Course Information

Chapter 3

2110472 Transport Layer

ComPUTer Network Instructor: Kultida Ro jviboonchai, Ph.D.

http://www.cp.eng.chula.ac.th/~kultida

Course website:
http://www.cp.eng.chula.ac.th/~kultida/classes.html

Transport Layer &

- KulTida KOJVIDOOI’ICI’\G! I’I’l U.
Multimedia Networking

Dlep‘r of Computer Engmeer‘mg
Faculty of Engineering
Chulalongkorn University

Computer Networking:
A Top Down Approach

4th edition.

Jim Kurose, Keith Ross
Addison-Wesley, July

Selected textbooks 2007.

Lecture schedule: Friday 13:00-16:00

Course materials: Lecture slides

Kultida Ro jviboonchai, Ph.D.
Email: kultida@cp.eng.chula.ac.th

A note on the use of these ppt slides:
The notes used in this course are substantially based on slides copyrighted
by J.F Kurose and K.W. Ross 1996-2007

Transport Layer 3-1 Transport Layer 3-2 Transport Layer 3-3

Tr'ansporT services and DroTocoIs

Chapter 3: Transport Layer Chapter 3 outline

provide /ogical communication
between app processes /

Our goals:

3.1 Transport-layer 3.5 Connection-oriented

understand principles learn about transport

behind transport layer protocols in the

layer services: Internet:
multiplexing/demultipl UDP: connectionless

exina transbort

reliable data transfer TCP: connection-oriented

flow control transport
congestion control TCP congestion control

Transport Layer

34

services

3.2 Multiplexing and

demultiplexing
o bullllbbl wrniess
227 I

transport: UDP

3.4 Principles of
reliable data transfer

transport: TCP
segment structure
reliable data transfer
flow control
connection management
3.6 Principles of
congestion control
3.7 TCP congestion
control

Transport Layer 3-5

running on different hosts

transport protocols run in
end systems

send side: breaks app

messages into segments,

passes to network layer
rev side: reassembles

segments into messages,

passes to app layer

more than one transport
protocol available to apps

Internet: TCP and UDP

Transport Layer 3-6

Transport vs. network layer

network layer: logical Household analogy:
communication
between hosts 12 kids
transport layer: logical processes = kids
communicarion —pp ey 5
b : anh meaannea = |P‘H'Pr'<
etween processes in envelopes
relies on, enhunces., hosts = houses
I'IE"'WOI"k ICIYEI" services

network-layer protocol
= postal service

12 kids sending letters to

Transport Layer

3-7

Internet transport-layer protocols

reliable, in-order
delivery (TCP)
congestion control
flow control
connection setup
unreliable, unordered
delivery: UDP

no-frills extension of

delay guarantees
bandwidth guarantees

phys\ca\

Transport Layer 3-8

Chapter 3 outline

3.1 Transport-layer
services
3.2 Multiplexing and

demultiplexing
o bullllbbl wrniess
227 I

transport: UDP

3.4 Principles of
reliable data transfer

3.5 Connection-oriented
transport: TCP
segment structure
reliable data transfer
flow control
connection management
3.6 Principles of
congestion control

transport protocol = b.es‘r-affor'T Irf . ',M 3.7 TCP N
Ann and Bill services not available: &} . congestion
BB control

Transport Layer 3-9

Multiplexing/demultiplexing

Multiplexing at send host:
gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

Demultiplexing at rev host:
delivering received segments
to correct socket

[=socket Q = process

M@ (PL) opplication @ %M
transport - ‘} ._u/,,' transport
network network network
link link link
physical phrysicat physical
host 1 host 2 host 3

Transport Layer 3-10

How demultiplexing works

host receives IP datagrams

Connectionless demultiplexing

When host receives UDP

each datagram has source
IP address, destination IP
address

each datagram carries 1
transport-layer segment

T g e S ey

oarh conmont hae antinre

32 bits

source port #| dest port #

other header fields

Create sockets with port

segment:

destination port number

host uses IP addresses & port application

numbers to direct segment to data

appropriate socket (message)
TCP/UDP segment format

Transport Layer 3-11

numbers:
DatagramSocket mySocketl = new checks c!es‘l‘inufion port
DatagramSocket (12534) ; number in segmenf
DatagramSocket mySocket2 = new directs UDP segment to
batagransocket (12535 T T o
UDP socket identified by number]
two-tuple: IP datagrams with

different source IP
addresses and/or source
port numbers directed
to same socket

(dest IP address, dest port number)

Transport Layer 3-12

Connectionless demux (cont)

DatagramSocket serverSocket = new DatagramSocket (6428) ;

E P2 % P LT

SP: 6428 SP: 6428
DP: 9157 DP: 5775

SP: 9157 SP: 5775

client |DP:6428 server P:6428| (lient

IP: A IP: C IP:B

SP provides "return address”

Transport Layer 3-13

Connection-oriented demux

TCP socket identified Server host may support

by 4-tuple: many simultaneous TCP
source IP address sockets:
source port number each socket identified by
dest IP address its own 4-tuple
dest port number Web servers have

recv host uses all four different sockets for

each connecting client
non-persistent HTTP will
have different socket for
each request

values to direct
segment to appropriate
socket

Transport Layer 3-14

Connection-oriented demux

(cont)

) DT P2 (78

SP: 5775
DP: 80
S-IP: B
D-IP:C
V4
SP: 9157 SP: 9157
client DP: 80 server DP: 80 Client
A | SIPA ¢ ST B P8
DIPC b-IPC

Transport Layer 3-15

Connection-oriented demux:
Threaded Web Server

Y O —
SP: 5775
DP: 80
S-IP:B
D-IP:C
VA
SP: 9157 SP: 9157
client DP: 80 server DP: 80 Client
IP: A SIP: A IP: C S-IP: B IP:B
D-IP:C D-IP:C

