Chulalongkorn University Name

International School of Engineering Student ID
Department of Computer Engineering Station No.
2140105 Computer Programming Lab. Date

Lab 9 — OO Concept (Episode Ill)

Objectives:

e Understand the concept of interface
e Understand interfaces in Java
e Be able to define a class that implements an interface.

Interfaces [from Sun'’s Java Tutorial]

There are a number of situations in software engineering when it is important for disparate
groups of programmers to agree to a "contract" that spells out how their software interacts.
Each group should be able to write their code without any knowledge of how the other
group's code is written. Generally speaking, interfaces are such contracts.

For example, imagine a futuristic society where computer-controlled robotic cars transport
passengers through city streets without a human operator. Automobile manufacturers write
software (Java, of course) that operates the automobile—stop, start, accelerate, turn left,
and so forth. Another industrial group, electronic guidance instrument manufacturers,
makes computer systems that receive GPS (Global Positioning Satellite) position data and
wireless transmission of traffic conditions and use that information to drive the car.

The auto manufacturers must publish an industry-standard interface that spells out in detail
what methods can be invoked to make the car move (any car, from any manufacturer). The
guidance manufacturers can then write software that invokes the methods described in the
interface to command the car. Neither industrial group needs to know how the other
group's software is implemented. In fact, each group considers its software highly
proprietary and reserves the right to modify it at any time, as long as it continues to adhere
to the published interface.

Interfaces in Java

In the Java programming language, an interface is a reference type, similar to a class, which
can contain only constants, method signatures, and nested types. There are no method
bodies. Interfaces cannot be instantiated—they can only be implemented by classes or
extended by other interfaces.

Defining an interface is similar to creating a new class:

public interface OperateCar {
// constant declarations, if any

// method signatures
int turn(Direction direction, // An enum with values RIGHT, LEFT
double radius, double startSpeed, double endSpeed);

Page 1 of 9

int changeLanes(Direction direction, double startSpeed, double endSpeed);
int signalTurn(Direction direction, boolean signalOn);

int getRadarFront(double distanceToCar, double speedOfCar);

int getRadarRear(double distanceToCar, double speedOfCar);

// more method signatures

}

Note that the method signatures have no braces and are terminated with a semicolon.

To use an interface, you write a class that implements the interface. When an instantiable
class implements an interface, it provides a method body for each of the methods declared
in the interface. For example,

public class OperateBMW760i1 implements OperateCar {

// the OperateCar method signatures, with implementation --

// for example:

int signalTurn(Direction direction, boolean signalOn) {
//code to turn BMW®s LEFT turn indicator lights on
//code to turn BMW®"s LEFT turn indicator lights off
//code to turn BMW"s RIGHT turn indicator lights on
//code to turn BMW®s RIGHT turn indicator lights off

}

// other members, as needed -- for example, helper classes
// not visible to clients of the interface

3

In the robotic car example above, it is the automobile manufacturers who will implement
the interface. Chevrolet's implementation will be substantially different from that of Toyota,
of course, but both manufacturers will adhere to the same interface. The guidance
manufacturers, who are the clients of the interface, will build systems that use GPS data on
a car's location, digital street maps, and traffic data to drive the car. In so doing, the
guidance systems will invoke the interface methods: turn, change lanes, brake, accelerate,
and so forth.

Interfaces and Multiple Inheritance

Interfaces have another very important role in the Java programming language. Interfaces
are not part of the class hierarchy, although they work in combination with classes. The Java
programming language does not permit multiple inheritance, but interfaces provide an
alternative.

In Java, a class can inherit from only one class but it can implement more than one interface.
Therefore, objects can have multiple types: the type of their own class and the types of all
the interfaces that they implement. This means that if a variable is declared to be the type
of an interface, its value can reference any object that is instantiated from any class that
implements the interface. This is discussed later in this lesson, in the section titled "Using an
Interface as a Type."

Defining an Interface

An interface declaration consists of modifiers, the keyword interface, the interface name, a
comma-separated list of parent interfaces (if any), and the interface body. For example:

Page 2 of 9

public interface Groupedinterface extends Interfacel, Interface2, Interface3 {

// constant declarations
double E = 2.718282; // base of natural logarithms

// method signatures
void doSomething (int i, double X);
int doSomethingElse(String s);

by

The public access specifier indicates that the interface can be used by any class in any
package. If you do not specify that the interface is public, your interface will be accessible
only to classes defined in the same package as the interface.

