
2110472 Computer Network

Transport Layer &
Multimedia Networking

Transport Layer 3-1

Multimedia Networking

� Kultida Rojviboonchai, Ph.D.

� Email: kultida@cp.eng.chula.ac.th

Course Information

� Instructor: Kultida Rojviboonchai, Ph.D.

http://www.cp.eng.chula.ac.th/~kultida

� Course website:
http://www.cp.eng.chula.ac.th/~kultida/classes.html

Transport Layer 3-2

http://www.cp.eng.chula.ac.th/~kultida/classes.html

� Lecture schedule: Friday 13:00-16:00

� Course materials: Lecture slides

Selected textbooks

Chapter 3
Transport Layer

Kultida Rojviboonchai, Ph.D.

Transport Layer 3-3

Computer Networking:
A Top Down Approach
4th edition.
Jim Kurose, Keith Ross
Addison-Wesley, July
2007.

A note on the use of these ppt slides:
The notes used in this course are substantially based on slides copyrighted
by J.F Kurose and K.W. Ross 1996-2007

Kultida Rojviboonchai, Ph.D.
Dept. of Computer Engineering
Faculty of Engineering
Chulalongkorn University

Chapter 3: Transport Layer

Our goals:

� understand principles
behind transport
layer services:

� multiplexing/demultipl
exing

� learn about transport
layer protocols in the
Internet:

� UDP: connectionless
transport

Transport Layer 3-4

exing

� reliable data transfer

� flow control

� congestion control

transport

� TCP: connection-oriented
transport

� TCP congestion control

Chapter 3 outline

� 3.1 Transport-layer
services

� 3.2 Multiplexing and
demultiplexing

� 3.3 Connectionless

� 3.5 Connection-oriented
transport: TCP

� segment structure

� reliable data transfer

� flow control

Transport Layer 3-5

� 3.3 Connectionless
transport: UDP

� 3.4 Principles of
reliable data transfer

� flow control

� connection management

� 3.6 Principles of
congestion control

� 3.7 TCP congestion
control

Transport services and protocols

� provide logical communication
between app processes
running on different hosts

� transport protocols run in
end systems

� send side: breaks app
messages into segments,

application
transport
network
data link
physical

Transport Layer 3-6

messages into segments,
passes to network layer

� rcv side: reassembles
segments into messages,
passes to app layer

� more than one transport
protocol available to apps

� Internet: TCP and UDP

application
transport
network
data link
physical

Transport vs. network layer

� network layer: logical
communication
between hosts

� transport layer: logical
communication

Household analogy:

12 kids sending letters to
12 kids

� processes = kids

� app messages = letters

Transport Layer 3-7

communication
between processes

� relies on, enhances,
network layer services

� app messages = letters
in envelopes

� hosts = houses

� transport protocol =
Ann and Bill

� network-layer protocol
= postal service

Internet transport-layer protocols

� reliable, in-order
delivery (TCP)

� congestion control

� flow control

� connection setup

� unreliable, unordered

application
transport
network
data link
physical

network
data link
physical

network

network
data link
physical

Transport Layer 3-8

� unreliable, unordered
delivery: UDP

� no-frills extension of
“best-effort” IP

� services not available:
� delay guarantees

� bandwidth guarantees

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

application
transport
network
data link
physical

Chapter 3 outline

� 3.1 Transport-layer
services

� 3.2 Multiplexing and
demultiplexing

� 3.3 Connectionless

� 3.5 Connection-oriented
transport: TCP

� segment structure

� reliable data transfer

� flow control

Transport Layer 3-9

� 3.3 Connectionless
transport: UDP

� 3.4 Principles of
reliable data transfer

� flow control

� connection management

� 3.6 Principles of
congestion control

� 3.7 TCP congestion
control

Multiplexing/demultiplexing

= process= socket

delivering received segments
to correct socket

Demultiplexing at rcv host:
gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

Multiplexing at send host:

Transport Layer 3-10

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2P3 P4P1

host 1 host 2 host 3

How demultiplexing works
� host receives IP datagrams

� each datagram has source
IP address, destination IP
address

� each datagram carries 1
transport-layer segment

� each segment has source,

source port # dest port #

32 bits

other header fields

Transport Layer 3-11

� each segment has source,
destination port number

� host uses IP addresses & port
numbers to direct segment to
appropriate socket

application
data

(message)

TCP/UDP segment format

Connectionless demultiplexing

� Create sockets with port
numbers:

DatagramSocket mySocket1 = new
DatagramSocket(12534);

DatagramSocket mySocket2 = new
DatagramSocket(12535);

� When host receives UDP
segment:

� checks destination port
number in segment

� directs UDP segment to
socket with that port

Transport Layer 3-12

DatagramSocket(12535);

� UDP socket identified by
two-tuple:

(dest IP address, dest port number)

socket with that port
number

� IP datagrams with
different source IP
addresses and/or source
port numbers directed
to same socket

Connectionless demux (cont)

DatagramSocket serverSocket = new DatagramSocket(6428);

P2 P1P1P3

Transport Layer 3-13

Client
IP:B

client
IP: A

server
IP: C

SP: 6428

DP: 9157

SP: 9157

DP: 6428

SP: 6428

DP: 5775

SP: 5775

DP: 6428

SP provides “return address”

Connection-oriented demux

� TCP socket identified
by 4-tuple:

� source IP address

� source port number

� dest IP address

� Server host may support
many simultaneous TCP
sockets:

� each socket identified by
its own 4-tuple

Transport Layer 3-14

� dest IP address

� dest port number

� recv host uses all four
values to direct
segment to appropriate
socket

� Web servers have
different sockets for
each connecting client

� non-persistent HTTP will
have different socket for
each request

Connection-oriented demux
(cont)

P1 P1P2P4 P5 P6 P3

SP: 5775

DP: 80

Transport Layer 3-15

Client
IP:B

client
IP: A

server
IP: C

SP: 9157

DP: 80

SP: 9157

DP: 80

D-IP:C

S-IP: A

D-IP:C

S-IP: B

DP: 80

D-IP:C

S-IP: B

Connection-oriented demux:
Threaded Web Server

P1 P1P2P4 P3

SP: 5775

DP: 80

Transport Layer 3-16

Client
IP:B

client
IP: A

server
IP: C

SP: 9157

DP: 80

SP: 9157

DP: 80

D-IP:C

S-IP: A

D-IP:C

S-IP: B

DP: 80

D-IP:C

S-IP: B

Chapter 3 outline

� 3.1 Transport-layer
services

� 3.2 Multiplexing and
demultiplexing

� 3.3 Connectionless

� 3.5 Connection-oriented
transport: TCP

� segment structure

� reliable data transfer

� flow control

Transport Layer 3-17

� 3.3 Connectionless
transport: UDP

� 3.4 Principles of
reliable data transfer

� flow control

� connection management

� 3.6 Principles of
congestion control

� 3.7 TCP congestion
control

UDP: User Datagram Protocol [RFC 768]

� “no frills,” “bare bones”
Internet transport
protocol

� “best effort” service, UDP
segments may be:

� lost

Why is there a UDP?
� no connection

establishment (which can
add delay)

� simple: no connection state

Transport Layer 3-18

lost

� delivered out of order
to app

� connectionless:
� no handshaking between

UDP sender, receiver

� each UDP segment
handled independently
of others

� simple: no connection state
at sender, receiver

� small segment header

� no congestion control: UDP
can blast away as fast as
desired

UDP: more

� often used for streaming
multimedia apps

� loss tolerant

� rate sensitive

� other UDP uses
� DNS

source port # dest port #

32 bits

length checksum
Length, in

bytes of UDP
segment,
including

header

Transport Layer 3-19

� DNS

� SNMP

� reliable transfer over UDP:
add reliability at
application layer

� application-specific
error recovery!