Transport Layer 3-16

Chapter 3 outline

3.1 Transport-layer 3.5 Connection-oriented

UDP: User Datagram Protocol [RFC 768]

"no frills," "bare bones"
Internet transport

Why is there a UDP?

services

3.2 Multiplexing and
demultiplexing

Do LUNITNISL 1 IUTNIESS
2 2 fanvinnan +immlaaa

transport: UDP
3.4 Principles of
relioble data transfer

transport: TCP
segment structure
reliable data transfer
flow control
connection management
3.6 Principles of
congestion control
3.7 TCP congestion
control

Transport Layer 3-17

protocol
"best effort" service, UDP
segments may be:
lost
delivered out of order
to app
connectionless:
no handshaking between
UDP sender, receiver

no connection
establishment (which can
add delay)

SIMpIC: MU CONMNECHon siule

afmlan e mmiaiamadian adada

at sender, receiver
small segment header
no congestion control: UDP

can blast away as fast as
desired

each UDP segment
handled independently
of others

Transport Layer 3-18

UDP: more

often used for streaming

multimedia apps 32 bits
loss tolerant Length, in |source port #| dest port #
rate sensitive bytes of UDP [~ length checksum
other UDP uses fsg{ﬂj%’
(NN hender
SNMP
reliable transfer over UDP: Application
add reliability at data
application layer (message)
application-specific

error recovery!
UDP segment format

Transport Layer 3-19

UDP checksum

Goal: detect "errors” (e.g., flipped bits) in transmitted

segment

Sender:
treat segment contents
as sequence of 16-Ri+
integers
checksum: addition (1's
complement sum) of
segment contents
sender puts checksum
value into UDP checksum

field

Receiver:

compute checksum of

received seament

check if computed checksum

equals checksum field value:
NO - error detected
YES - no error detected.
But maybe errors
nonetheless? More later

Transport Layer 3-20

Internet Checksum Example

Note

When adding numbers, a carryout from the
most significant bit needs to be added to the
result

Example: add two 16-bit integers

1
1

==
oo

wraparound (1)1 01 1 1 01110111011

=)

sum §l 1 011101110111100
checksum 110 1 0001 0001000011

Transport Layer 3-21

Chapter 3 outline

3.1 Transport-layer 3.5 Connection-oriented
services transport: TCP
3.2 Multiplexing and segment structure

demultiplexing reliable data transfer

2.9 LUIITNEL T IUNIESS flow control
22 famnan +inmlana

transport: UDP
3.4 Principles of
relioble data transfer

connection management
3.6 Principles of
congestion control

3.7 TCP congestion
control

Transport Layer 3-22

Principles of Reliable data transfer

important in app., transport, link layers
top-10 list of important networking topics!

[sending| receiver
process process

(Jreliable channel

application
layer

transport
layer

(a) provided service

characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-23

Principles of Reliable data transfer

important in app., transport, link layers
top-10 list of important networking topics!

[sending| receiver
process process

(Jreliable channel

application
layer

transport
layer

L{ unrelicble chonnel J

(o) provided service (b) service implementation

characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-24

Principles of Reliable data transfer

important in app., transport, link layers
top-10 list of important networking topics!

rdt_send () deliver_data()
reliciole data relicble data
[fransfer protocol transfer protocol
(sendiing side) {recoiving sidc)

udt_send 0} teat rover

Lo(unrelicble channel J

(o) provided service (b) service implementation

sending
OCEss

receiver
process

application
layer

transport
layer

characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-25

Reliable data transfer: getting started

rdt_send () : called from above,
(e.g., by app.). Passed data to
deliver to receiver upper layer

deliver data() : called by
rdt to deliver data to upper

rdt_send ()

send [relicble data
ide [romsfer protocol
slde Jisending side)

Tdel iver datal()

reliable data recel|ve
{rcmsfer protocol side

receiving side)

udt_send()t @

Irdt_rcv (

Lb’ Eunrehob\e channel ’J

udt_send () : called by rdt,
to transfer packet over
unreliable channel to receiver

rdt_rcv () : called when packet
arrives on rcv-side of channel

Transport Layer 3-26

Reliable data transfer: getting started

we'll:
incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)
consider only unidirectional data transfer
but control info will flow on both directions!

use finite state machines (FSM) to specify

sender, receiver
event causing stafe transition

actions taken on state transition

state: when in this
“state” next state
uniquely determined
by next event

Transport Layer 3-27

Rdt1.0: reliable transfer over a reliable channel

underlying channel perfectly relioble
no bit errors
no loss of packets

separate FSMs for sender, receiver:
sender sends data into underlying channel

receiver read data from underlying channel

call from
below

receiver

Wait for
call from
above

rdt_send(data) rdt_rcv(packet)

extract (packet,data)

packet = make_pkt(data) deliver_data(data)

udt_send(packet)

sender

Transport Layer 3-28

Rd+2.0: channel with bit errors

underlying channel may flip bits in packet
checksum to detect bit errors
the question: how to recover from errors:

acknowledgements (ACKs): receiver explicitly tells sender
that pkt received OK

Py vy T R Rt]

nogertive plnouladnamente (NAKS): nocoivon oxnlicithv
tells sender that pkt had errors
sender retransmits pkt on receipt of NAK

new mechanisms in rdt2.0 (beyond rdti.o):
error detection

receiver feedback: control msgs (ACK NAK) revr->sender

Transport Layer 3-29

rd12.0: FSM specification

rdt send(data)
snkpkt = make_pkt(data, checksum) r‘eceiver‘
udt_send(sndpkt)
rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

Wait for
call from
above

_— rdt_rcv(revpkt) &&
udt_send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && isSACK(rcvpkt) S~ N)
—_— Wait for
A call from
sender below

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-30

rdt2.0: operation with no errors

rdt_send(data)

pkt = make_pkt(data, checksum)
d(sndpkt

snk|
udt

rdt_rcv(rcvpkt) &&

isNAK(rcvpkt)
_— rdt_rcv(revpkt) &&
) dt_send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

call from
above,

rdt_rcv(rcvpkt) && isACK(rcvpkt)
A

Wait for
call from
below

rdt_rev(revpki) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-31

rdt2.0: error scenario

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt d(sndpkt

call from
above,

rdt_rcv(rcvpkt) && isACK(rcvpkt) m

A

rdt_rcv(rovpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-32

rdt2.0 has a fatal flaw!

