Chulalongkorn University

International School of Engineering
Department of Computer Engineering
2140105 Computer Programming Lab.

Name

Student ID

Station No.

Date

Lab 8 — Object-Oriented Programming Concept (Episode Il): Access Level and Encapsulation

Objectives:

e Understand Java access control

e Understand the concept of encapsulation

e Use encapsulation to protect data

e Practice writing Java program

Access Control Modifiers

The Java programming language provides access control mechanisms for controlling the
accessibility/visibility of the class members. Access level modifiers determine whether
other classes can use a particular field or invoke a particular method. There are three access
modifier keywords, public, private, protected and four access control levels:

e public
e private
e protected

e package-private (no explicit modifier)

Class members with access modifier public are accessible by any class.

Class members with access modifier private are accessible inside the same class only. Other

class cannot access them.

Class members with access modifier protected are accessible by any class or subclass within
the same package. Classes are considered to be in the same package if they are in the same

folder or directory.

Class members without any access modifier have package-private access level. Package-
private members are accessible any class within the same package.

Table 1 summarizes classes and their accessibility to different access modifiers.

Table 1 - Access modifiers and accessibility

_ package-private _
Class/ have access to public protected private
(default, no modifier)
Same class Yes Yes Yes Yes
Class — same package Yes Yes Yes No
Subclass — same package Yes Yes Yes No
Subclass — another package Yes Yes Yes/No No

Page 1 of 13

Class — another package Yes No No No

Class modifiers at the top level can only have either public, or package-private (no explicit
modifier).

At the top level, a class may be declared with the modifier public, in which case that class is
visible to all classes everywhere. If a class has no modifier (the default, also known as
package-private), it is visible only within its own package (packages are named groups of
related classes as described in Lab 7.)

Class members can have all modifiers, public, private, protected, and no modifier (package-
private).

Access levels affect you in two ways. First, when you use classes that come from another
source, such as the classes in the Java platform, access levels determine which members of
those classes your own classes can use. Second, when you write a class, you need to decide
what access level every member variable and every method in your class should have.

Let's look at a collection of classes and see how access levels affect visibility. Figure 1 shows
the four classes in this example and how they are related.

Package Cne Fackage Two
Alpha |4 Subciass AlphaSub
Beta Gamma

Figure 1 Classes and Packages of The Example Used to lllustrate Access Levels

Table 2 shows where the members of the Alpha class are visible for each of the access
modifiers that can be applied to them.

Table 2 Visibility

Classes/Modifier | public | protected | no modifier | private
Alpha Yes Yes Yes Yes
Beta Yes Yes Yes No
AlphaSub Yes Yes No No
Gamma Yes No No No

Tips on Choosing an Access Level: If other programmers use your class, you want to ensure
that errors from misuse cannot happen. Access levels can help you do this.

e Use the most restrictive access level that makes sense for a particular member. Use
private unless you have a good reason not to.

e Avoid public fields except for constants. Public fields tend to link you to a particular
implementation and limit your flexibility in changing your code.

Page 2 of 13

¢- Your turn @

Complete the following exercise.

1. Create a new project called 1abs.
2. Create a new packaged called one.
3. Create a new class, Alpha in package one.

// Alpha.java

public class Alpha {
public int pub;
protected int prot;
int pack;

private int pri;

public void alphaMethod() {
Alpha alphaObj = new AlphaQ);
System.out.printin(alphaObj.pub);
System.out.printin(alphaObj.prot);
System._out.printin(alphaObj . pack);
System.out.printin(alphaObj.pri);

b

Take a look in the method alphaMethod(). This method creates an instance of Alpha and try
to print out each instance variable. There is no error in the program because the method is
in the class Alpha, so it has access to all members of its own class.

