntegerSet(b);
assertTrue(emptySet. isempty());
assertFalse(aSet. isempty());

The first four lines create two instances of [% Pack | T2 Hierar |gu JUnit £3 = 08
IntegerSet; emptySet and aSet. emptySet Finished after 0.078 seconds =
represents an empty integer set, and aSet H .
epresents an empty integer set, and &G aPEE| o v

represents an un-empty set.

. . Runs: 7/7 B Errorss 0 B Failures: 7
e assertTrue() evaluates its parameter, if

true, the test is passed. The test is fail if the .

parameter evaluates to false. 4 E?_| IntegerSetTest [Runner: JUnit 4]
e assertFalse(), on the other hand, passes £ testlsASet
the test if its parameters is evaluated to

| testlshember

false, and fail otherwise. ; testlsEmpty
Run the test, it must fail because we have not - gos<tOf
gLt Equalsintegerset

yet implemented isEmpty() . To see where the iU

. EETLINIZN
location of the failure is, click test1sEmpty() in 1] testintersect
the JUnit result view as shown in Figure 9. I

. _ . = F T .
To implement isEmpty(), select file ; .éire race : =
IntegerSet. java, go to method isEmpty()
and add the following statements:

at IntegersetTest.testlsEmpty(IntegersetTe

A

if (this.element.length == 0) Figure 9 Location of Failure
return true;
return false; |

A set is an empty set if the element array has size 0.

Click - to run the last test. You will see that the test passes as shown in Figure 10.
The number of failures reduces from 7 to 6.

Page 6 of 16

[% Pack | T Hierar |gu JUnit &2 = 0O
Finished after 0.078 seconds =

44 e REQ H o

Runs: @ B Errors: 0 © Failures@l

4 git] IntegerSetTest [Runner: JUnit 4]
gl testlsASet
= testisivierh
pi] testlsEmpty
| testlsSubsetQF
ﬂ:'—_| testEqualsintegerset
gl testUnion

gel testntersect

Figure 10 Passed Test Case

The following are some assertion statements that are used to test for the conditions and
expected results:

e assertEquals(boolean expected, boolean actual)
Asserts that two booleans are equal.

e assertEquals(char expected, char actual)
Asserts that two chars are equal.

e assertEquals(double expected, double actual, double delta)
Asserts that two doubles are equal concerning a delta.

o assertEquals(float expected, float actual, float delta)
Asserts that two floats are equal concerning a delta.

e assertEquals(int expected, int actual)
Asserts that two ints are equal.

e assertEquals(long expected, long actual)
Asserts that two longs are equal.

e assertEquals(Java.lang.Object expected, java.lang.Object actual)
Asserts that two objects are equal.

e assertEquals(short expected, short actual)
Asserts that two shorts are equal.

e assertEquals(Java.lang.String expected, java.lang.String actual)
Asserts that two Strings are equal.

e assertFalse(boolean condition)
Asserts that a condition is false.

e assertNotNull(Java.lang.Object object)
Asserts that an object isn't null.

¢ assertNotSame(java.lang.Object expected, java.lang.Object actual)
Asserts that two objects do not refer to the same object.

Page 7 of 16

10.

e assertNull(Java.lang.Object object)
Asserts that an object is null.
e assertSame(jJava.lang.Object expected, java.lang.Object actual)
Asserts that two objects refer to the same object.
e assertTrue(boolean condition)
Asserts that a condition is true.
o fail(Java.lang.String message)
Fails a test with the given message.
For the complete lists of assertions go
to http://junit.sourceforge.net/javadoc/junit/framework/Assert.html

Let’s continue with implementing the method isASet(). First we need to change
modify the testlsASet() by removing the fail () statement and replacing with the
test cases.

If you want to write a test similar with the one you have already written, write a Fixture
instead.

Fixture

If you have two or more tests that operate on the same or similar set of objects,
these set of objects are called a test fixture. Instead of writing a lot of object
declaration statements in you test methods, you write a shared test fixture that
will be used among those methods. You can use the same test fixture for
different tests.