What happens if Handling duplicates:
ACK/NAK corrupted? sender retransmits current
sender doesn't know what pkt if ACK/NAK garbled
happened at receiver! sender adds sequence
can't just retransmit: number to each pkt
possible duplicate receiver discards (doesn't

deliver up) duplicate pkt

stop and wait
Sender sends one packet,
then waits for receiver

rdt2.1: sender, handles garbled ACK/NAKs

rdt_send(data)

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isSNAK(rcvpkt))

udt_send(sndpkt)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

A A
rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
IsNAK(rovpkt)) disenddate)
udt_send(sndpkt) sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

Transport Layer 3-34

rdt2.1: receiver, handles garbled ACK/NAKs

rdt_rcv(revpkt) && notcorrupt(revpkt)
8& has_seq0(rcvpkt)

exiract(rovpkt,data)
deliver_data(data)

sndpkt = make_pki(ACK, chksum)
udt_send(sndpkt)

\
\
rdt_rev(revpkt) 8& (corrupt(revpkt) Y rdt_rcv(rcvpkt) && (corrupt(revpkt)

sndpkt = make_pki(NAK, chksum)
udt_send(sndpkt)

'sndpkt = make_pKi(NAK, chksum)

udt_send(sndpkt) Q
rdt_rev(rovpkt) &&
ot corrupt(revpkt) && O not corrupt(rovpkt) &&
has_seq1 (rcvpkt) has_seq0(revpkt)
sndpkt = make_pkt(ACK, chksum) sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt
_send(sndpk) rdt_rov(rovpkt) && notcorrupt(rovpkty Ut-send(sndpkt)
88 has_seq1(rcvpkt)

rdt_rcv(revpkt) 8&

extract(rovpkt,data)
deliver_data(data)

sndpkt = make_pki(ACK, chksum)
udt_send(sndpkt)

Transport Layer 3-35

I"ESPOI’ISE
Transport Layer 3-33
rdt2.1: discussion
Sender: Receiver:
seq # odded to pkt must check if received
two seq. #'s (0,1) will packet is duplicate
suffice. Why? state indicates whether
rmm e mitmmar e e — e m e == UV or lisexpected pKT
must check if received ;\eq#. B
AC_K/NAK corrupted note: receiver can not
twice as many states know if its last
SLﬂ*:hm'ﬁ* “remi;"b::" ACK/NAK received OK
wheTher curren P
hasOor1seq. # at sender

Transport Layer 3-36

rdt2.2: a NAK-free protocol

same functionality as rdt2.1, using ACKs only

instead of NAK, receiver sends ACK for last pkt
received OK
receiver must explicitly include seq # of pkt being ACKed

L R L T
Aunlirate ACK at aonden roaiilte in eame artinn na

NAK: retransmit current pkt

rdt2.2: sender, receiver fragments

rdt_send(data)

sndpkt = make_pkt(0, data, checksum)

Udlﬂw\ rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||
isACK(rcvpkt,1))
udt_send(sndpkt)

sender FSM

,I::.‘:? .’_I.‘f_':l rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && && isACK(rcvpkt,0)

rdt+3.0: channels with errors andloss

New assumption: Approach: sender waits
underlying channel can “reasonable” amount of
also lose packets (data time for ACK
or ACKs) retransmits if no ACK

checksum, seq. F, ACKs, received in this time
retransmissions will be if pkt (or ACK) just delayed
of help, but not enough (not lost):

(corrupt(revpkt) || A retransmission will be
__has_seqt(rovpkt)) receiver FSM duplicate, but use of seq.
udt_send(sndpkt) fragment #'s already handles this
rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) receiver must spacify seq
&& has_seq1(rcvpkt) # of pkt being ACKed
extract(rcvpkt,data) . :
deliver_data(data) requires countdown timer
sndpkt = make_pkt(ACK1, chksum)
Transport Layer 3-37 udt_send(sndpkt) Transport Layer 3-38 Transport Layer 3-39
rdt_send(data) rdt_rev(rovpkt) &&
\ sndpkt=make_pkt(0, data, checksum) (corrupt(rcvpkt) || ; sender receiver sender recelver sender i
\ udt_send(sndpkt) isACK(revpkt, 1)) sender receiver A B Ko = o EES o receiver
rdt_rev(revpkt) _start_timer A send pkD kg v send pf \K‘ P~ send pki &‘ P~ send pkio \K’ —
ool \ Lo ACK send ACKO] send ACKI e send ACKN
timeout ACK fcv ACKO 1oV ACKD 1V ACKD
udt_send(sndpkt) rcv ACKO send pktl ld1 send pktl kﬁ send pktl
dt_rcv(rovpkt) start_fimer senapi) \“(IOSS] ACK L ST
rdt_rcv(rcvp! sen sen
&8 notcorrupt(revpkt) dt_rov(rovpkt) Ak rov pki floss) x4
8&& isACK(rcvpkt, 1) && notcorrupt(revpkt) evACK] send ACK1 fimeodf
stop_timer &8 iSACK(revpkt,0) send pkio o fimeout okt fimeaut pkt resend pkt1
Stop_timer J—— resend ph1™ 11 fesond Pl ey 1OV DI ey pki]
- ACK, > G\I{Vg ACKO A % QTCKT ACK [defdeg\fc%ohcote] (cv/ijKQm (defg/c\lc %D\\cofe]
" Serx sen: send p sen
timeout rCVACK
adt_sendamapt) ByRKl o $ond pkO kt Voo
tart_timer rdt_rev(rovpkt) - o o oV PO
start_{ _— (@) operation with no loss ACK rcv eki0 send ACKO
dt_rev(rovpkt) 83 rdt_send(data) A send ACKD
(corrupt(revpkt) | sndpkt = make_pkt(1, data, checksum)
i udt_send(sndpkt) ;
isACK(rcvpkt,0)) start timer (b) lost packet (c) lost ACK () premature timeout