4. Create a new class, Beta in packagel.

// Beta.java
public class Beta {
public static void betaMethod() {

Alpha alphaObj = new Alpha();
System.out.printin(alphaObj .pub);
System.out.printin(alphaObj.prot);
System.out.printin(alphaObj.pack);
System.out.printin(alphaObj.pri);

Page 3 of 13

Do you see the error? There is an error at the statement

System.out.println(alphaOjb.pri) since it tries to access the private member of an Alpha

instance.

5. Create new package called two.

6. Create a new class called Alphasub which extends one.Alpha in package two.

// AlphaSub.java
public class AlphaSub extends Alpha {
public void alphaSubMethod() {

Alpha alphaObj = new AlphaQ);
System.out.printin(alphaObj.pub);
System.out.printin(alphaObj.prot);
System._out._printin(alphaObj . pack);
System.out.printin(alphaObj.pri);

System.out.printin(this.prot);

b

There are three errors.

a. Thefirst erroris System.out.println(alphaObj.prot) because when you access
through an object (alphaObject), it does not access using inheritance mechanism.
The rule for access is the package-private, since AlphaSub is in different package

with Alpha.

b. The second error is System.out.println(alphaObj.pack) because it is in different

package.

c. The third erroris System.out.println(alphaObj.pri) because it try to access the

private member.

Look at the statement System.out.println(this.prot). this.prot accesses the protected
member of Alpha. AlphaSub is a subclass of Alpha. From the access rule, AlphaSub can

access protected member of Alpha.

7. Create a new class called Gamma in package two.

// Gamma.java
public class Gamma {
public void alphaSubMethod() {

Alpha alphaObj = new Alpha(Q);
System.out.printlin(alphaObj .pub);
System.out.printin(alphaObj.prot);
System.out.printin(alphaObj .pack);
System.out.printin(alphaObj.pri);

System.out.printin(this.prot);

Page 4 of 13

b

You can see that there are four errors. The first three errors have the same reasons as in
AlphaSub. The forth error is because Gamma does not extends Alpha. There is no data
member called prot.

Encapsulation

In object-oriented programming, the term encapsulation refers to the hiding of data within
a class (a safe “capsule”) and making it available only through certain methods.
Encapsulation is important because it makes it easier for other programmers to use your
classes and protects certain data within a class from being modified inappropriately.

Your turn

Exercise 2

1. Create a new package called encapsulation.
2. Create a new class called PublicElevator in package encapsulation.

// PublicElevator.java

public class PublicElevator {
public boolean doorOpen = false;

1;

public int currentFloor

public int weight = 0;

public final int CAPACITY = 1000;
public final int TOP_FLOOR = 5;
public final int BOTTOM_FLOOR = 1;

b

The publicElevator declares all of its attributes to public, which permits their values to be
changed without any error checking.

3. Create a new application called PublicElevatorTest in package encapsulation

// PublicElevatorTest. java

public class PublicElevatorTest {

public static void main(String[] args) {

PublicElevator pubElevator = new PublicElevator();

pubElevator.doorOpen = true; // passengers get on

Page 5 of 13

pubElevator.doorOpen = false; // doors close

// go down to floor O (below bottom of building)
pubElevator .currentFloor--;

pubElevator.currentFloor++;

// jump to floor 7 (only 5 floors in building)

pubElevator.currentFloor = 7;

pubElevator.doorOpen true; // passengers get on/off
pubElevator.doorOpen = false;

pubElevator.currentFloor = 1; // go to the first floor
pubElevator.doorOpen = true; // passengers get on/off
pubElevator .currentFloor++; // elevator moves w/ door open
pubElevator.doorOpen = false;

pubElevator.currentFloor--;

pubElevator.currentFloor--;

3

Because the PublicElevator class does not use encapsulation, the PublicElevatorTest class
can change the values of its attributes freely and in many undesirable ways. For example,
on statement after // go down to floor @, which might not be a valid floor. Also, on the
statement, pubElevator.currentFloor = 7, the currentFloor attribute is set to 7 that,
according to the TOP_FLOOR constant, is an invalid floor (there are only five floors).

Note — Generally, you should use the public modifier only on methods and attribute
variables that you want to be accessed directly by other objects.

