Chapter 2
Application Layer

Ao Dern e

A note on the use of these ppt slides:

We're making these slides freely available to all (faculty, students, readers).
They're in PowerPoint form so you can add, modify, and delete slides
(including this one) and slide content to suit your needs. They obviously
represent a lot of work on our part. In return for use, we only ask the

Computer Networking:
A Top Down Approach,

following: th odit:
O If you use these slides (e.g., in a class) in substantially unaltered form, 4" edition. .

that you mention their source (after all, we'd like people to use our book!) Jim Kurose, Keith Ross
Ol 1f you post any slides in substantially unaltered form on a ww site, that P

you note that they are adapted from (or perhaps identical o) our slides, and Addison-Wesley, July
note our copyright of this material 2007.

Thanks and enjoy! JFKIKWR

All material copyright 1996-2007
J.F Kurose and K.W. Ross, All Rights Reserved
2: Application Layer 1

Chapter 2: Application layer

2.1 Principles of 2.6 P2P applications
network applications 2.7 Socket programming
2.2 Web and HTTP with TCP

23 FTP 2.8 Socket programming
P L L LT wiin vur

2 4 Flectronic Mail eidh HIND

« SMTP,POP3, IMAP

2.5 DNS

2: Application Layer 2

Chapter 2: Application Layer

QOur goals: learn about protocols
conceptual, by examining popular
implementation application-level
aspects of network protocols
application protocols « HTTP

+ transport-layer « FTP

service models « SMTP/ POP3 / IMAP
+ client-server “DNS

paradigm programming network
« peer-to-peer applications

paradigm + socket APT

2: Application Layer

3

Some network apps

e-mail voice over IP
web real-time video
instant messaging conferencing
remote login grid computing

P2P file sharing

multi-user network
games

streaming stored video
clips

2: Application Layer 4

Creating a network app

write programs that i B
< runon (different) end = J"A’g’ =
systems = o Lo =\
< communicate over network =/ :ic
% e.g., web server software > ;
communicates with browser ég % / i
software IS =X

No need to write software
for network-core devices / - ey
% Network-core devices do &x; = = e
not run user applications ﬂ :L\ )
+ applicati d p=p-L
< applications on end systems PSR
allows for rapid app
development, propagation

data Tnk

2: Application Layer 5

Chapter 2: Application layer

2.1 Principles of 2.6 P2P applications
network applications 2.7 Socket programming

2.2 Web and HTTP with TCP

23 FTP 2.8 Socket programming
P L L LT wiin vur

2 4 Flectronic Mail rerith 1IND

« SMTP, POP3, IMAP 2.9 Building a Web

2.5 DNS servenr

2: Application Layer

Application architectures

Client-server
Peer-to-peer (P2P)
Hybrid of client-server and P2P

2: Application Layer 7

Client-server architecture

servenr:
+ always-on host
« permanent IP address
« server farms for
scanng
R
clients:
% communicate with server
% may be intermittently
connected
+ may have dynamic IP
addresses

< do not communicate
directly with each other

2: Application Layer 8

Pure P2P architecture

no always-on servenr

arbitrary end systems -

directly communicate peer-peer /g

peers are intermittently /

cannected and rhnnzp. TP e

addresses

Q <

Highly scalable but = o/

difficult to manage P L]@

2: Application Layer




Hybrid of client-server and P2P

Skype
+ voice-over-IP P2P application
+ centralized server: finding address of remote
party:
« client-client connection: direct (hot through
server

Instant messaging
+ chatting between two users is P2P
+ centralized service: client presence
detection/location
- user registers its IP address with central
server when it comes online
- user contacts central server to find IP
addresses of buddies

2: Application Layer 10

Processes communicating

Process: program running Client process: process
within a host. that initiates
within same host, two communication
pr‘ocesses communicate Server pf‘OCCSS: pf‘OCCSS
us!ng intfer-prveesa ThGT waits to be
communication (defined contacted
by OS).
processes in different Note: applications with
hosts communicate by P2P architectures have
exchanging messages client processes &

server processes

2: Application Layer 11

Sockets
d / H host or host or
process sends/receives server server
messages to/from its
socket controlled by
p & app developer / )
socket analogous to door  ( Progess ) \ progess )

< Senaing process snoves
P ; [

message out door TCPWith
+ sendi I buffers, duternet
+ sending process relies on varigbles variables
transport infrastructure
on other side of door which (
: controlled
brings message to socket by 0S

at receiving process

API: (1) choice of transport protocol; (2) ability to fix
a few parameters (lots more on this later)
2: Application Layer 12

Addressing processes

to receive messages,
process must have
identifier

host device has unique
32-bit IP oddress

WXCOUUVCD LN UWIUITODD V)
D Aamn TD addnann nf

host suffice for
identifying the process?

2: Application Layer 13

Addressing processes

App-layer protocol defines

to receive messages,
process must have

identifier includes both
IP address and port

Types of messages

Public-domain protocols:

identifier numbers associated with
host device has unique process on host.
32-bit IP oddress Example port numbers:
A AR o SR w MpLEserver: 23
host on which process + Mail server: 25
runs suffice for to send HTTP message
identifying the to gaia.cs.umass.edu web
process? server:
« A:No, many < IP address: 128.119.245.12
processes can be < Port number: 80
running on same host more shortly...

2: Application Layer 14

exchanged, defined in RFCs

% e.g., request, response allows for

Message syntax: interoperability

o WIIMT JIGIUD 111 INGID2UYSD X

" iow Fields are defineated 29~ HTTP, SMTP
Proprietary protoco Is:

Message semantics
« meaning of information in eg. Skype
fields
Rules for when and how
processes send &
respond fo messoges

2: Application Layer 15

What transport service does an app need?

Data loss Throughput
some apps (e.g., audio) can some apps (e.g.,
tolerate some loss multimedia) require
other apps (e.g., file minimum amount of

transfer, telnet) require throughput to be
100% reliable data seffective”
tranafar

o other apps (“elastic apps™)
Timing make use of whatever

some apps (e.g., throughput they get
Internet telephony, rougnput They ge

interactive games) Security .
require low delay to be Encryption, data
‘effective” integrity, .