To add test fixture:

e Add a field for each part of the fixture

e Put the fields initialization statements in the method setup(). The
annotation @Before force the method setup() to be executed before each
test method annotated by @Test. If you want any method to be executed
before each test, annotate with @Before.

e Reinitialize the variables back to their original states in the method
tearDown(). The annotation @After force the method tearDown() to be
executed after each test method annotated by @Test. If you want any
method to be executed after each test, annotate with @After.

e We will use the default setup() and tearDown() methods since we do not
have any extra method.

e When the test start the sequence will be

@Before method(s) setup(Q

@Test method #1 testlsASet()
@After method(s) tearDown()
@Before method(s) setup(Q

@Test method #2 testISEmpty ()
@After methods(Q) tearDown()

Page 8 of 16

http://junit.sourceforge.net/javadoc/junit/framework/Assert.html

11. Remove the int arrays, a and b, from methods isEmpty().

12. Define the fields

int[] empty, a, b;
IntegerSet emptySet, setA, setB;

13

. In method setup() add the following statements:

empty = new int[] { };

emptySet = new IntegerSet(empty);
a=new int[] {1, 2, 3 };

setA = new IntegerSet(a);

b=new int[] {1, 1, 2 };

setB = new IntegerSet(b);

14

. Add the following statements into method testlsAset().

assertTrue(lIntegerSet.isASet(a));
assertFalse(IntegerSet. isASet(b));
assertFalse(IntegerSet.isASet(null));

15. Run the test, still fail.

16. Modify the isASet() with the following statements and run the test.

public static boolean isASet(int[] data) {
if (data == null) return false;

jJava.util _Arrays.sort(data);

for (int 1 = 0; 1 < data.length - 1; i++)
if (data[i] == data[i+1]) return false;

return true;

b

17. Modify testEqualsintegerSet().

public void testEqualsintegerSet() {

int[] a={11};
int[] b = {1};
int[] c = {2 };
int[] d ={1, 2 };
int[J e={2,11};

IntegerSet setA = new IntegerSet(a);

IntegerSet setB new IntegerSet(b);

new IntegerSet(c);

IntegerSet setC
new IntegerSet(d);

IntegerSet setD

IntegerSet setE new IntegerSet(e);

assertTrue(setA.equals(setB));

Page 9 of 16

assertTrue(setB.equals(setA));
assertFalse(setA_equals(set(C));
assertFalse(setA.equals(setD));
assertTrue(setD.equals(setE));

3

18

. Implement method equals() in IntegerSet. java

public boolean equals(IntegerSet set) {
if (set == null) return false;
if (this.element.length != set.element.length)
return false;
for (int i = 0; 1 < element._length; i++) {
ifT (element[i] != set.element[i])
return false;

}

return true;

public boolean equals(Object 0) {
IntegerSet that = (IntegerSet) o;
return this.equals(that);

b

19. Run IntegerSetTest. java as JUnit test again, it should pass.
20. Modify the following test cases.

public void testlsSubsetOf() {
int[] a = {};
int[] b = {1};
int[] c = {1, 2};
IntegerSet setA = new IntegerSet(a);
IntegerSet setB = new IntegerSet(b);
IntegerSet setC = new IntegerSet(c);
assertTrue(setA. isSubsetOf(setB));
assertTrue(setA. isSubsetOf(setC));
assertTrue(setB. isSubsetOf(setC));
assertFalse(setB. isSubsetOf(setA));
assertFalse(setC. isSubsetOf(setB));
assertTrue(setC. isSubsetOf(setC));

3

21. Implement the method isSubsetOf() to make the test pass.

Page 10 of 16

22. Modify testlsMember(), testUnion() and testintersection() by adding some
statements and assertion statements as appropriated. The assertions test should test
for the combination of correct and incorrect results.

23. Implement the corresponding methods in IntegerSet. java and re- run the test until all

the tests have passed.

You can find the specification for each method in the comment before the method
definition or you can look at the APl document in the following pages.

References
Vincent Massol, JUnit in Action, Manning, 2003.

Johannes Link and Peter Frohlich, Unit Testing in Java, Morgan Kaufmann Publishers,
2003.

