
Enterprise Application
Performance Factors

Throughwave Infrastructure Engineer Certification Course Level I

Agenda

Overall Enterprise Application Performance
Factors
Best Practice for generic Enterprise Application
Best Practice for 3-tiers Enterprise Application
Hardware Load Balancer
Basic Unix Tuning
Performance Tuning Tools

Current form of Enterprise
Applications

Console Based Application
2 Tiers Application (Client-Server Model)
3 Tiers Application (Web Application, Application
Server Model)

Factors to Application Performance

Running Platform
Architecture of Hardware Platform
Architecture of Operating System

Operating System Architecture
Application Parameters

Hardware Architecture

Four Things to remember
CPU Performance is not everything
Memory Bandwidth
I/O Bandwidth
Storage Bandwidth

Memory Bus

I/O Bandwidth to slot

I/O Bus

Storage Bandwidth

Software Parameters
Operating System Architecture

Normally Application dictated which platform we will
run our application on.
Tuned Operating System always faster than default
installation.
Windows or Unix does not make different much after
tuned However..

Application Parameter
Tuned Application always faster than default
installation.

Hardware Selection

Do:
Pick the most balance CPU architecture
possible

Multiple CPUs, Multiple Memory Buses
Pick server with fastest I/O Bus possible

PCI-Express >> PCI-X >> PCI
PCI-Express is serial bus, PCI-EX x16 bus is
faster than PCI-EX x 2 bus.

Pick the most suitable memory speed for
each CPU
Use enough memory to satisfy swapping
space allocation for target Operating
System

Memory Bus Memory Bus

Network Performance Problem

Select the right network I/O
What is the Application bandwidth requirement

Is the network controller fast enough?
Does it plug into the fastest bus available on the hardware platform?

Does application bandwidth need Jumbo Frame?
DNS problem is the most common performance problem when
involving network application
Routing Setup
Upstream Switch Capacity

I/O Bandwidth
to slot

I/O Bus

9

Disk
Platter
Track
Sector
Cylinder
Spindle
How to get to data? SectorTrack

Block Size
Block size = I/O size unit for that particular disk.
Every disk transfer combined from control and data
transmission.
Large block I/O means less overhead for storage
command.
The large the block I/O size, the faster the storage bus
get saturate
Sequential access pattern need large block size, but also
need to be careful on bus saturation status
Random access pattern For every access, disk must
seek before I/O operation so we must minimize seek
time instead

Minimize Seek Time

The larger the disk block, the less the seek
time. (less block to request)
Outside cylinder are faster, disk
rearrange/compact usually move data to
outside cylinder.

Storage Selection

Do:
Controller Card from server must be the same bus type as the fastest bus on that server

SAS << U320 SCSI << SATA << IDE

SAN: Fibre Channel, SAS
Choose the correct RAID level for application

Use RAID 5 for application that read more than write, archiving, data that can get back from backup
Graphic for web application RAID-1 is more than suffice.
Critical Database Application always using RAID-10
Raid-6 is the next storage Raid level survive two disks failure striping to the max.
The more disk in RAID set, the faster your application would be.

Do not use NAS for critical database application (Exception is Parallel NAS system).
Do not use RAID 5 for critical application
Do not use iSCSI for critical application

Multi Path Fibre Channel

Solid State
Fast but expensive
How fast?

240 MB avg read time
180 MB avg write time

Compare to
30 MB avg read time
15-20 MB avg write time

How expensive?
Where would we using it?

Caching tier
OS Swap space
Database transaction store (Database Log)

Data Block Conversion Problem

Data move from application to storage system in block fashioned
Performance could degrade if the system has block conversion overhead

block size.
The rule is force by common dominator from OS page size common 4KB,
8KB on system like Dec Alpha, Sun UltraSPARC

AppB1 AppB2

Application
I/O Block

Memory
(OS Page Size)

Raw Disk
Block

Basic Tuning Strategy (Best
Practices)

Step 1: Server Building Block
Foundation Tuning

Analyze first, if the Application performance could be I/O bound
or CPU bound.
Pick the right component for each server building block
Select the right storage set up for application type

Internal/External
Raid Level
Storage cache size

Match Application I/O block size, OS paging size, and real
storage block size
Define storage block size with average largest block I/O size
Tune virtual memory usage model of Operating System

Step 2: Application Parameter
Tuning

Adhere to recommendation from Application Vendors.
Basic Rules:

Separate Application Tier from Database Tier to minimize impact
on Database access model and to allow us to expand with
clustering

For small size database or embedded application, keeping
database tier around always faster than separate it out.

For database, try to separate Database Log and Database Data
I/O to different physical storage.

Step 3: Clustering

In 2-Tier, 3-Tier or N-Tier application
model, clustering is the last strategy we
use to overcome hardware performance
limitation.