2: Application Layer 16

Transport service requirements of common apps

Application Data loss Throughput Time Sensitive
file transfer no loss elastic no
e-mail  no loss elastic no
Web documents no loss elastic no

real-time audio/video loss-tolerant audio: 5kbps-1Mbps Yes, 100's msec
video:10kbps-5Mbps

stored audio/video loss-tolerant same as above yes, few secs
interactive games  loss-tolerant few kbps up yes, 100°’s msec
instantmessaging  no loss elastic yes and no

2: Application Layer 17

Internet transport protocols services

TCP service: UDP service:
connection-oriented: setup unreliable data transfer
required between client and between sending and
server processes receiving process
reliable fransportbetween does not pr‘ovide:'
sending and receiving process connection setup,

reliability, flow control,
congestion control, timing,
throughput guarantee, or

flow control: sender won't
overwhelm receiver

congestion control: throttle

sender when network security
overloaded )
does not provide: timing, Q: why bother? Why is

minimum throughput there a UDP?
guarantees, security

2: Application Layer 18




Internet apps: application,

transport protocols

Application Underlying
Application layer protocol transport protocol
e-mail  SMTP [RFC 2821] TCP
remote terminal access _ Telnet [RFC 854] TCP
Web  HTTP [RFC 2616] TCP
file transfer FTP [RFC 959] TCP
streaming multimedia  HTTP (eg Youtube), TCP or UDP
RTP [RFC 1889]
Internet telephony  SIP, RTP, proprietary
(e.g., Skype) typically UDP

2: Application Layer 19

Chapter 2: Application layer

2.1 Principles of
network applications
< app architectures
<+ app requirements
g WebandH1IP
2.4 Electronic Mail
« SMTP, POP3, IMAP
2.5 DNS

2.6 P2P applications

2.7 Socket programming
with TCP

2.8 Socket programming

Wi vur
roidkla IND

2: Application Layer 20

Web and HTTP

First some jargon
Web page consists of objects
Ob ject can be HTML file, JPEG image, Java
applet, audio file,...
Web page consists of hase HTRI -file which
includes several referenced objects
Each object is addressable by a URL
Example URL:

www. someschool . edu/someDept/pic.gif

host name path name

2: Application Layer

21

HTTP overview

HTTP: hypertext
transfer protocol
Web's application layer
protocol
client/server model

% client: browser that
requests, receives,
“displays" Web objects

« server: Web server
sends objects in
response to requests

Server

@ )
. re
PC running /\/7.7‘ %es;
Explorer (4 reg
Po,,se
runhning

Apache Web

server

Mac running
Navigator

2: Application Layer 22

HTTP overview (continued)

Uses TCP:
client initiates TCP
connection (creates socket)
to server, port 80
server accepts TCP
connection from client
HTTP messages (application-
layer protocol messages)
exchanged between browser
(HTTP client) and Web
server (HTTP server)
TCP connection closed

Protocols that maintain

HTTP is “stateless”
server maintains no
information about
past client requests

asige

"state” are complex!

past history (state) must
be maintained

if server/client crashes,
their views of "state” may
be inconsistent, must be
reconciled

2: Application Layer 23

HTTP connections

Nonpersistent HT TP
At most one object is
sent over a TCP
connection.

Persistent HTTP
Multiple objects can
be sent over single

TCP connection
between client and

server.

2: Application Layer

24

Nonpersistent HT TP

Suppose user enters URL

(contains text,
references to 10

www . someSchool .edu/someDepartment/home.index  jpeg images)

la. HTTP client initiates TCP
connection to HTTP server
(process) at
www.someSchool.edu on port 80

N

HTTP client sends HTTP
request message (containing
URL) into TCP connection
socket. Message indicates

someDepartment/home.indi

time
!

1b. HTTP server at host
www.someSchool.edu waiting
for TCP connection at port 80.
“accepts" connection, notifying
client

3. HTTP server receives request

message, forms response

that client wants object / message containing requested
ex

object, and sends message
into its socket

2: Application Layer 25

Nonpersistent HTTP (cont.)

/

5. HTTP client receives response
message containing html file,
displays html. Parsing html
file, finds 10 referenced jpeg

Yime 6. Steps 1-5 repeated for each

of 10 jpeg objects

4. HTTP server closes TCP
connection.

2: Application Layer 26

Non-Persistent HTTP: Response time

Definition of RTT: time for
a small packet to travel @
from client to server
and back. initiate TCP
3 connection
Response time: RTTJ I

Ans DTT +A
connection

request ./

one RTT for HTTP

request and first few

bytes of HTTP response

to return

file transmission time
total = 2RTT+transmit time

file
RTT[ \ time to
1 | }transmit
file

file —
received
v v
time time

2: Application Layer 27




Persistent HT TP

Nonpersistent HTTP issues: Persistent HTTP
requires 2 RTTs per ObJ'EC"‘ server leaves connection
0S overhead for each TCP open after sending
connection response
browsers of ten open parallel subsequent HTTP messages
TCP connections to fetch between same
referenced objects client/server sent over

open connection

client sends requests as
soon as it encounters a
referenced object

as little as one RTT for all
the referenced objects

2: Application Layer 28

HTTP request message

two types of HTTP messages: request, response

HTTP request message:
% ASCII (human-readable format)

request line
(GET, POST,\ GET /somedir/page.html HTTP/1.1
HEAD commands) Host: www.someschool.edu

User-agent: Mozilla/4.0
heu.der‘ Connection: close
lines Accept-language: fr

Carriage return
Iing feed //'(extra carriage return, line feed)
indicates end
of message

2: Application Layer 29

HTTP request message: general format

request
line

header
lines

Entity Body

2: Application Layer 30

Uploading form input

Post method:
Web page often

includes form input URL method:

Input is uploaded to Uses GET method

aprver in P.n‘l'i‘h’/ hnr‘l\’/ Inbu‘!’ is ubloaded in
URL field of request
line:

www . somesite.com/animalsearch?monkeys&banana

2: Application Layer 31

Method types

HTTP/1.0 HTTP/1.1
GET GET, POST, HEAD
POST PUT
HEAD « uploads file in entity
MMy v pui spuen v
< asks server to leave hady +n nath anorifiod
requested object out of in URL field
response DELETE
« deletes file specified in
the URL field

2: Application Layer 32

HTTP response message

status line

rotocol

ssrz»rus code\‘HTTpll.l 200 OK
status Phr‘qsa) Connection close
Date: Thu, 06 Aug 1998 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 1998 .....