Application
data

(message)

UDP segment format

header

UDP checksum

Sender:
� treat segment contents

as sequence of 16-bit

Receiver:
� compute checksum of

received segment

Goal: detect “errors” (e.g., flipped bits) in transmitted
segment

Transport Layer 3-20

as sequence of 16-bit
integers

� checksum: addition (1’s
complement sum) of
segment contents

� sender puts checksum
value into UDP checksum
field

received segment

� check if computed checksum
equals checksum field value:

� NO - error detected

� YES - no error detected.
But maybe errors
nonetheless? More later
….

Internet Checksum Example
� Note

� When adding numbers, a carryout from the
most significant bit needs to be added to the
result

� Example: add two 16-bit integers

Transport Layer 3-21

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum

checksum

Chapter 3 outline

� 3.1 Transport-layer
services

� 3.2 Multiplexing and
demultiplexing

� 3.3 Connectionless

� 3.5 Connection-oriented
transport: TCP

� segment structure

� reliable data transfer

� flow control

Transport Layer 3-22

� 3.3 Connectionless
transport: UDP

� 3.4 Principles of
reliable data transfer

� flow control

� connection management

� 3.6 Principles of
congestion control

� 3.7 TCP congestion
control

Principles of Reliable data transfer

� important in app., transport, link layers

� top-10 list of important networking topics!

Transport Layer 3-23

� characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Principles of Reliable data transfer

� important in app., transport, link layers

� top-10 list of important networking topics!

Transport Layer 3-24

� characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Principles of Reliable data transfer

� important in app., transport, link layers

� top-10 list of important networking topics!

Transport Layer 3-25

� characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Reliable data transfer: getting started

send receive

rdt_send(): called from above,
(e.g., by app.). Passed data to

deliver to receiver upper layer

deliver_data(): called by
rdt to deliver data to upper

Transport Layer 3-26

send
side

receive
side

udt_send(): called by rdt,
to transfer packet over

unreliable channel to receiver

rdt_rcv(): called when packet
arrives on rcv-side of channel

Reliable data transfer: getting started

We’ll:

� incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

� consider only unidirectional data transfer
� but control info will flow on both directions!

use finite state machines (FSM) to specify

Transport Layer 3-27

� use finite state machines (FSM) to specify
sender, receiver

state
1

state
2

event causing state transition
actions taken on state transition

state: when in this
“state” next state

uniquely determined
by next event

event
actions

Rdt1.0: reliable transfer over a reliable channel

� underlying channel perfectly reliable
� no bit errors

� no loss of packets

� separate FSMs for sender, receiver:
� sender sends data into underlying channel

� receiver read data from underlying channel

Transport Layer 3-28

� receiver read data from underlying channel

Wait for
call from
above packet = make_pkt(data)

udt_send(packet)

rdt_send(data)

extract (packet,data)
deliver_data(data)

Wait for
call from

below

rdt_rcv(packet)

sender receiver

Rdt2.0: channel with bit errors

� underlying channel may flip bits in packet
� checksum to detect bit errors

� the question: how to recover from errors:
� acknowledgements (ACKs): receiver explicitly tells sender

that pkt received OK

� negative acknowledgements (NAKs): receiver explicitly

Transport Layer 3-29

� negative acknowledgements (NAKs): receiver explicitly
tells sender that pkt had errors

� sender retransmits pkt on receipt of NAK

� new mechanisms in rdt2.0 (beyond rdt1.0):
� error detection

� receiver feedback: control msgs (ACK,NAK) rcvr->sender

rdt2.0: FSM specification

Wait for
call from
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

Wait for
ACK or

NAK

receiver
rdt_send(data)

Transport Layer 3-30

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
Wait for
call from

belowsender

Λ

rdt2.0: operation with no errors

Wait for
call from
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

Wait for
ACK or

NAK

rdt_send(data)

Transport Layer 3-31

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
Wait for
call from

below
Λ

rdt2.0: error scenario

Wait for
call from
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

Wait for
ACK or

NAK

rdt_send(data)

Transport Layer 3-32

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
Wait for
call from

below
Λ

rdt2.0 has a fatal flaw!