A

Transport Layer 3-40

Transport Layer 3-41

Transport Layer 3-42

Performance of rdt+3.0

rd+3.0 works, but performance stinks
ex: 1 6bps link, 15 ms prop. delay, 8000 bit packet:

L 8000bits .
d,y s =— =——5—— = 8microseconds
R 107bps
U, ngert Utilization - fraction of time sender busy sending
L/R .008

U pgor™ ——o——= == = 000027
sender pTT+L /R 30008

1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link
network protocol limits use of physical resources!

Transport Layer 3-43

rdt3.0: stop-and-wait operation

sender receiver

first packet bit transmitted, t = 0 —fu--------oooooooeeee
last packet bit transmitted, t = L / R{

first packet bit arrives

RTT last packet bit arrives, send ACK

ACK arrives, send nexl
packet, t =RTT + L/R [

:L/_R_ 008 = 0.00027

u_ -
sender pTT+L/R 30008

Transport Layer 3-44

Pipelined protocols

Pipelining: sender allows multiple, “in-flight", yet-to-
be-acknowledged pkts
range of sequence numbers must be increased
buffering at sender and/or receiver

data packets—»
m|

<+— ACK packets

data packet—s

(@) a stop-and-wait profocol in operation (b @ pipelined protocel in operation

Two generic forms of pipelined protocols: go-Back-N,
selective repeat

Transport Layer 345

Pipelining: increased utilization

sender receiver

first packet bit transmitted, t = 0
last bit transmitted, t =L/ R

—first packet bit arrives

RTT —last packet bit arrives, send ACK

—last bit of 2nd packet arrives, send ACK
—last bit of 31 packet arrives, send ACK

ACK arrives, send nextl

packet, t =RTT +L/R

Increase utilization
/by a factor of 3!
I

__3*L/R .02

V) d = = 0.0008
sender RTT+L/R 30008

Transport Layer 3-46

Pipelining Protocols

Go-back-N: big picture: Selective Repeat: big pic

Sender can have up to Sender can have up to
N unacked packets in N unacked packets in
pipeline pipeline
Revr only sends Revr acks individual
cumulative acks packets
Doesn't ack packet if Sender maintains
there's a gap timer for each
Sender has timer for unacked packet
oldest unacked packet When timer expires,
If timer expires, retransmit only unack
retransmit all unacked packet
packets

Transport Layer 3-47

Selective repeat: big picture

Sender can have up to N unacked packets
in pipeline

Revr acks individual packets

Sender maintains timer tor each unacked
packet

When timer expires, retransmit only unack
packet

Transport Layer 3-48

Go-Back-N

Sender:
k-bit seq # in pkt header
"window" of up to N, consecutive unack'ed pkts allowed

sencl, base nexfseqnum dlready —
ack’ed yet sent
IIIIII IIIIIII][II]I]I]HI] | s || rorue

wmdow size—4

ACK(n): ACKs all pkts up to, including seq # n - "cumulative ACK"
may receive duplicate ACKs (see receiver)

timer for each in-flight pkt

timeout(n): retransmit pkt n and all higher seq # pkts in window

Transport Layer 3-49

GBN: sender extended FSM

rdt_send(data)

if (nextseqnum < base+N) {
sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)
udt_send(sndpkinextseqnum])
if (base == nextseqnum)
start_timer
nextseqnum++

else
refuse_data(data)

A
base=1
nextseqnum=1

2 timeout
% e
start_timer
udt_send(sndpkifbase])
rdt_rev(revpkt) C Q udt_send(sndpktlbase+1])

__8& cormupt{revpkt)
udt_send(sndpkinextseqnum-1])

rdt_rcv(revpkt) 8&

notcorrupt(rcvpkt)
base = getacknum(rcvpkt)+1
If (base == nextseqnum)

stop_timer

else

start_timer Transport Layer 3-50

GBN: receiver extended FSM

default

udt_send(sndpkt) rdt_rov(rovpkt)
-~ && notcurrupt(rovpkt)

A . 88 hasseqnum(revpkt.expe ctedseqnum)
expectedseqnum=1 ‘ Qextrac{ (revpkt,data)

sndpkt = deliver_data(data)
make_pkt(expectedseqnum ACK,chksum) ~ sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedseqnum++

ACK-only: always send ACK for correctly-received pkt
with highest in-order seq #
may generate duplicate ACKs
need only remember expectedsegnum
out-of-order pkt:
discard (don't buffer) -> no receiver buffering!
Re-ACK pkt with highest in-order seq #

Transport Layer 3-51

GBN in sendler receiver

R send pkf0
rey pkio
m send pktl Sendp ACKO
SeRd pki2 ~gss b hek
send pkt3
(waif) rev pki3, discard
¥ send ACKI
rev ACKD
send pkt4
rev pki4, discard
e (fgkﬂ — sentl ACK
5
pki2 fimeout / rské\liwpktékj{xmd
send pki2 \
send pkt3 \ rev pki2, deliver
send pkt4 send ACK2
send pkt5 rcv pkts, deliver
send ACK3

Transport Layer 3-52

Selective Repeat

receiver individually acknowledges all correctly
received pkts
buffers pkts, as needed, for eventual in-order delivery
to upper layer
sender only resends pkts for which ACK not
received
sender timer for each unACKed pkt
sender window
N consecutive seq #'s
again limits seq #s of sent, unACKed pkts