Content-Length: 6821

Content-Type: text/html

data,eg., " data data data data data ...

requested
HTML file

2: Application Layer 33

HTTP response status codes

In first line in server->client response message.
A few sample codes:

200 OK
« request succeeded, requested object later in this message
301 Moved Permanently

% requested object moved, new location specified later in
this message (Location:)

400 Bad Request

% request message not understood by server
404 Not Found

« requested document not found on this server
505 HTTP Version Not Supported

2: Application Layer 34

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:

telnet cis.poly.edu 80 |Opens TCP connectionto port 80
(default HTTP server port) at cis.poly.edu.
Anything typed in sent
to port 80 at cis.poly.edu

2. Type in a GET HTTP request:
GET /~ross/ HTTP/1.1 By typing this in (hit carriage
Host: cis.poly.edu return twice), you send
this minimal (but complete)
GET request to HTTP server

3. Look at response message sent by HTTP serverl

2: Application Layer 35

User-server state: cookies

Many major Web sites ~ £xample

use cookies Susan always access
Four components: Internet always from PC
1) cookie header line of visits specific e-
_HTTP response message commerce site for first
2) cookie header line in time
P request message o
3) cookie file kept on when initial HTTP
user's host, managed by requests arrives at site,

user's browser
4) back-end database at R
Web site % unique ID
« entry in backend
database for ID

site creates:

2: Application Layer 36




Cookies: keeping "state” (cont.)

client

T,

servenr

Cookies (continued)

What cookies can bring:

authorization

———————aside
Cookies and privacy:

cookies permit sites to

ebay 8734 h
usual http request msg | 4 mazon server

cookie file usual http response creates ID

_ Set-cookie: 1678 | 1678 for user create
ebay 8734 entr
amazon 1678

usual http request ms )
cookfe:q1678 ? cookie-  access

— specific ©

one week later: usual http response msg action backend
database
access
ebay 8734 usual http request msg .
amazon 1678 cookie: 1678 cookie-

spectific

usual http response msg action

2: Application Layer 37

shopping carts
recommendations

oLl SULDIVIE ST
laon apacinn atnto

learn a lot about you

you may supply name
and e-mail to sites

(Web e-mail)
How to keep "state":

protocol endpoints: maintain state
at sender/receiver over multiple
transactions

cookies: http messages carry state

2: Application Layer 38

Web caches (proxy server)

Goal: satisfy client request without involving origin server

user sets browser:
Web accesses via
cache

browser sends all
HTTP requests fo
cache

« object in cache: cache
returns object
% else cache requests

object from origin client

server, then returns
object to client

origin
server

Proxy
server
o\

origin
server

2: Application Layer 39

More about Web caching

cache acts as both
client and server
typically cache is
installed by TSP

\uriversiy, curpuiy,

Why Web caching?
reduce response time
for client request

reduce traffic on an

S THUTIVILS ULLeSS

fimnisiminaids Annin s fmadititiania annnaa

residential ISP) link.
Internet dense with
caches: enables "poor”
content providers to
effectively deliver
content (but so does
P2P file sharing)

2: Application Layer 40

Caching example

Assumptions
average object size = 100,000

Pp origin
T @ servers

. public

its Internet _@
avg. request rate from
institution's browsers to origin =5

servers = 15/sec

delay from institutional router

to any origin server and back

+ y1_ g_ 2 institutional
o router = 2 sec network

Consequences
utilization on LAN = 15%

utilization on access link = 100%

total delay =Internet delay +
access delay + LAN delay
= 2 sec + minutes + milliseconds

1.5 Mbps
access link

10 Mbps LAN

institutional

cache

2: Application Layer 41

Caching example (cont)

possible solution

increase bandwidth of access
link to, say, 10 Mbps

consequence
utilization on LAN = 15%

UITIZUTION OF UCCESS INK = LU fo
] e 2 ARes

Total delay = Internet delay +
access delay + LAN delay

= 2 sec+ msecs + msecs
often a costly upgrade

& -
origin
1 @ servers
@U‘ public
Internet _@

&2

10 Mbps
access link

institutional

AR 10 Mbps LAN

institutional
cache

2: Application Layer 42

Caching example (cont)

ruﬂ @ origin
\ I @ servers
cache public

suppose hit rate is 0.4 Internet _@

consequence

40% requests willbe

satistied almost immediately

60% requests satisfied by

origin server

utilization of access link institutional

reduced to 60%, resulting in network

negligible delays (say 10

msec%

Lo‘ll'ul avg deluyd =|In1'eLr'£?\‘lr
elay + access delay + e

delqz = .6*(2.01 Zecs + mST'Tu;'oml

A*milliseconds < 1.4 secs cache

possible solution: install @

1.5 Mbps
access link

10 Mbps | AN

2: Application Layer 43

Conditional GET

Goal: don't send object if cache server
cqch_e has up-to-date cached  — [77p request msg
version If-modified-since: —u cbject
cache: specify date of <date> not
cached copy in HTTP request — e
If-modi fp.yed_ ince: q HTTP response medified
itied-since: HTTP/1.0
<date> 304 Not Modified

server: response contains no

object if cached copy is up- —HTTP request msg

to-date: If-modified-since: |[—.
HTTP/1.0 304 Not <date> object
Modified

___modified

HTTP response
<< HTTP/1.0 200 OK

<data>

2: Application Layer 44

Chapter 2: Application layer

2.1 Principles of
network applications

2.2 Web and HTTP
2.3 FTP
? 4 Flectronic Mail
<« SMTP, POP3, IMAP
2.5 DNS

2.6 P2P applications

2.7 Socket programming
with TCP

2.8 Socket programming

Wi vur
roidkla IND

2.9 Building a Web
server

2: Application Layer 45




FTP: the file transfer protocol

FTP FTP file transfer

- user | client
interface

user
at host local file
sysrcm
Aretam

transfer file to/from remote host
client/server model

= client: side that initiates transfer (either to/from
remote)

< server: remote host
ftp: RFC 959
ftp server: port 21

remote file
system

2: Application Layer

46

FTP: separate control, data connections

TCP control connection

FTP client contacts FTP server port 21

at port 21, TCP is transport @

Pr‘o*OCOI TCP data connection

client authorized over control FTP port 20 FTP

connection client server

Fliont Rrmwese namnte

directory by sending commands

over control connection.

when server receives file .
f control connection: "out of

transfer command, server

opens 2 TCP connection (for band L
file) to client FTP server maintains “state™

current directory, earlier
authentication

server opens another TCP
data connection to transfer
another file.

after transferring one file,
server closes data connection.