What happens if
ACK/NAK corrupted?

� sender doesn’t know what
happened at receiver!

� can’t just retransmit:
possible duplicate

Handling duplicates:
� sender retransmits current

pkt if ACK/NAK garbled

� sender adds sequence
number to each pkt

receiver discards (doesn’t

Transport Layer 3-33

possible duplicate � receiver discards (doesn’t
deliver up) duplicate pkt

Sender sends one packet,
then waits for receiver
response

stop and wait

rdt2.1: sender, handles garbled ACK/NAKs

Wait for
call 0 from

above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

Wait for
ACK or
NAK 0 udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isNAK(rcvpkt))

rdt_rcv(rcvpkt)
rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)

Transport Layer 3-34

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isNAK(rcvpkt))

&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

Wait for
call 1 from

above

Wait for
ACK or
NAK 1

ΛΛ

rdt2.1: receiver, handles garbled ACK/NAKs

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq0(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

Transport Layer 3-35

Wait for
0 from
below

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seq0(rcvpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Wait for
1 from
below

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seq1(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt2.1: discussion

Sender:

� seq # added to pkt

� two seq. #’s (0,1) will
suffice. Why?

� must check if received

Receiver:

� must check if received
packet is duplicate

� state indicates whether
0 or 1 is expected pkt

Transport Layer 3-36

� must check if received
ACK/NAK corrupted

� twice as many states
� state must “remember”

whether “current” pkt
has 0 or 1 seq. #

0 or 1 is expected pkt
seq #

� note: receiver can not
know if its last
ACK/NAK received OK
at sender

rdt2.2: a NAK-free protocol

� same functionality as rdt2.1, using ACKs only

� instead of NAK, receiver sends ACK for last pkt
received OK

� receiver must explicitly include seq # of pkt being ACKed

� duplicate ACK at sender results in same action as

Transport Layer 3-37

� duplicate ACK at sender results in same action as
NAK: retransmit current pkt

rdt2.2: sender, receiver fragments

Wait for
call 0 from

above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||

isACK(rcvpkt,1))

rdt_rcv(rcvpkt)

Wait for
ACK

0

sender FSM
fragment

Transport Layer 3-38

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

fragment

Wait for
0 from
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK1, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||

has_seq1(rcvpkt))

udt_send(sndpkt)

receiver FSM
fragment

Λ

rdt3.0: channels with errors and loss

New assumption:
underlying channel can
also lose packets (data
or ACKs)

� checksum, seq. #, ACKs,

Approach: sender waits
“reasonable” amount of
time for ACK

� retransmits if no ACK
received in this time

Transport Layer 3-39

� checksum, seq. #, ACKs,
retransmissions will be
of help, but not enough

� if pkt (or ACK) just delayed
(not lost):

� retransmission will be
duplicate, but use of seq.
#’s already handles this

� receiver must specify seq
of pkt being ACKed

� requires countdown timer

rdt3.0 sender

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

Wait
for

ACK0

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,1))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)

udt_send(sndpkt)
start_timer

timeout

rdt_rcv(rcvpkt)

Wait for
call 0from

above

Λ
Λ

Transport Layer 3-40

Wait for
call 1 from

above

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,0))

&& isACK(rcvpkt,1)

stop_timer
stop_timer

udt_send(sndpkt)
start_timer

timeout
Wait
for

ACK1

Λ
rdt_rcv(rcvpkt)

Λ

rdt3.0 in action

Transport Layer 3-41

rdt3.0 in action

Transport Layer 3-42

Performance of rdt3.0

� rdt3.0 works, but performance stinks

� ex: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

dsmicrosecon8
bps10

bits8000
9

===
R

L
dtrans

Transport Layer 3-43

� U sender: utilization – fraction of time sender busy sending

U
sender

=
.008

30.008
= 0.00027

microsec

L / R

RTT + L / R
=

� 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link

� network protocol limits use of physical resources!