How many Tiers can we have?
Two-Tiers

Presentation separate from Business Logic
Business Logic and Database Logic still integrated together
Ex: Classical Client-Server system

Three-Tiers
Presentation separate from Business Logic, and Backend Tier
usually Database Logic
Ex: Web Application Server with external database Tier

N-Tiers
Multiple factoring of business logic and presentation logic, most
Tier interconnected with middleware logic
Ex: Distributed Database Application

How to improve N-Tier
Performance

Clustering Database Tier to help distribute database
transaction load
Clustering Application server Tier

Internet

Web
Application
Tier

Database
Tier

Load
balance
Hardware

What we need to know before
doing any Application Clustering

Database Clustering Facts
Database look easy to cluster, since all
operations are atomic
However, to do database clustering, we
must make sure that all database updates
are applied to all database nodes

Application Clustering Facts
Request Level Failure if current node
crashes midway, the subsequent requests
must be handled on different node
automatically
Session Level Failure if current node
crashes midway, the users that currently
login must be able to continue their
sessions without losing session states.

Clustering Strategy

Clustering Approaches
Database Clustering Approaches

Use shared file system and clustering software together to achieve
database virtualization, or
Use database replication feature to eliminate shared file system
Use load balance to distribute load among database cluster nodes.

Application Clustering Approaches
Replicate application logic to all nodes
Use load balance to distribute load among application cluster nodes
Replicate session information to all application nodes

Memory-to-Memory Replication
Use centralized shared file system for session replication
Use database tier to save session information.

Load Balancing

Load Balancing helps distribute load among cluster nodes
Basic Round Robin
Weighted Round Robin
Shortest Response Time

Database
Server

Database
Server

Application
Server

Application
Server

Application
Server

Hardware Load
Balance

Global Server Load Balance

GSLB can fulfill promises of Disaster Recovery
Disaster Recovery needs replication of application and data at the
same time.
GSLB can help automate request to backup site automatically.
GSLB can also do active/active load balance between site.

4.5 TB NAS Appliance
4 x 1 GB

Disaster Recovery Site

Disaster Recovery
Server map to Primary

Site

Load Balance
Firewall

DR operation

Single
Sign-on AAA

Database
Server

Database
Server

Application
Server

Application
Server

Application
Server

Load Balance
Firewall

DR operation

Single
Sign-on AAA

Load Balancing Alternatives
Software Load Balance

Advantages:
Inexpensive
Simple

Disadvantages:
One point of failure
Limited concurrent connections.

Hardware Load Balance
Advantages:

Automatically handle of session with Web Application
Virtual IP eliminate one point of failure
Proposed Built hardware can handle much higher load of concurrent connections
Ability to do other Application Acceleration features like Compression, SSL acceleration, Link
Load Balancing
Better ROI in long term

Disadvantages:
Higher startup cost compare to software load balance solution.

Basic Unix Tuning

Disk Pattern
Partitioning is bad

Too many hotspot move from one partition to other partition on
same disk mean issue extra seek command
Instead of direct serving data, disk subsystem busy serving seek
requests.

If you can not avoid partitioning (one disk system)
Partition/Slice creation have order from outside cylinder to
inside. (Mean first partition is the fastest)
/root, /swap, /var, /home, /usr sound like something easily
optimum.

Memory Tuning

Four states of OS memory usage
Sufficient memory is available, optimum performance
Memory is constrained Paging scan start attempt to stole page back from process
System is short of memory system start swapping -- interactive process response time suffer
Memory is running out Swapping/Paging activity reach saturation

Increase limit of paging I/O per second to match with I/O bandwidth to paging device (SWAP space)
Put swap on dedicated fastest I/O if possible multiple striping disks with hardware controller sound like a good
idea.
Swap space sizing? The most optimum need to measure on target machine under stress.

Trigger tuning at half of current swap space.

Put swap on the fastest slice as possible (except for /root partition)
Configure multiple raw swap space per system (on different physical disk to create stripe effect for swap space

Free list pages
in Main
Memory

Page Fault
Requested memory
Block

Malloc req

Free list Holding
Kernel Data

structure

Application

Paging
Scan Mechanism

Stole Page
Back from Application/Kernel
Or force swapping

Scan page
reference

Questions that need answer?
What is the I/O access pattern?
Is the hardware suitable to applications?
I/O bottleneck?
Memory access pattern is optimum?
Processor overload?
Is processing time in kernel space more than user
space?
Is the contention come from multi-thread
blocking/locking?

If the cpu load never increase?
Load too little?

Generate more load and see the relationship of CPU usage

Application is I/O bound and bottle-neck
Check iostat to see what happenning there.

Externally bound to other services ex: network file
system, database

Profile the code to see where time was spent?

Lock contention
Profile the code to see where time was spent?
Do we use exclusive lock in our code? If so try to see if we can
use read/write lock or atomic variable instead

Basic Application Tuning
Identify data flow pattern
Keep minimum memory footprint, avoid creating too
many objects in the system.
Object pooling is difficult to make it right, and consume
extra overhead for housekeeping and locking shared
object in pool

retest our code to compare no object pooling with object pooling
enable. With hotspot technology in Java 1.5 up, create new

Minimize logging
Console operation is always expensive, minimize logging for our
own good. Or check all logging code to allow enable/disable
facility at will.