An interface can extend other interfaces, just as a class can extend or subclass another class.
However, whereas a class can extend only one other class, an interface can extend any
number of interfaces. The interface declaration includes a comma-separated list of all the
interfaces that it extends.

The Interface Body

The interface body contains method declarations for all the methods included in the
interface. A method declaration within an interface is followed by a semicolon, but no
braces, because an interface does not provide implementations for the methods declared
within it. All methods declared in an interface are implicitly public, so the public modifier
can be omitted.

An interface can contain constant declarations in addition to method declarations. All
constant values defined in an interface are implicitly public, static, and final. Once again,
these modifiers can be omitted.

Implementing an Interface

To declare a class that implements an interface, you include an implements clause in the
class declaration. Your class can implement more than one interface, so the implements
keyword is followed by a comma-separated list of the interfaces implemented by the class.

¢ Your turn (1)

1. Create a new project called 1ab9.

Create a new package called 1ab9interface.

3. Create a new interface called Relatable in package lab9interface and copy the
following code:

N

public interface Relatable {

// this (object calling isLargerThan) and

Page 3 of 9

// other must be instances of the same class
// returns 1, 0, -1 if this is greater

// than, equal to, or less than other

public int isLargerThan(Relatable other);

3

If you want to be able to compare the size of similar objects, no matter what they are, the
class that instantiates them should implement Relatable.

Any class can implement Relatable if there is some way to compare the relative "size" of
objects instantiated from the class. For strings, it could be number of characters; for books,
it could be number of pages; for students, it could be weight; and so forth. For planar
geometric objects, area would be a good choice, while volume would work for three-
dimensional geometric objects. All such classes can implement the isLargerThan() method.

If you know that a class implements Relatable, then you know that you can compare the
size of the objects instantiated from that class.

4. Implementing the Relatable Interface by create a new class called RectanglePlus in
package lab9interface and copy the following code:

public class RectanglePlus implements Relatable {
public int width = 0O;
public int height = 0;
public int x = 0; // x-coordinate of upper left corner
public int y = 0; // y-coordinate of upper left corner

public RectanglePlus(int x, int y, int w, int h) {
this.x = Xx;
this.y = y;
this.width = w;
this.height = h;
}

// a method for computing the area of the rectangle
public int getArea() {

return width * height;
}

// a method to implement Relatable
public int isLargerThan(Relatable other) {
RectanglePlus otherRect = (RectanglePlus)other;
if (this.getArea() < otherRect.getArea())
return -1;
else if (this.getArea() > otherRect.getArea())
return 1;
else
return O;

}
b4

Because RectanglePlus implements Relatable, the size of any two RectanglePlus objects
can be compared.

5. Create a new application called RectanglePlusDemo in package lab9interface.
6. Inthe main method, instantiate two RectanglePlus objects with different size, and print
out which is the larger RectanglePlus object.

Page 4 of 9

Using an Interface as a Type

When you define a new interface, you are defining a new reference data type. You can use
interface names anywhere you can use any other data type name. If you define a reference
variable whose type is an interface, any object you assign to it must be an instance of a class
that implements the interface.

As an example, here is a method for finding the largest object in a pair of objects, for any
objects that are instantiated from a class that implements Relatable:

public Object findLargest(Object objectl, Object object2) {
Relatable objl = (Relatable)objectl; // casting to Relatable
Relatable obj2 = (Relatable)object2; // casting to Relatable
if ((objl).isLargerThan(obj2) > 0)
return objectl;
else
return object2;

b

By casting object1 to a Relatable type, it can invoke the isLargerThan method.

This methods work for any "relatable" objects, no matter what their class inheritance is.
When they implement Relatable, they can be of both their own class (or superclass) type
and a Relatable type. This gives them some of the advantages of multiple inheritance,
where they can have behavior from both a superclass and an interface.