bps10R

rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

Transport Layer 3-44

ACK arrives, send next
packet, t = RTT + L / R

U
sender

=
.008

30.008
= 0.00027

microsec

L / R

RTT + L / R
=

Pipelined protocols

Pipelining: sender allows multiple, “in-flight”, yet-to-
be-acknowledged pkts

� range of sequence numbers must be increased

� buffering at sender and/or receiver

Transport Layer 3-45

� Two generic forms of pipelined protocols: go-Back-N,
selective repeat

Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK
last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

Transport Layer 3-46

ACK arrives, send next
packet, t = RTT + L / R

last bit of 3rd packet arrives, send ACK

U
sender

=
.024

30.008
= 0.0008

microsecon

3 * L / R

RTT + L / R
=

Increase utilization
by a factor of 3!

Pipelining Protocols

Go-back-N: big picture:
� Sender can have up to

N unacked packets in
pipeline

� Rcvr only sends
cumulative acks

Selective Repeat: big pic
� Sender can have up to

N unacked packets in
pipeline

� Rcvr acks individual
packets

Transport Layer 3-47

Rcvr only sends
cumulative acks

� Doesn’t ack packet if
there’s a gap

� Sender has timer for
oldest unacked packet

� If timer expires,
retransmit all unacked
packets

Rcvr acks individual
packets

� Sender maintains
timer for each
unacked packet

� When timer expires,
retransmit only unack
packet

Selective repeat: big picture

� Sender can have up to N unacked packets
in pipeline

� Rcvr acks individual packets

� Sender maintains timer for each unacked

Transport Layer 3-48

� Sender maintains timer for each unacked
packet
� When timer expires, retransmit only unack

packet

Go-Back-N
Sender:
� k-bit seq # in pkt header

� “window” of up to N, consecutive unack’ed pkts allowed

Transport Layer 3-49

� ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”

� may receive duplicate ACKs (see receiver)

� timer for each in-flight pkt

� timeout(n): retransmit pkt n and all higher seq # pkts in window

GBN: sender extended FSM
rdt_send(data)

if (nextseqnum < base+N) {
sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)
udt_send(sndpkt[nextseqnum])
if (base == nextseqnum)

start_timer
nextseqnum++
}

else
refuse_data(data)

base=1

Λ

Transport Layer 3-50

Wait start_timer
udt_send(sndpkt[base])
udt_send(sndpkt[base+1])
…
udt_send(sndpkt[nextseqnum-1])

timeout

base = getacknum(rcvpkt)+1
If (base == nextseqnum)

stop_timer
else
start_timer

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base=1
nextseqnum=1

rdt_rcv(rcvpkt)
&& corrupt(rcvpkt)

GBN: receiver extended FSM

Wait

udt_send(sndpkt)

default

rdt_rcv(rcvpkt)
&& notcurrupt(rcvpkt)
&& hasseqnum(rcvpkt,expectedseqnum)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedseqnum++

expectedseqnum=1
sndpkt =
make_pkt(expectedseqnum,ACK,chksum)

Λ

Transport Layer 3-51

ACK-only: always send ACK for correctly-received pkt
with highest in-order seq #

� may generate duplicate ACKs

� need only remember expectedseqnum

� out-of-order pkt:
� discard (don’t buffer) -> no receiver buffering!