The private modifier allows objects of a given class, their attributes, and operations to be
inaccessible by other objects.

4. Create a new class called PrivateElevatorl in package encapsulation.

// PrivateElevatorl. java

public class PrivateElevatorl {
private boolean doorOpen = false;
private int currentFloor = 1;

private int weight = 0;

private final int CAPACITY = 1000;
private final int TOP_FLOOR = 5;
private final int BOTTOM_FLOOR = 1;

Page 6 of 13

B

5. Create a new application called PrivateElevatoriTest in package encapsulation.
// PrivateElevatorlTest. java

public class PrivateElevatorlTest {
public static void main(String[] args) {

PrivateElevatorl priElevator = new PrivateElevatorl();

/*

* The following lines of code will not compile

* because they attempt to access private variables.
*/

true; // passengers get on

priElevator.doorOpen

priElevator.doorOpen = false; // doors close

// go down to floor O (below bottom of building)
priElevator._currentFloor--;

priElevator.currentFloor++;

// jump to floor 7 (only 5 floors in building)

priElevator.currentFloor = 7;

true; // passengers get on/off

priElevator.doorOpen
priElevator.doorOpen = false;

priElevator._currentFloor = 1; // go to the first floor
priElevator.doorOpen = true; // passengers get on/off
priElevator._currentFloor++; // elevator moves w/ door open
priElevator.doorOpen = false;

priElevator.currentFloor--;

priElevator.currentFloor--;

3

The code does not compiled because the main method in the PrivateElevatoriTest class is
attempting to change the value of private attributes in the PrivateElevatori class.

The PrivateElevatorl class is not very useful, however, because there is no way to modify
the values of the class.

Page 7 of 13

In an ideal program, most or all the attributes of a class are kept private. Private attributes
cannot be modified or viewed directly by classes outside their own class, they can only be
modified or viewed by methods of that class. These methods should contain code and
business logic to make sure that inappropriate values are not assigned to the variable for an
attribute.

6. Create a new class called PrivateElevator2 in package encapsulation.

// PrivateElevator2. java

public class PrivateElevator2 {
private boolean doorOpen = false;
private int currentFloor = 1;
private int weight = 0;

private final int CAPACITY = 1000;
private final int TOP_FLOOR = 5;
private final int BOTTOM_FLOOR = 1;

public void openDoor() {
doorOpen = true;

}

public void closebDoor() {
calculateCapacity();
if (weight <= CAPACITY) {
doorOpen = false;
} else {
System.out._printIn("'The elevator has exceeded capacity.');
System.out._printIn(’'Doors will remain open until someone exits!™);

}

// random weight for simulation

private void calculateCapacity() {
weight = (int)(Math.random() * 1500);
System.out._printIn("'The weight is " + weight);

}

public void goUp(Q) {
it (1doorOpen) {
ifT (currentFloor < TOP_FLOOR) {

currentFloor++;
System.out.printin(currentFloor);
} else {
System.out.printin("’Already on top floor.");
}
} else {

System.out.printIn(’'Doors still open!™);

}

Page 8 of 13

public void gobown() {
if (1doorOpen) {
if (currentFloor > BOTTOM_FLOOR) {
currentFloor--;
System.out.printin(currentFloor);
} else {
System.out.printin("'Already on bottom floor.");

}
} else {

System.out.printIn(’'Doors still open!™);
}

}

public void setFloor(int desiredFloor) {
if ((desiredFloor >= BOTTOM_FLOOR) &&
(desiredFloor <= TOP_FLOOR)) {
while (currentFloor != desiredFloor) {
ifT (currentFloor < desiredFloor) {

goupQ);
} else {
goDown();
}
}
} else {

System.out.printin(Invalid Floor™);

}
}

public int getFloor() {
return currentFloor;

}

public boolean getDoorStatus() {
return doorOpen;