2: Application Layer 47

FTP commands, responses

Sample return codes
status code and phrase (as

Sample commands:
sent as ASCII text over

control channel in HTTP)
USER username 331 Username OK,
PASS password password required

125 data connection
already open;
transfer starting

LIST return list of file in
current directory

RETR filename retrieves 425 Can’t open data
(gets) file connection

STOR filename stores 452 Error writing
(puts) file onto remote file

host

2: Application Layer 48

Chapter 2: Application layer

2.1 Principles of 2.6 P2P applications
network applications 2.7 Socket programming
2.2 Web and HTTP with TCP

23 FTP 2.8 Socket programming
P L L LT wiin vur

2 4 Flectronic Mail eidh HIND

« SMTP,POP3, IMAP

2.5 DNS

2: Application Layer

49

Electronic Mail: mail servers

Electronic Mail mm ovrsens
0 user mailbox
Three major components: m Eie,?:l
user agents mail
mail servers server
simple mail transfer ID”[IH[HDI ‘\SMTP If!ﬂ
protocol: SMTP I ~N server
SMTP (ININNNH]
User Agent 0oood
ak.a. “mail reader” lﬁﬂ SMTP
composing, editing, reading ]
mail messages Ilsflrl\ﬁTI
e.g., Eudora, Outlook, elm, ococa
Mozilla Thunderbird ]

outgoing, incoming messages
stored on server

2: Application Layer 50

Mail Servers user
= agent|

mailbox contains incoming mail (1]
user
messages for us?r' . “s:;lrlvleITI ﬂ e
message queue of outgoing SMTP B
(to be sent) mail 9 ?Tﬂﬂﬂ mail
SMTP protocol befw.een mail SMTP T
servers to send email o000
messages ﬁﬂ SMTP
% client: sending mail mail
server server
v ", i : ||
+» "server”: receiving mail oonoo
server
(k.
user
agent

2: Application Layer 51

Electronic Mail: SMTP [RFC 2821]

uses TCP to reliably transfer email message from client
to server, port 25

direct transfer: sending server to receiving server
three phases of transfer

« handshaking (greeting)

« transfer of messages

% closure

command/response interaction

< commands: ASCII text

% response: status code and phrase

messages must be in 7-bit ASCIT

2: Application Layer

52

Scenario: Alice sends message to Bob

1) Alice uses UA to compose 4) SMTP client sends Alice's

message and "to" message over the TCP
bob@someschool .edu connection
2) Alice’s UA sends message 5) Bob's mail server places the
to her mail server; message message in Bob's mailbox
placed in message queue 6) Bob invokes his user agent
3) Lhent side of SM IP opens to read message

A

mail
server
(ENNINNIN]
—{0n5)0

2: Application Layer 53

Sample SMTP interaction

220 hamburger.edu
: HELO crepes.fr
250 Hello crepes.fr, pleased to meet you
: MAIL FROM: <alice@crepes.fr>
250 alice@crepes.fr... Sender ok
: RCPT TO: <bob@hamburger.edu>
250 bob@hamburger.edu ... Recipient ok
: DATA
354 Enter mail, end with "." on a line by itself

: Do you like ketchup?
: How about pickles?

250 Message accepted for delivery
: QUIT
221 hamburger.edu closing connection

nmounaonNnoOnNnunAanAnOn

2: Application Layer 54




Try SMTP interaction for yourself:

telnet servername 25
see 220 reply from server
enter HELO, MAIL FROM, RCPT TO, DATA, QUIT
commands

above lets you send email without using email client
(reader)

2: Application Layer 55

SMTP: final words

SMTP uses persistent Comparison with HTTP:
connections HTTP: pull

SMTP requires message ‘P

(header & body) to be in 7- SMTP: push

E'* ASCIL both have ASCIT

CMTD . command/response
CRLF.C to determine interaction, status codes

end of message
HTTP: each object

encapsulated in its own
response msg

SMTP: multiple objects
sent in multipart msg

2: Application Layer 56

Mail message format

SMTP: protocol for

exchanging email msgs ,

RFC 822: standard foy/ ,__blli::k
message format:
header lines, e.g.,

% Tor bod

% From: Y

%+ Subject:

different from SMTP
commands

body

« the "message”, ASCIT

characters only

2: Application Layer 57

Message format: multimedia extensions

MIME: multimedia mail extension, RFC 2045, 2056
additional lines in msg header declare MIME content

type
. From: alice@crepes.fr
MIME version To: bob@hamburger.edu
Subject: Picture of yummy crepe.
method used [ MIME-Version: 1.0

toencode data Content-Transfer-Encoding: base64

N L Content-Type: i j
multimedia data ontent-Type: image/jpeg

*YPa:SUb*YF‘_a‘ | base64 encoded data .....
parameter declaration || [ oo oLl
/ base64 encoded data

encoded data

2: Application Layer 58

Mail access protocols

ﬁ ESMTP SMTP &1 access

2 user = =] user

e protocel =t
0oooo 0J00C

sender's mail receiver’s mail
server server

DI L L L T 2T R A e e

SMTP: Aoliverns/etanane +a rorsiven's ecomion

Mail access protocol: retrieval from server
< POP: Post Office Protocol [RFC 1939]
- authorization (agent <-->server) and download
« IMAP: Internet Mail Access Protocol [RFC 1730]
- more features (more complex)
+ manipulation of stored msgs on server
% HTTP: gmail, Hotmail, Yahoo! Mail, etec.