¢ Your turn (2)

Rewriting Interfaces
1. Create a new interface called DoIt in package 1ab9interface:

public interface DoIt {
void doSomething(int i, double x);
int doSomethingElse(String s);

}

2. Create a new class called someClass in package lab9interface that implements DoIt:

public class SomeClass implements Dolt {
public void doSomething(int I, double x) { }
public int doSomethingElse(String s) { }

b

3. Add a third method to DoIt, so that the interface now becomes:

public interface Dolt {
void doSomething(int i, double x);
int doSomethingElse(String s);
boolean didltWork(int i, double x, String s);

Page 5 of 9

3 |

If you make this change, all classes that implement the old DoIt interface will break because
they don't implement the interface anymore. Programmers relying on this interface will
protest loudly. You can see that, now SomeClass has an error indicated that it must
implements inherited abstract method DoIt.didItWork.

Try to anticipate all uses for your interface and to specify it completely from the beginning.
Given that this is often impossible, you may need to create more interfaces later.

4, Create a DoItPlus interface that extends DoIt:

public interface DoltPlus extends Dolt {
boolean didltWork(int i, double x, String s);

3}

5. Delete the third method you added in DoIt. The error in SomeClass is gone. Now users
of your code can choose to continue to use the old interface or to upgrade to the new
interface.

Summary of Interfaces
An interface defines a protocol of communication between two objects.

An interface declaration contains signatures, but no implementations, for a set of methods,
and might also contain constant definitions.

A class that implements an interface must implement all the methods declared in the
interface.

An interface name can be used anywhere a type can be used.

Lab 9 Exercise

¢ Your turn (3)

1. Run lab9demo. jar by double-click on the file or in Command Prompt, go to the folder
where the file lab9demo. jar is. Type java —jar lab8demo.jar. You will see the
demo program run as show in Figure 1. Try to click on the buttons an see the result.
You need to make your program run like the demo program.

Page 6 of 9

ScreenApp by Chate Patanothai

-~ - Border Reset Exit

Figure 1 Demo program.

e Exit — quits the program

e Reset —clears everything and start the robot in a new random location in the map

e Border —draws the border of the map

e Right Arrow — moves robot one position to the right, if the current position is
rightmost, the robot moves to leftmost.

e Left Arrow — moves robot one position to the left, if the current position is leftmost,
the robot moves to rightmost.

e Up Arrow — moves robot one position up, if the current position is the top-most, the
robot moves to the bottom of the map.

e Down Arrow — moves robot one position down, if the current position is the bottom-
most, the robot moves to the top of the map.

Import lab9src. jar into your project. After that, you will have Map. java,

Movable. java, and Robot.java in your default package.

e Movable.java — the interface that define some methods

e Robot.java — a class that implements Movable

e Map.java — a class that represents the map which the robot moves in.

Start a command prompt window by click Start > Run... > cmd.exe and change directory

to your project folder.

Type java ScreenApp, to run ScreenApp application. A window will popup as shown in

Figure 2.

Page 7 of 9

-~ - Border Reset Exit

Figure 2 ScreenApp program.

Click on “Reset” button. You can see that a ‘*’ is displayed in random position every
time you click this button. The method that does this job is method clear() in Map. java.
To quit the program, click “Exit” button.

Look at the file Robot.java. The statement

name = “”;
set the title of this application. Change the name to your name, save Robot.java and run
ScreenApp again. You can see that now the application has your name as its title.

When you click the “Border” button, the program executes method drawBorder() which

is empty now. Add the statements that will make drawBorder() executes as described

in the method’s comment or try the demo program.

Click on RightArrow button, you will see that the robot keep moving to the right until it

reaches the rightmost, then moving to the leftmost. Look in the file Robot.java, the

method moveRight() is the method that does the job. You can use this method as the

example for implementing the remaining methods:

e moveUp(), moveDown(), moveLeft(),for Up, Down, and Left Arrow button
respectively.

Your job is to add the code for those methods, so they behave as the specified in the
comment or same as the demo program.

Page 8 of 9

Chulalongkorn University Name

International School of Engineering Student ID.
Department of Computer Engineering Station No.
2140-105 Computer Programming Lab. Data

Lab 9 — OO Concept (Episode Ill).

Task | Description Result Note
1 Class RectanglePlus

2 Interface DoltPlus

3 Robot

4 moveUp ()

5 moveDown()

6 movelLeft()

7

Page 9 of 9

	Rewriting Interfaces
	Task
	Description
	Result
	Note