Transport Layer 3-53

Selective repeat: sender, receiver windows

senc_base nexfseqnum aiready RIS FET
ack’ed yet sent
[II]HI]I]I]J IHIIHIIIIII]I]I]I]I]I]I] iy | oot

w!ndow sze—4
N

i (o) sender view of sequence numbers

i out of order acceptable

(buffered) but s
Siecdy dekied (within window)

ﬂl]l]ﬂ[ll]l]l]ﬂ]llﬂlllllll!!l]l]ﬂ [l ||

rev_base

() receiver view of sequence numbers

Transport Layer 3-54

Selective repeat

—sender—————
data from above :
if next available seq # in
window, send pkt
timeout(n):
resend pKkT n, resTarT Timer
ACK(n) in [sendbase,sendbase+N]:
mark pkt n as received
if n smallest unACKed pkt,

advance window base to
next unACKed seq #

—receiver
pk‘r nin [rcvbase, revbase+N-1]
send ACK(n)
out-of-order: buffer
in-order: deliver (also
deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt
pk‘r nin [rcvbase-N,revbase-1]
ACK(n)
otherwise:
ignore

Transport Layer 3-55

Selective repeat in action

pktl sent

vioafassrea T PltD rovd, delivered, ACKD sent

pktl sent

. ACK1 sent

pkt3 rovd. buffered. ACK3 sent
01lz345[6789

ACKD revd, pktd sent
of1234]56789

ACK1 rovd. pktS sent

P P T

pkt2 TIMEOUT. pkt2 ressnt

o1fzssaslsras

pkt4 rovd, buffersd. ACK4 sent

01254y

. ACKS sent

pkt2 rovd, pkt2,pktd.pktd.pkts
delivered. ACK2 sent

012345f789)

ACK3 rovd, mothing sent

012345678

Transport Layer 3-56

sender windaw

Selective repeat: Gkl
_dilemma

receiver window

after receipt’

Example:
seq#'s:0,1,2,3 it PRS0

. . 012301 2 ——p receive packet
window size=3

with seq number 0

) @
recelver sees no

. . der o
difference in two {after recaipt)
scenarios!

receiver windaw

{after receipt)

incorrectly passes
duplicate data as new
in (a)

receive packet
with seq number O

Q: what relationship
between seq # size
and window size?)

Transport Layer 3-57

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

Do LUNITNISL 1 IUTNIESS
2 2 H

mndinnmlaaa

transport: UDP

3.4 Principles of
reliable data transfer

3.5 Connection-oriented
transport: TCP
segment structure
reliable data transfer
flow control
connection management
3.6 Principles of
congestion control
3.7 TCP congestion
control

Transport Layer 3-58

TCP: Overview recs 793, 1122, 1323, 2018, 2581

point-to-point:
one sender, one receiver

reliable, in-order byre
steam: MSS: maximum segment
size

connection-oriented:

handshaking (exchange
of control msgs) init's
sender, receiver state
before data exchange

flow controlled:

sender will not
overwhelm receiver

full duplex data:

bi-directional data flow
in same connection

ho message bounaaries
pipelined:

TCP congestion and flow
control set window size

send & receive buffers

‘applcation
socket T
“door b

=

Transport Layer 3-59

TCP segment structure

32 bits
URG: t dat .
(generaTll;gs:T u:eél) source port # | dest port # EOUQ;ng
es
ACK: ACK # sequence number m‘{ data
valid\\@n{:wledgemenf number (not segments)
PSH: push data now M R|S|F| Receive window byt
(generally not used)—| w Ury auiu prier es
s meto meton reve willina
RST, SYN, FIN:—| Op‘l‘/iwns (variable length) to accept
connection estab

(setup, teardown
commands)

application
Internet data
checksum (variable length)
(as in UDP)

Transport Layer 3-60

TCP seq. #'s and ACKs

Seq. #'s:
byte stream @
“number” of first User
byte in segment’s Ty‘gf,s
data

ACKs:

seq # of next byte
expected from

other side host ACKs
cumulative ACK :‘eceri]md
Q: how receiver handles ° e% oe

out-of-order segments
A: TCP spec doesn't
say, - up to
implementor

. receipt of
da\a"c' 'C', echoes

=43,
e
sef’g'
time
simple telnet scenario l

Transport Layer 3-61

TCP Round Trip Time and Timeout

Q: how to estimate RTT?
SampleRTT: measured time from
segment transmission until ACK

Q: how to set TCP
timeout value?
longer than RTT '

but RTT varies receipt
Yoo short: premature ignore retransmissions
Timeout SampleRTT Will vary, want
estimated RTT "smoother”
average several recent
measurements, not just
current SampleRTT

unnecessary
retransmissions

too long: slow reaction
to segment loss

Transport Layer 3-62

TCP Round Trip Time and Timeout

EstimatedRTT = (1- o) *EstimatedRTT + «o*SampleRTT
Exponential weighted moving average

influence of past sample decreases exponentially fast
typical value: 0. = 0.125

Transport Layer 3-63

Example RTT estimation:

RIT: gaia.cs.umass.eduto fantasia.eurecom fr

300-

18 15 2 20 3 43 50

s e 7T 7 8 @ 9% 106

e (seconnds)

[C—SampleRTT —= Estimated RTT

Transport Layer 3-64

TCP Round Trip Time and Timeout

Setting the timeout

EstimtedRTT plus “safety margin”
large variation in EstimatedRTT -> larger safety margin
first estimate of how much SampleRTT deviates from

EstimatedRTT:

DevRTT = (1-P) *DevRTT +
B*|sampleRTT-EstimatedRTT|

(typically, P = 0.25)

Then set timeout interval:

TimeoutInterval = EstimatedRTT + 4*DevRTT

Transport Layer 3-65

Chapter 3 outline

3.1 Transport-layer
services
3.2 Multiplexing and

demultiplexing

2.0 Lorirnecoriess
295 ,AlaZ2 Dy peid

transport: UDP

3.4 Principles of
reliable data transfer

3.5 Connection-oriented
transport: TCP
segment structure
reliable data transfer
flow control
connection management
3.6 Principles of
congestion control
3.7 TCP congestion
control

Transport Layer 3-66

TCP reliable data transfer

TCP creates rdt
service on top of IP's
unreliable service
Pipelined segments
LUMNMUILIVE UWCRS

IFTPRN PR PN P
TCP uses single
retransmission timer

Retransmissions are
triggered by:
timeout events
duplicate acks
ERSINRINY]] Lurnsiver”
T:-\ I mmnmaiAdan
simplified TCP sender:
ignore duplicate acks

ignore flow control,
congestion control

Transport Layer 3-67

TCP sender events:

data revd from app:

timeout:

Create segment with
seq #

seq # is byte-stream
number of first data
byte in segment
start timer if not
already running (think
of timer as for oldest
unacked segment)
expiration interval:
TimeOutInterval

retransmit segment
that coused timeout

restart timer
Ack revd:

L1 am v ey
Tf arknawledno«

previously unacked
segments
update what is known to
be acked
start timer if there are
outstanding segments

Transport Layer 3-68

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

loop (forever) {
switch(event)

event: data received from application above

Tce
sender

create TCP segment with sequence number NextSeqNum ! Si mpllfl ed l

if (timer currently not running)
start timer
pass segment to IP

NextSeqgNum = NextSeqNum + length(data)

event: timer timeout

Comment:

+ SendBase-1: last
R4
4

retransmit not-yet-acknowledged segment with yte
smallest sequence number Exam ple:
start timer + SendBase-1=71;
y=73, so the rcwr
event: ACK received, with ACK field value of y wants 73+ :

if (y > SendBase) {
SendBase =y

if (there are currently not-yet-acknowledged segments)

start timer
}

} /* end of loop forever */

y > SendBase, so
that new data is
acked

Transport Layer 3-69

TCP: retransmission scenarios

TCP retransmission scenarios (more)

@ Host A Host B

- X
Seg=4, 00, 20 pC
X S data

B

TCP ACK generation [RFc 1122, RFC 2581]

lnaa
SendBase AC"(/
=120

Event at Receiver

TCP Receiver action

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Immediately send single cumulative
ACK, ACKing both in-order segments

[T
$
£
= =
£ 3
l Seq=2 dhase +
W 56_n10859 T
SendBase 3
. =120 £
RO g
g
dB: w
Se_n %€ SendBase
= 100 ! +
! =120 . premature timeout
time fime

lost ACK scenario

Transport Layer 3-70

— timeout——

time
Cumulative ACK scenario

Transport Layer 3-71

Arrival of out-of-order segment Immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte
Gap detected

Arrival of segment that Immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap

Transport Layer 3-72

Fast Retransmit

Time-out period often
relatively long:
long delay before
resending lost packet
Letect !OST segmenTs
via duplicate ACKs.
Sender often sends
many segments back-to-
back
If segment is lost,
there will likely be many
duplicate ACKs.

If sender receives 3
ACKs for the same
data, it supposes that
segment after ACKed
data was lost:

fast retransmit: resend
segment before timer
expires

Transport Layer 3-73

Host A Host B

timeout

reseny
2% sq,
Iment

time

Figure 3.37 Resending a segment after triple duplicqgemégt,(, Layer 374

Fast retransmit algorithm:

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer
}

else {
increment count of dup ACKs received for y
if (count of dup ACKs received for y = 3) {
resend segment with sequence number y
}

a duplicate ACK for fast retransmit
already ACKed segment

Transport Layer 3-75

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

Do LUNITNISL 1 IUTNIESS
2 2 fanvinnan +immlaaa

transport: UDP
3.4 Principles of
relioble data transfer

3.5 Connection-oriented
transport: TCP
segment structure
reliable data transfer
flow control
connection management
3.6 Principles of
congestion control
3.7 TCP congestion
control

Transport Layer 3-76

TCP Flow Control

flow control

. . sender won't overflow
receive side of TCP receiver's buffer by

connection has a transmitting too much,
receive buffer: too fast

§— RevWindow —
V 2%

speed-matching

data from | application : -
spare room /3? . rwes service: matching the
7 e s
00 send rate to the
b RevBuffer —— receiving app’s drain
rate

app process may be
slow at reading from

buffer

Transport Layer 377

TCP Flow control: how it works
—RevWindow —f

Revr advertises spare
wpicsion POOM by including value
prosess of ReviWindow in

data from
iz

spare room

bt
7 segments

e Sender limits unACKed

(Su'p'pose TCP receiver data to ReviWindow
discards out-of-order guarantees receive

segments) buffer doesn't overflow
spare room in buffer
= RcvWindow

= RcvBuffer- [LastByteRcvd -
LastByteRead]

Transport Layer 3-78

Chapter 3 outline

3.1 Transport-layer
services
3.2 Multiplexing and

demultiplexing

Do LUNITNISL 1 IUTNIESS
2 2 fanvinnan +immlaaa

transport: UDP
3.4 Principles of
relioble data transfer

3.5 Connection-oriented
transport: TCP
segment structure
reliable data transfer
flow control
connection management
3.6 Principles of
congestion control
3.7 TCP congestion
control

Transport Layer 379

TCP Connection Management

Recall: TCP sender, receiver Three way handshake:
establish "connection”
before exchanging data Step 1: client host sends TCP
segments SYN segment to server

initialize TCP variables: specifies initial seq #

seq. #s no data

buffgrs, flow control Step 2: server host receives

info (e.q. ReviWindow) SYN, replies with SYNACK
client: connection initiator segment

Socket clientSocket = new

server allocates buffers
Socket ("hostname", "port

specifies server initial
seq. #
Step 3: client receives SYNACK,
replies with ACK segment,
which may contain data

number") ;
server: contacted by client

Socket connectionSocket =
welcomeSocket.accept () ;

Transport Layer 3-80

TCP Connection Management (cont.)