2: Application Layer 59

POP3 protocol

S: +OK POP3 server ready
C: user bob
authorization phase |8 w0k
. C: pass hungry
client commands: S: +OK user successfully logged on
B r: declare username —
use C: list
% pass: password S: 1 498
server responses S: 2 912
& +OK Sz .
C: retr 1
% -ERR S: <message 1 contents>
transaction phaseﬁ;l{ s: .
i C: dele 1
list: list message numbers C: retr 2
retr: retrieve message by S: <message 1 contents>
number S: .
C: dele 2
dele: delete e
C: quit
quit S: +OK PoP3 server signing off

2: Application Layer 60

POP3 (more) and IMAP

More about POP3 IMAP
Previous example uses Keep all messages in
“download and delete"” one place: the server
mode. Allows user to
Bob cannot r'e-_r'ead e- organize messages in
mail if he changes folders
client IMAP keeps user state
“Download-and-keep": across sessions:
copies of messages on + names of folders and
different clients mappings between
POP3 is stateless message IDs and folder

. hame
across sessions

2: Application Layer 61

Chapter 2: Application layer

2.1 Principles of 2.6 P2P applications
network opplications 2.7 Socket programming
2.2 Web and HTTP with TCP

23 FTP 2.8 Socket programming
Pt AL el e T wiin vur

?.4 Flectronic Mail with 1IND

« SMTP, POP3, IMAP 2.9 Building a Web

2.5 DNS server

2: Application Layer 62

DNS: Domain Name System

People: many identifiers:  Domain Name System:
% SSN, name, passport # distributed database
Internet hosts routers: implemented in hierarchy of

< IP address (32 bit) - muny' na/'ne servers
used Tor addressing application-layer protocol
o v : host. routers. name servers to
communicate to resolve names
(address/name translation)
% note: core Internet
function, implemented as

datagrams

< "name", e.g.,
ww.yahoo.com - used by
humans

Q: map between IP application-layer protocol
addresses and name ? + complexity at network's
"edge"

2: Application Layer 63




DNS

DNS services Why not centralize DNS?
hostname to IP single point of failure
address translation traffic volume
host aliasing distant centralized

% Lanonical, alias names database
mail server aliasing maintenance
load distribution

+ replicated Web doesn't scale/

servers: set of IP
addresses for one
canonical name

2: Application Layer 64

Distributed, Hierarchical Database

Root DNS Servers

T

com DNS servers org DNS servers edu DNS servers

pbs.org poly.edu umass.edu

ahoo.com
y: amazon.com DNS servers DNS serversDNS servers

DNS servers DNS servers
Client wants IP for www.amazon.com: 15t approx:
client queries a root server to find com DNS server
client queries com DNS server to get amazon.com
DNS server
client queries amazon.com DNS server to get IP
address for www.amazon.com

2: Application Layer 65

DNS: Root hame servers

contacted by local name server that can not resolve name

root name server:
« contacts authoritative name server if name mapping not known
<+ gets mapping
% returns mapping to local name server

a Verisian, Dulles, VA
c Cogent, Herndon, VA (also LA)
d U Maryland College Park, MD k RIPE London (also 16 other locations)

h ARL Aberdeen, MD i Autonomica, Stockholm (plus
 Verisign, (21 locations) 28 other locations)
< m WIDE Tokyo (also Seou,

& NASA Mt View, CA :
1 Internet Software C. Palo Alto,_gi\
CA (and 36 other ocations) 7

Paris, SF)

13 root name
servers worldwide

b USCHISI Marina del Rey, CA
I ICANN Los Angeles, CA

2: Application Layer 66

TLD and Authoritative Servers

Top-level domain (TLD) servers:

+ responsible for com, org, net, edu, etc, and all
top-level country domains uk, fr, ca, jp.

+ Network Solutions maintains servers for com TLD
¥ Equcause Tor equ 1LY
Authoritative DNS servers:

+ organization’s DNS servers, providing
authoritative hostname to IP mappings for
organization’s servers (e.g., Web, mail).

+ can be maintained by organization or service
provider

2: Application Layer 67

Local Name Server

does not strictly belong to hierarchy
each ISP (residential ISP, company,
university) has one.

+ also called "default name server”

when host makes DNS query, query is sent
to its local DNS server

+ acts as proxy, forwards query into hierarchy

2: Application Layer 68

DNS name root DNS server
resolution example

N

Host at cis.poly.edu 3 11D DNS server

wants IP address for 4

gaia.cs.umass.edu 5
T

ITerared query: local DNS servel

—_

dns.poly.edu
contacted server T

replies with name of 1

server to contact
“T don't know this authoritative DNS server
dns.cs.umass.edu

~
()

8

name, but ask this requesting host
server” cis.poly.edu

gaia.cs.umass.edu

2: Application Layer 69

DNS name
resolution example o oS server

recursive query: 2
puts burden of name ;
resolution on
contacted name ﬁ TLD DNS server
server 1 I/
heavy load? local DNS server
v dns.poly.edu 5[4
i

authoritative DNS server
dns.cs.umass.edu

requesting host
cis.poly.edu

gaia.cs.umass.edu

2: Application Layer 70

DNS: caching and updating records

once (any) name server learns mapping, it caches
mapping
+ cache entries timeout (disappear) after some
time
+ TLD servers typically cached in local name
servers S S
+ Thus root name servers not often visited
update/notify mechanisms under design by IETF

« RFC 2136
« http://www.ietf.org/html.charters/dnsind-charter.html

2: Application Layer 71

DNS records

DNS: distributed db storing resource records (RR)

‘ RR for‘ma‘r: (name, value, type, ttl) ‘

Type=A Type=CNAME

% name is hostname < name is alias name for some
% value is IP address "canonical” (the real) name
Type=NS www . ibm. com is really

R . servereast .backup2.ibm.com
% name is domain (e.g.

