

Hidden in Plain Sight

Bryan Cantrill

February 23, 2006

ACM Queue

Summarized by

Yunyong Teng-amnuay

November 17, 2009

For

2110522 UNIX/Linux for Enterprise Environments

2/2552

Background

� 1997 Sun built 64-processor SMP server with

upto 64 GB and thousands of I/O devices a �

flagship

� Performance measure benchmarking�

� Server paused benchmark for several minutes

but still very busy.

� Symptom high lock contention in network �

stack

Hard to Fix

� Hypothesis data gathering custom kernel � �

modules very delicate�

� Each cycle took several hours

� A reboot took 90 minutes

� Root cause server configured as a router�

� Router failure in the lab server became a �

router

� A rather simple problem

The Problem

� Lack of software observability

� “We have built mind-bogglingly complicated

systems that we cannot see, allowing glaring

performance problems to hide in broad

daylight in our systems.”

Roots of the Problem

� Duality of software information / machine�

� s/w has no physical manifestation do not �

exhibit any physical properties when running

� In the old days panel of running lights � �

cute not any more�

� s/w constructs added to make s/w observable

 � ���� print ������	�
��

Old School Debugging

� Additional constructs system � �����������

� Stripped out in production system

� 2 versions of software observable in �

development & testing vs. unobservable

production version

� Performance problem occurs in production �

must be duplicated in development/testing

environment

Old School Debugging (2)

� In sufficiently complicated systems Two causes �

can have the same symptom.

� “Good news: We were able to reproduce it in dev,

and we think that we found the problem. Dev has a

fix, and we’re scheduling downtime for tonight to put

it into prod. Let’s keep our fingers crossed...”

� The next day: “Hey, yeah, about that fix...well, the

good news is that we are faster this morning; the bad

news is that we’re only about 3 percent faster. So it’s

back to the war room...”

Problem Getting Worse

� The dark side of software layering/abstraction

� At higher layer of abstraction less code can �

do more work � ��������������	�����

� Mistakes at high level problems at low level�

� High CPU utilization

� Memory pressure

� Abnormal I/O activities

� Excessive network traffic

Myth on Performance

� Performance problems are introduced at

highest level of abstraction but appear at

lowest level of abstraction

� Fixes

� Faster hardware

� Faster os / database / better compilers

� Hunting vermin to feed the family: squirrel vs.

cow

Constraints on a Solution

� Observability infrastructure

� Development Production�

� Programs Systems�

� Implications:

� Zero disable probe effects

� Entire stack instrument-able

Constraints on a Solution (2)

� Observation on production version

� No source

� No compile-time options

� No restarts

� Infra absolutely safe – absolute non-�

negotiable constraint on architecture

One Solution: DTrace

� Production system

� Safety constraint

� Dynamic instrumentation – s/w trap

� Delicate contexts: interrupt handling / context

switching / synchronization

� Instrument separated from data consumer

� Instrument providers safety concern� �

One Solution: Dtrace (2)

� Consumer enables only published probes �

compromise for safety

� Actions (and data) wanted at probes �

programmable

� Virtual machine execute user codes in �

kernel without side effect

� Limited instruction set safety assured�

� D C-like language with extensions: no loops �

/ no user-defined functions, etc.

One Solution: Dtrace (3)

� Powerful predicate-based filtering

� Data aggregation with n-tuple at the source (in

situ) layer cut-through�

� Scalable on complex systems

� Abstract probe names semantic based�

� Providers for: Java, Perl, PHP, Python, Ruby,

Tcl, and APL

Example Trace

� Page 5-6 /usr/bin/ps problem