Page 11 of 16

Package [®EES] Use Tree Deprecated Index Help

PREV CLASS NEXT CLASS ERAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD
resource

Class IntegerSet

jJava.lang.Object
L IntegerSet

public class IntegerSet
extends java.lang.Object

This IntegerSet is a representation of a set of unordered distinct integers. An array will be used to
represent this set.

Author:
USER

Constructor Summary

IntegerSet(int[] array)
Create an integer set from the array provided.

IntegerSet(IntegerSet set)
Create a new IntegerSet from a set provided.

Method Summary

boolean equals(IntegerSet set)
Check whether this IntegerSet is equal to the set provided.

IntegerSet intersect(lntegerSet set)
Intersect this IntegerSet with the set provided, the result is a new
IntegerSet which all of it elements are member of this IntegerSet and the

provided set.

static boolean isASet(int[] data)
This method will check that the array provided is considered a set or

not.

boolean |ISEmpty()
Check that this set is empty or not

Page 12 of 16

boolean isMember(int number)
This method will check that the number is a member of this set or

not.

boolean isSubsetOf(IntegerSet set)
Check whether this IntegerSet is a subset of the set provided.

IntegerSet |union(IntegerSet set)
Union this IntegerSet with the set provided, the result is a new
IntegerSet which all of its elements are member of this IntegerSet or the
provided set.

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

IntegerSet

public IntegerSet(lntegerSet set)
Create a new IntegerSet from a set provided. The new set will have the same
elements as the set provided.

Parameters:

set -

IntegerSet

public IntegerSet(int[] array)
Create an integer set from the array provided. If the array has many element with
the same value, initialize the set's element with only the distinct array's elements.

Parameters:

array - original array

Page 13 of 16

Method Detail

isASet

public static boolean isASet(int[] data)
This method will check that the array provided is considered a set or not. An array is
considered a set if all of its elements are distinct.

Returns:

true if this array is a set, and false otherwise.

isMember

public boolean isMember(int number)
This method will check that the number is a member of this set or not.

Parameters:
number - an integer to check
Returns:

true if the number is a member of this set, and false otherwise.

isEmpty

public boolean isEmpty()
Check that this set is empty or not
Returns:

true if this set is empty, and false otherwise

isSubsetOf

public boolean isSubsetOf(IntegerSet set)
Check whether this IntegerSet is a subset of the set provided. Set A is a subset of B if
all elements in A are in B.

Parameters:
set - the set provided.
Returns:

true if this IntegerSet is a subset of the set provided, and false otherwise.

Page 14 of 16

equals

public boolean equals(IntegerSet set)
Check whether this IntegerSet is equal to the set provided. Two set is considered to
be equal if they are subset of each other.

Parameters:
set - the set provided.
Returns:

true if both set are equal, and false otherwise.

union

public IntegerSet union(IntegerSet set)
Union this IntegerSet with the set provided, the result is a new IntegerSet which all
of its elements are member of this IntegerSet or the provided set.

Parameters:
set - the set provided.
Returns:

new IntegerSet that is the result from union

intersect

public IntegerSet intersect(IntegerSet set)
Intersect this IntegerSet with the set provided, the result is a new IntegerSet which
all of it elements are member of this IntegerSet and the provided set.

Parameters:
set - the set provided
Returns:

new IntegerSet that is the result from intersection

Package [®ERS) Use Tree Deprecated Index Help

PREV CLASS NEXT CLASS ERAMES NO FRAMES All Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Page 15 of 16

Chulalongkorn University Name

International School of Engineering Student ID.
Department of Computer Engineering Station No.
2140-105 Computer Programming Lab. Data

Lab 4 - Unit Test

Task | Description Result Note
1 isSubsetOf

2 testlsMember

3 testuUnion

4 testinterSection

5 isMember

6 union

7 intersection

Page 16 of 16

	Objectives:
	Test-Driven Development
	Unit Testing
	JUnit
	Adding JUnit library into the project.
	Let’s start the exercise

	Your turn
	References
	resource Class IntegerSet
	IntegerSet
	IntegerSet
	isASet
	isMember
	isEmpty
	isSubsetOf
	equals
	union
	intersect

	Task
	Description
	Result
	Note