foo.com)
% value is hostname of Type=MX

authoritative name

server for this domain

% value is canonical name

% value is name of mailserver
associated with name

2: Application Layer 72




DNS protocol, messages

DNS protocol : guery and reply messages, both with
same message format

identification flags
msg header

. ar . . number of questiors number of answer RRs 12 bytes
identification: 16 bit # |
for query, reply to query
uses same # {
H questions.

flags {variable rumber of questions)

% query or reply

% recursion desired

(variabll fubes of resource (ecords)

% recursion available
« reply is authoritative

o
(variable number ofresaurce records)

additional nformation
(variahle number of resource recards)

2: Application Layer 73

DNS protocol, messages

it ation flags

Narme, type fields e s
for a quer:
q y rumze” o®aonty RRs | number of additora RR3

RRs in response

8 aLthor ty
TOQUErY T~ | eisvenngggus o

(v atle U THST Of QU3 oNS)

records for
- —_
authoritative servers e

additordl i sion
{variacls rumze- of rescurce recards)

additional "helpful" _—
info that may be used

2: Application Layer

74

Inserting records into DNS

example: new startup "Network Utopia”
register name networkuptopia.com at ONS registrar
(e9., Network Solu‘rionsg

< provide names, IP addresses of authoritative name server
primary and secondary)
ES r‘egisfr‘ur‘ inser“rs two BBS in‘ro com ILD server:

(networkutopia.com, dnsl.networkutopia.com, NS)
(dnsl.networkutopia.com, 212.212.212.1, A)

create authoritative server Type A record for
www.networkuptopia.com; Type MX record for
networkutopia.com

How do people get IP address of your Web site?

2: Application Layer 75

Chapter 2: Application layer

2.1 Principles of
network applications

2.6 P2P applications
2.7 Socket programming

% app architectures with TCP
* app requirements 2.8 Socket programming
g WebandH1IP Wi g

2.4 Electronic Mail
<« SMTP, POP3, IMAP
2.5 DNS

2: Application Layer 76

Pure P2P architecture

no always-on servenr

arbitrary end systems
directly communicate peer-peer

peers are intermittently

o=
cannected and channe. TP

addresses ' S
Three topics: = —
« File distribution ) 5 @—/@
« Searching for information P ye] ’

« Case Study: Skype

2: Application Layer

77

File Distribution: Server-Client vs P2P

Question : How much time to distribute file
from one server to N peers?

uy: server upload

bandwidth
Server @
u;: peer i upload
i u \d,  w ) bandwidth
Ug B 2 o d;: peer i download

File, size F bandwidth
dN
@—. Network (with L4
‘u— abundant bandwidth)
N L]
.
*
° L ]

2: Application Layer 78

File distribution time: server-client

Server @
. ()
server sequentially My,
sends N copies: v L)%

RS NF/us‘rime dy  Network (with .
N B~ abundant bandwidth
client i takes F/d, o .

time to download ‘o,
. .

File distribution time: P2P

Time to distribute F
to Nclients using = d, = max { NF/,, F/min(d)}
client/server approach !

increases linearly in N
(for large N) », Application Layer 79

client i takes F/d; time

Server @
server must send one Ju
. 2
copy: F/u,time o N T e,
N

d.  Network (with
to download @: abundant bandwidth)
INL 012 nus s be uy
NIE hita miat ho .
downloaded (aggregate) .

fastest possible upload rate: u, + 2u;

dpop = max { F/u,, F/min(d) ,NF/(u, + 2u)}

2: Application Layer

80

Server-client vs. P2P: example

Client upload rate =u, F/u=1hour, u,=10u, d,;, >y,

3.5

= P2P
3-- ) 2
—— Client-Server|

25 -

Minimum Distribution Time

2: Application Layer 81




File distribution: BitTorrent

P2P file distribution

tracker: tracks peers torrent: group of

participating in torrent peers exchanging
chunks of a file

obtain list
of peers

trading
chunks

@ 2: Application Layer 82

BitTorrent (1)

file divided into 256KB chunks.
peer joining torrent: g @-\@

% has no chunks, but will accumulate them over time

« registers with tracker to get list of peers,
connects to subset of peers (“neighbors"”)

while downloading, peer uploads chunks to other
peers.
peers may come and go

once peer has entire file, it may (selfishly) leave or
(altruistically) remain

2: Application Layer 83

BitTorrent (2)

Pulling Chunks
at any given time,
different peers have

Sending Chunks: tit-for-tat
Alice sends chunks to four
neighbors currently
sending her chunks at the

. highest rate
different subsets of & luate top 4

: % re-evaluate top 4 ever
file chunks 1V secs p 14

iodicall
’(D/ilr‘ife)“;:k)sll:agier every 30 secs: randomly
neighbor for list of select another peer,
chunks that they have. starts sending chunks
Alice sends requests « newly chosen peer may

for her missing chunks Join top 4
+ rarest first « "optimistically unchoke”

2: Application Layer 84

BitTorrent: Tit-for-tat

(1) Alice "optimistically unchokes" Bob
(2) Alice becomes one of Bob's top-four providers: Bob reciprocates
(3) Bob becomes one of Alice's top-four providers

it}
)]
iC / f? With higher upload rate,

can find better trading
@ partners & get file faster!

2: Application Layer 85

P2P: searching for information

Index in P2P system: maps information to peer location
(location = IP address & port number)

‘File sharing (eq e-mule) Instant messaging

Index dynamically Index maps user
tracks the locations of names to locations.
Filos that heens <hare. Wil wser SIS L
Peers need to tell application, it needs to
index what they have. inform index of its
Peers search index to location
determine where files Peers search index to
can be found determine IP address
of user.

2: Application Layer 86

P2P: centralized index

original "Napster” design .