Closing a connection: 18 client server [l

. close
client closes socket: Ein

clientSocket.close() ;

—ep e

EnT e oy "
-t ond evetom G

sends TCP FIN control o
segment to server

close

Step 2: server receives Ak

FIN, replies with ACK.
Closes connection, sends
FIN.

d wait

o time

close

Transport Layer 3-81

TCP Connection Management (cont.)

@ client

closing

Step 3: client receives FIN,
replies with ACK.

Enters "timed wait" -
will respond with ACK
to received FINs

Step 4: server, receives
ACK. Connection closed. -

d wait

Note: with small
modification, can handle
simultaneous FINs.

Q- time

close

ser‘ver‘@

AN
S8 -
closing

e

ACk
closed

Transport Layer 3-82

TCP Connection Management (cont)

-

N enisn

R —
TIME_WATT SUNEENT

FNWAT 2

ecnorng Cm— FINWATA 4

= ———
e W o
TCP client
lifecycle /
FEy
——
cosevar|
%

cLOSED —._

TCP server
lifecycle

o application
fren socket

v
| s

7 senc mot-ng

o~ ESTABLISHED 4

Transport Layer 3-83

Chapter 3 outline

3.1 Transport-layer
services
3.2 Multiplexing and

demultiplexing

2.0 Lorirnecoriess
295 ,AlaZ2 Dy peid

transport: UDP

3.4 Principles of
reliable data transfer

3.5 Connection-oriented
transport: TCP
segment structure
reliable data transfer
flow control
connection management
3.6 Principles of
congestion control
3.7 TCP congestion
control

Transport Layer 3-84

Principles of Congestion Control

Congestion:

informally: "too many sources sending too much

data too fast for network to handle”
different from flow control!
manifestations:

lost packets (buffer overflow at routers)
long delays (queueing in router buffers)

a top-10 problem!

Transport Layer 3-85

Causes/costs of congestion

: scenario 1

Host A

two senders, two - orignaldata

receivers

Host®
one router, —
infinite buffers -
no retransmission

A

i

unlimited shared
output link buffers

C/2- — . large delays
- 0 when congested
< ° i maximum
! achievable
c2 cr throughput
x\n 7\'in

Transport Layer 3-86

Causes/costs of congestion: scenario 2

one router, finite buffers

sender retransmission of lost packet

HostA 5 - original

7 data

Host B finite shared output
link buffers

‘ - A.,: original data, plus 4
retransmitted data

Transport Layer 3-87

Causes/costs of congestion: scenario 2

always: 7\'in= hout (goodput)

"perfect” retransmission only when loss:)" >),

o in out,,
retransmission of delayed (not lost) packet makes 7\'in larger

(than perfect case) for same), ;
oul

[. Y B R2

w3
< £ ra

™ Ri2 v Ri2
Ko Ko

a. b.
"costs" of congestion:
more work (retrans) for given "goodput”

R2

unneeded retransmissions: link carries multiple copies of pkt

Transport Layer 3-88

Causes/costs of congestion

: scenario 3

four senders

Q: what

multihop paths and N
i

timeout/retransmit

oA
Ao Original data

i, : original data, plus
retransmitted data

finite shared output

link

happens as 7\.in

nincr'ease ?

Kot

N
jr,

=

buffers

Transport Layer 3-89

Causes/costs of congestion: scenario 3

@)
7"ouf N

Ain

Another "cost” of congestion:

when packet dropped, any

“upstream transmission

capacity used for that packet was wasted!

Transport Layer 3-90

Approaches towards congestion control

Two broad approaches towards congestion control:

End-end congestion Ne twork-assisted
control: congestion control:
no explicit feedback from routers provide feedback
e to ond wetoma
congestion inferred from single bit indicating
end-system observed loss, congestion (SNA,
delay DECbit, TCP/IP ECN,
approach taken by TCP ATM)

explicit rate sender
should send at

Transport Layer 3-91

Case study: ATM ABR congestion control

ABR: avdilable bit rate:
“elastic service”
if sender's path
"underloaded™:
sender should use
available bandwidth
if sender's path
congested:
sender throttled to
minimum guaranteed
rate

RM (resource management)
cells:
sent by sender, interspersed
with data cells
bits in RM cell set by switches
(" ne twork-assisted”)
NI bit: no increase in rate
(mild congestion)
CI bit: congestion
indication
RM cells returned to sender by
receiver, with bits intact

Transport Layer 3-92

Case study: ATM ABR congestion control

l RM cells
source [l data cells

Swifch

destination

Switch

A
=M

=1

two-byte ER (explicit rate) field in RM cell
congested switch may lower ER value in cell
sender’ send rate thus maximum supportable rate on path
EFCI bit in data cells: set to 1 in congested switch
if data cell preceding RM cell has EFCI set, sender sets CI