}

7. Create a new application called PrivateElevator2Test in package encapsulation.

// PrivateElevator2Test. java

public class PrivateElevator2Test {

public static void main(String[] args) {
PrivateElevator2 privElevator = new PrivateElevator2();

privElevator.openDoor();

privElevator.closeDoor();

privElevator.gobown();

Page 9 of 13

privElevator.goUp(Q);
privElevator._goUp(Q);
privElevator.openDoor();
privElevator.closeDoor();
privElevator.getClass();
privElevator.openDoor();
privElevator._gobDown();
privElevator.closeDoor();
privElevator.gobown();

privElevator.gobown();

int curFloor = privElevator._.getFloor();
if (curFloor =5 && !privElevator.getDoorStatus()) {

privElevator.setFloor(5);

privElevator._setFloor(10);

privElevator.openDoor();

3

Because the PrivateElevator2 class does not allow direct manipulation of the attributes of
the class, the PrivateElevator2Test class can only invoke methods to act on the attribute
variables of the class. These methods perform checks to verify that the correct values are
used before completing a task, ensuring that the elevator does not do anything unexpected.

All of the complex logic in this program is encapsulated within the public method of the
PrivateElevator2 class. The code in the test class is, therefore, easy to read and maintain.
This concept is one of the many benefits of encapsulation.

Your turn

Exercise 3

Consider the Java APl document for the method parselInt of class Integer.

Page 10 of 13

parselnt a

public static int parseInt(String =)
throws NumberFermatException

Parses the string argument as a signed decimal integer. The characters in the string must all be
decimal digits, except that the first character may be an ASCIT minus sign - ("uoozp') to indicate
a negative value. The resulting integer value is returned, exactly as if the argument and the radix
10 were given as arguments to the parseint(java.lang.String, int) method.

Parameters:
s - @ String containing the int representation to be parsed
Returns:
the integer value represented by the argument in decimal.
Throws:
MumberFormatException - if the string does not contain a parsable integer.

You are to write your own Java program that will do the similar thing to Integer.parselnt.

1. Create a new package called util.

2. Create a new class called Utilitiy.

3. InUtility.java, add a new static method named stringToInt which has the following
specification:

public static int stringToInt(String s)

throws NumberFormatException

This method behaves like Integer.parseInt(String) which parses the string argument
as a signed decimal integer. The characters in the string must all be decimal digits,
except that the first character my be an ASCIl minus sign - ¢ (“\ue@2D’) to indicate a
negative value.

Parameters:

s —a String containing the int representation to be converted
Returns:

the integer value represented by the argument in decimal.
Throws:

NumberFormatException —if the string cannot be converted to an integer.

4. Create a JUnit test for this class and method. In testStringTolnt(), you must test for the
following conditions:

Page 11 of 13

value of s

expected return value

HOII

0

“xxx” where xxx is a string representing a positive
integer <= Integer. MAX_VALUE

a positive integer xxx

“-xxx” where —xxx is a string representing a
negative integer > Integer.MIN_VALUE

a negative integer —xxx

“xyz” where xyz connot be convert to an integer

throws NumberFormatException

5. Implement the stringTolnt method so it passes all test cases.

References:
The Java Language Specification, Third

Edition, http://java.sun.com/docs/books/jls/third edition/html/j3TOC.html.

Controlling Access to Members of a class, The Java

Tutorial, http://java.sun.com/docs/books/tutorial/java/javaO0O/accesscontrol.html

Page 12 of 13

http://java.sun.com/docs/books/jls/third_edition/html/j3TOC.html
http://java.sun.com/docs/books/tutorial/java/javaOO/accesscontrol.html

Chulalongkorn University

International School of Engineering

Department of Computer Engineering

Name

Student ID.

Station No.

Lab 8 — Object-Oriented Programming Concept (Episode Il): Access Level and Encapsulation

Task | Description Result Note
1 Access Level
2 Encapsulation
3 stringTolnt
q
5
6
7

Page 13 of 13

	Task
	Description
	Result
	Note