1) when peer connects, it~ drestesener g
informs central server:
« IP address

w content

2) Alice queries for "Hey
Jude”

3) Alice requests file from
Bob

Alice ?f—;ﬁ
o

2: Application Layer 87

P2P: problems with centralized directory

single point of failure file transfer is
performance bottleneck decentralized, but

copyright infringement: :‘?_C‘:I”W C°me|'_” 'Z
“target” of lawsuit is ighly centralize

vrvivus

2: Application Layer 88

Query flooding

fully distributed overlay network: graph

% no central server edge between peer X
used by Gnutella and Y if there's a TCP
Each peer indexes the connection

files it makes available wil UG Ive peer's una
zﬁ;:r‘;ﬁz‘g) (and no edges form overlay net

edge: virtual (nor
physical) link

given peer typically
connected with < 10
overlay neighbors

2: Application Layer 89

Query flooding

File transfer:
Query message

e ___ _HTTP
sent over existing TCP — T
connections s ™~
peers forward
Query message

wWueryrin
Mumncdl did

sent over
reverse
path

\\\\\Q{/@/}

Scalability:
limited scope
flooding il

2: Application Layer 90




Gnutella: Peer joining

1. joining peer Alice must find another peer in
Gnutella network: use list of candidate peers

2. Alice sequentially attempts TCP connections with
candidate peers until connection setup with Bob
3. Flooding: Alice sends Ping message to Bob; Bob
forwards Ping message to his overlay neighbors
(who then forward to their neighbors....)
peers receiving Ping message respond to Alice
with Pong message
4. Alice receives many Pong messages, and can then
setup additional TCP connections
Peer leaving: see homework problem!

2: Application Layer 91

Hierarchical Overlay

between centralized

index, query flooding *
approaches

each peer is either a
.SUPUI' rioue or U,SSIE’”CU (A%
________ Am i mmmiminad +a

a super node

< TCP connection between pe
peer and its super node.

< TCP connections between

some pui rs of super nodes. ®  ordinary peer
Super node tracks content @ ovcader peor
in its children _ eighorg rlaanships

in overlay network

2: Application Layer 92

P2P Case study: Skype

Skype clients (SC)
inherently P2P: pairs 22 @
of users communicate. ek tad

proprietary Skype % P
applica‘rion-lqyer login server Supernode
PI'UIULUI \"IIC['['CU viu
PRYVRE Digpo | /:..I_-....-_.I )- |
reverse engineerin S 3
o _ 9 9 - @

ierarchical overlay S [ G
with SNs =

&S e

Index maps usernames "¢ @ I
to IP addresses:; S o &89

distributed over SNs

2: Application Layer 93

Peers as relays

Problem when both
Alice and Bob are
behind "NATs".

« NAT prevents an outside

peer from initiating a call
1o nsyer puul'

dm fem i mmma
Solution:

« Using Alice’s and Bob's
SNis, Relay is chosen

« Each peer initiates
session with relay.

« Peers can now
communicate through
NATs via relay

2: Application Layer 94

Chapter 2: Application layer

2.1 Principles of 2.6 P2P applications
network applications 2.7 Socket programming
2.2 Web and HTTP with TCP

23 FTP 2.8 Socket programming

et e Wi s EiwArs wiin vur
2 4 Flectronic Mail rerith 1IND
< SMTP, POP3, IMAP

2.5 DNS

2: Application Layer 95

Socket programming

Goal: learn how to build client/server application that
communicate using sockets

Socket APT — socket

introduced in BSD4.1 UNIX, a host-local,
1981 application.created,
explicitly created, used, OS5-controlled interface
released by apps (a “door") into which
client/server paradigm application process can
two types of transport _ both send and
service via socket API: receive messages to/from

% unreliable datagram another application

. process
% reliable, byte stream-
oriented

2: Application Layer 96

Socket-programming using TCP

Socket: a door between application process and end-
end-transport protocol (UCP or TCP)

TCP service: reliable transfer of bytes from one
process to another

controlled by

confro!led_by application
appllcahonI developer
developer
controlled by | |TCP with| e—————— g;z::;lif; by
operating | |buffers, internet t
system | |variables system

host or
server

host or
server

2: Application Layer 97

Socket programming with TCP

Client must contact server When contacted by client,
server process must first server TCP creates new
be running socket for server process to
server must have created communicate with client
socket (door) that < allows server to talk with
welcomes client's contact multiple clients

% source port numbers
used to distinguish
clients (more in Chap 3)

Client contacts server by:
creating client-local TCP
socket
specifying IP address, port application viewpoint
number of server process

When client creates
socket: client TCP
establishes connection to

TCP provides reliable, in-order
transfer of bytes ("pipe”)
between client and server

server TCP
2: Application Layer 98

Client/server socket interaction: TCP

Server (running on hostid) Client

create socket,
port=x, for
incoming request
welcomeSocket =
ServerSocket()

—
TCP
wait for incoming <= — — — — — — — Createsocket,
connection request CONNection setup — connect to hostid, port=x
clientSocket =

connectionSocket =
Socket()

welcomeSocket.accept()

send request using
read request from / clientSocket
connectionSocket
wiite reply to —_—
connectionSocket read reply from

clientSocket

cose }

connectionSocket close

clientSocket

2: Application Layer 99




Stream jargon

A stream is a sequence of
characters that flow into
or out of a process.

An input stream is
attached to some input
SUUI'LE JUIT TS PIrucess,
Lmin b

, keyboard or socket.
An output stream is
attached to an output
source, e.g., monitor or
socket.

keyboard  moritor

svean
/ Client
process

[iFromuser

output
stream

input
stream

uToServer Je—

client TCP

socket cp

Socket

tonetwork  from network

2: Application Layer 100

Socket programming with TCP

Example client-server app:

1) client reads line from
standard input (inFromUser
stream) , sends to server via
socket (outToServer
stream)

2) server reads line from socket

3) server converts line to
uppercase, sends back to
client

4) client reads, prints modified
line from socket
(inFromServer stream)

2: Application Layer 101

Example: Java client (TCP)

import java.io.*;
import java.net.*;
class TCPClient {

public static void main(String argv[]) throws Exception

{
String sentence;
String modifiedSentence;

Create .
BufferedReader inFromUser =

input stream .
new BufferedReader(new InputStreamReader(System.in));
Create
client socket, Socket clientSocket = new Socket("hostname", 6789);
connect to server

Create DataOutputStream outToServer =
output stream new DataOutputStream(clientSocket.getOutputStream());

attached to socket

2: Application Layer 102

Example: Java client (TCP), cont.

input stream
attached to socket

new BufferedReader(new

Create BufferedReader inFromServer =
InputStreamReader(clientSocket.getinputStream()));

sentence = inFromUser.readLine();

Bend line.

to serveril—‘ outToServer.writeBytes(sentence + \n');

from server

Read Iine:|—> modifiedSentence = inFromServer.readLine();

System.out.printin("FROM SERVER: " + modifiedSentence);

clientSocket.close();

2: Application Layer 103

Example: Java server (TCP)

import java.io.*;
import java.net.*;

class TCPServer {
public static void main(String argv[]) throws Exception

String clientSentence;
\;_Lfl:lfi| String capitalizedSentence;

welcoming socket
at port 6789

Wait, on welcoming while(true) {
socket for contact Socket connectionSocket = welcomeSocket.accept();

by client

— ServerSocket welcomeSocket = new ServerSocket(6789);

. BufferedReader inFromClient =
Create input new BufferedReader(new
stream, attached InputStreamReader(connectionSocket.getinputStream()));
to socket.