bit in returned RM cell

Transport Layer 3-93

Chapter 3 outline

TCP congesﬁon control: additive increase,

multiplicative decrease

Approach.increase transmission rate (window size),

TCP Congestion Control: details

3.1 Transpor‘r-layer 3.5 Connection-oriented probing for usable bandwidth, until loss occurs sender limits transmission: How doe_s: sender _
services transport: TCP .. . R LastByteSent-LastByteAcked perceive congestion?
. . additive increase: increase CongWin by 1 MSS . -
3.2 Multiplexing and segment structure every RTT until loss d < CongWin loss event = timeout or
. : f Y until loss detected 4
demultiplexing reliable data transfer . i o Roughly, 3 duplicate acks
g.g \;‘Ullllbb] !U'IICDQ flow Confr‘ol I,nU/r/p//caT/Ve dec,'ease' Cu‘r Congwln In half Gf‘rer‘ - . _:_\,r JCNUCT I'euuces
“““““ dicnlnan ; oss = LonaWin ~o enliinna
transport: UDP connection management 9 rate RTT Bytes/sec rate (CongWin) after
_ 3.6 Principles o G e - - -
3.4 Principles of con es‘tioa con‘rfr'ol s . : CongWin is dynamic, function loss event
reliable data transfer 9 aw tooth 2 e f ived network three mechanisms:
3.7 TCP congestion behavior: probing = of perceived networ
) 9 for bandwidth 5 congestion AIMD
control jg s koyies slow start
§ _ conservative after
time timeout events
Transport Layer 3-94 Transport Layer 3-95 Transport Layer 3-96
TCP Slow Start TCP Slow Start (more) Refinement: inferring loss
When connection begins, When connection begins, When connection @Hosm Host B@ After 3 dup _ACKS:_
CongWin = 1 MSS increase rate begins, increase rate CongWin is cut in half ~ Philosophy:
Example: MSS = 500 exponentially fast until exponentially until '.': W window then grows
bytes & RTT = 200 msec first loss event first loss event: i linearly 0 3 dup ACKs indicates
initial rate = 20 kbps double congWin cvery w‘ pu! u|£ 1S HINSUU) © Vol neTwork capaoie o1
Dt addmn Fimananr + Avimnkr r

available bandwidth may
be >> MSS/RTT

desirable to quickly ramp
up to respectable rate

Transport Layer 3-97

RTT
done by incrementing
CongWin for every ACK
received
Summary: initial rate
is slow but ramps up
exponentially fast

U segments

time

Transport Layer 3-98

CongWin instead set to
1MSS:

window then grows
exponentially

to a threshold, then
grows linearly

delivering some segments
O timeout indicates a
“more alarming”
congestion scenario

Transport Layer 3-99

Refinement

Q: When should the
exponential
increase switch to T
linear? 425

A: When congWin " /4\
gets to 1/2 of its
value before

& N Thigshold
- |
1_| meou‘r. - TCP Series 1 Tahoe

I S T S s W w1 s o g
123456 78 910111213415

Implementation: Terssionround
Variable Threshold
At loss event, Threshold is
set to 1/2 of CongWin just
before loss event

TCP Series 2 feno

Transmission round
=
=
IES
13
=
|
|
|

\T\
|
i
|
|
|
i

Transport Layer 3-100

Summary: TCP Congestion Control

TCP sender congestion control

When CongWin is below Threshold, sender in
slow-start phase, window grows exponentially.

When CongWin is above Threshold, sender is in
congesTIon_qyoidance PNAse, WINAOW grows linearty.
PR I - S i [—— |
When a triple duplicate ACK occurs, Threshold
set to CongWin/2 and CongWin set to
Threshold.

When timeout occurs, Threshold set to
CongWin/2 and CongWin is set to 1 MSS.

Transport Layer 3-101

State Event TCP Sender Action Commentary
Slow Start ACK receipt | CongWin = CongWin + MSS, | Resulting in a doubling of
(sS) for previously | If (CongWin > Threshold) CongWin every RTT
unacked set state to “Congestion
data Avoidance’
Congestion | ACK receipt | CongWin = CongWin+MSS * | Additive increase, resulting
Avoidance for previously | (MSS/CongWin) in increase of CongWin by
(CA) unacked 1 MSS every RTT
data
SSorCA Lossevent | Threshold = CongWin/2, Fast recovery,
detected by | CongWin = Threshold, implementing multiplicative
triple Set state to “Congestion decrease. CongWin will not
duplicate Avoidance® drop below 1 MSS
ACK
SSorCA Timeout Threshold = CongWin/2, Enter slow start
CongWin = 1 MSS,
Set state to “Slow Start”
SSorCA Duplicate Increment duplicate ACK count | CongWin and Threshold not
ACK for segment being acked changed

Transport Layer 3-102

TCP throughput

What's the average throughout of TCP as a
function of window size and RTT?

Ignore slow start
Let W be the window size when loss occurs.
When window is W, throughput is W/RTT

Just after loss, window drops to W/2,
throughput to W/2RTT.

Average throughout: .75 W/RTT

Transport Layer 3-103

TCP Futures: TCP over “long, fat pipes"”

Example: 1500 byte segments, 100ms RTT, want 10
Gbps throughput

Requires window size W = 83,333 in-flight
segments
Throtahnitt in terms of Inse rate:
1.22- MSS
RTTVL
= L =210 Wow
New versions of TCP for high-speed

Transport Layer 3-104

TCP Fairness

Fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have

average rate of R/K

TCP connection 1

>

TCP@

connection 2

bottleneck
router
capacity R

Transport Layer 3-105

Why is TCP fair?

Two competing sessions:
Additive increase gives slope of 1, as throughout increases
multiplicative decrease decreases throughput proportionally

equal bandwidth share

loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase

Connection 2 throughput

Connection 1 throughput R

Transport Layer 3-106

Fairness (more)

Fairness and UDP

Fairness and parallel TCP
conhnections

Multimedia apps often

do not use TCP nothing prevents app from
do not want rate opening _par'allel
throttled by congestion connections between 2
control hosts.

irsSieud use vur. YV O W VWIS D UV 1D

Tuadand i 1IND. Winh hnauanna Aa +hia
P”’“Erﬂuf“’{r‘"d:"l at . Example: link of rate R
consten rate, tolerate supporting 9 connections:
packet loss ks for L TCP. get

Research area: TCP :iﬂaqlf/"lss s rer +9ets

friendly new app asks for 11 TCPs,

gets R/2 1

Transport Layer 3-107

Chapter 3: Summary

principles behind transport
layer services:

multiplexing,
demultiplexing

reliable data transfer

flow control Next:

congestion control
instantiation and

implementation in the
Internet

ubP
TCP

leaving the network
“edge” (application,
transport layers)
info the network
“core”

Transport Layer 3-108