2: Application Layer 104

Example: Java server (TCP), cont

stream, attached

DataOutputStream outToClient =
to socket |— OutputS utToCli

Create out pu‘rj|
new DataOutputStream(connectionSocket.getOutputStream());

Read in line _ . . )
clientSentence = inFromClient.readLine();

from socket |

capitalizedSentence = clientSentence.toUpperCase() + \n';

Write out line . . o )
+o socket |—v) outToClient.writeBytes(capitalizedSentence);
}
} End of while loop,

loop back and wait for
another client connection

2: Application Layer 105

Chapter 2: Application layer

2.1 Principles of
network applications

2.2 Web and HTTP
2.3 FTP
? 4 Flectronic Mail
<« SMTP, POP3, IMAP
2.5 DNS

2.6 P2P applications

2.7 Socket programming
with TCP
2.8 Socket programming

Wi vur
roidkla IND

2: Application Layer 106

Socket programming with UDP

UDP: no "connection” between
client and server

no handshaking

sender explicitly attaches application viewpoint

TP address and portof | yur proviges unreliable transter

. S
destination to each nacket of groups of bytes ("datagrams")

server must extract IP between client and server
address, port of sender

from received packet

UDP: transmitted data may be
received out of order, or
lost

2: Application Layer 107

Client/server socket interaction: UDP

Server (running on hostid) Client

create socket,
clientSocket =
DatagramSocket()

create socket,
port=x.
serverSocket =
DatagramSocket()

Create datagram with server IP and

l / port=x; send datagram via
read datagram fro clientSocket

serverSocket

write réply to

Socket
sorversocke \, read datagram from

specifying
client address, clientSocket
port number close

clientSocket

2: Application Layer 108




Example: Java client (UDP)

keyboard  monitor

Client

Input: receives
rocess

P et (recall
Output: sends T7P roroived
packet (recall \ byte stream”)
that TCP sent yoe
"byte stream”)

uoP
packet

sendPacket

client UDP
socket

P
Socket

tonetwork  from network

2: Application Layer 109

Example: Java client (UDP)

import java.io.*;
import java.net.*;

class UDPClient {
public static void main(String args[]) throws Exception

Create {
pu 21 sun .
itk erbinsn BufferedReader inFromUser =

Cr‘ea‘!‘e:l new BufferedReader(new InputStreamReader(System.in));

client socket] DatagramSocket clientSocket = new DatagramSocket();

Translate
hostname to IP

address "'Sing DNS byte[] sendData = new byte[1024];
byte[] receiveData = new byte[1024];

InetAddress IPAddress = InetAddress.getByName("hostname");

String sentence = inFromUser.readLine();
sendData = sentence.getBytes();
2: Application Layer 110

Example: Java client (UDP), cont.

Create datagram
with data-to-send,| DatagramPacket sendPacket =

length, IP addr, port

Send datagram clientSocket.send(sendPacket);
1o server

DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);
Read datagram

from server:l—' clientSocket.receive(receivePacket);

String modifiedSentence =
new String(receivePacket.getData());

System.out.printin("FROM SERVER:" + modifiedSentence);
clientSocket.close();

}

2: Application Layer

new DatagramPacket(sendData, sendData.length, IPAddress, 9876);

Example: Java server (UDP)

import java.io.*;
import java.net.*;

class UDPServer {
public static void main(String args[]) throws Exception
Create {
datagram socket

at port 9876, DatagramSocket serverSocket = new DatagramSocket(9876);

byte[] receiveData = new byte[1024];
byte[] sendData = new byte[1024];

while(true)

Create space for]

received da‘!‘agr‘am —— DatagramPacket receivePacket =

new DatagramPacket(receiveData, receiveData.length);

Receive serverSocket.receive(receivePacket);
datagram

2: Application Layer 112

Example: Java server (UDP), cont

String sentence = new String(receivePacket.getData());

Get IP addr
port #, of
sender

InetAddress IPAddress = receivePacket.getAddress();
I—>int port = receivePacket.getPort();
String capitalizedSentence = sentence.toUpperCase();

sendData = capitalizedSentence.getBytes();

Create datagram

to send to client DatagramPacket sendPacket =

new DatagramPacket(sendData, sendData.length, IPAddress,

ort);
Write out por)
datagram serverSocket.send(sendPacket);
to socket| }
}
} End of while loop,

loop back and wait for

another datagram
2: Application Layer 113

Chapter 2: Summary

our study of network apps now complete!

application architectures specific protocols:

« client-server + HTTP

+ P2P « FTP

% hybrid <+ SMTP, POP, IMAP
wppss st i + DNS

annliratinn aonvire

requirements:

% reliability, bandwidth,
delay

Internet transport

service model

% connection-oriented,
reliable: TCP

% unreliable, datagrams: UDP

socket programming

2: Application Layer

% P2P: BitTorrent, Skype

114

Chapter 2: Summary

Most importantly: learned about protocols

typical request/reply Important themes:
message exchange: control vs. data msgs
» client requests info or + in-band, out-of-band
server responds with
data, status code
message formats:
« headers: fields giving
info about data
« data: info being
communicated

centralized vs.
decentralized

stateless vs. stateful
reliable vs. unreliable
msg transfer
“complexity at network
edge”

2: Application Layer 115