� Re-ACK pkt with highest in-order seq #

GBN in
action

Transport Layer 3-52

Selective Repeat

� receiver individually acknowledges all correctly
received pkts

� buffers pkts, as needed, for eventual in-order delivery
to upper layer

� sender only resends pkts for which ACK not
received

Transport Layer 3-53

received
� sender timer for each unACKed pkt

� sender window
� N consecutive seq #’s

� again limits seq #s of sent, unACKed pkts

Selective repeat: sender, receiver windows

Transport Layer 3-54

Selective repeat

data from above :
� if next available seq # in

window, send pkt

timeout(n):
� resend pkt n, restart timer

sender
pkt n in [rcvbase, rcvbase+N-1]

� send ACK(n)

� out-of-order: buffer

� in-order: deliver (also
deliver buffered, in-order
pkts), advance window to

receiver

Transport Layer 3-55

� resend pkt n, restart timer

ACK(n) in [sendbase,sendbase+N]:

� mark pkt n as received

� if n smallest unACKed pkt,
advance window base to
next unACKed seq #

pkts), advance window to
next not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]

� ACK(n)

otherwise:
� ignore

Selective repeat in action

Transport Layer 3-56

Selective repeat:
dilemma

Example:
� seq #’s: 0, 1, 2, 3

� window size=3

� receiver sees no

Transport Layer 3-57

� receiver sees no
difference in two
scenarios!

� incorrectly passes
duplicate data as new
in (a)

Q: what relationship
between seq # size
and window size?

Chapter 3 outline

� 3.1 Transport-layer
services

� 3.2 Multiplexing and
demultiplexing

� 3.3 Connectionless

� 3.5 Connection-oriented
transport: TCP

� segment structure

� reliable data transfer

� flow control

Transport Layer 3-58

� 3.3 Connectionless
transport: UDP

� 3.4 Principles of
reliable data transfer

� flow control

� connection management

� 3.6 Principles of
congestion control

� 3.7 TCP congestion
control

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

� full duplex data:
� bi-directional data flow

in same connection

� MSS: maximum segment
size

connection-oriented:

� point-to-point:
� one sender, one receiver

� reliable, in-order byte
steam:

� no “message boundaries”

Transport Layer 3-59

� connection-oriented:
� handshaking (exchange

of control msgs) init’s
sender, receiver state
before data exchange

� flow controlled:
� sender will not

overwhelm receiver

� no “message boundaries”

� pipelined:
� TCP congestion and flow

control set window size

� send & receive buffers

socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data

TCP segment structure

source port # dest port #

32 bits

sequence number

acknowledgement number

Receive window

Urg data pnterchecksum

FSRPAU
head
len

not
used

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used) # bytes

rcvr willing

counting
by bytes
of data
(not segments!)

Transport Layer 3-60

application
data

(variable length)

Urg data pnterchecksum

Options (variable length)RST, SYN, FIN:
connection estab
(setup, teardown

commands)

rcvr willing
to accept

Internet
checksum

(as in UDP)

TCP seq. #’s and ACKs
Seq. #’s:

� byte stream
“number” of first
byte in segment’s
data

ACKs:

seq # of next byte

Host A Host B

User
types

‘C’
host ACKs
receipt of
‘C’, echoes

back ‘C’

Transport Layer 3-61

� seq # of next byte
expected from
other side

� cumulative ACK

Q: how receiver handles
out-of-order segments

� A: TCP spec doesn’t
say, - up to
implementor

host ACKs
receipt

of echoed
‘C’

back ‘C’

time
simple telnet scenario

TCP Round Trip Time and Timeout

Q: how to set TCP
timeout value?

� longer than RTT
� but RTT varies

� too short: premature
timeout

Q: how to estimate RTT?
� SampleRTT: measured time from

segment transmission until ACK
receipt

� ignore retransmissions

� SampleRTT will vary, want

Transport Layer 3-62

timeout

� unnecessary
retransmissions

� too long: slow reaction
to segment loss

SampleRTT will vary, want
estimated RTT “smoother”

� average several recent
measurements, not just
current SampleRTT

TCP Round Trip Time and Timeout

EstimatedRTT = (1- αααα)*EstimatedRTT + αααα*SampleRTT

� Exponential weighted moving average

� influence of past sample decreases exponentially fast

� typical value: αααα = 0.125

Transport Layer 3-63

Example RTT estimation:
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

250

300

350

R
T

T
 (

m
il

lis
ec

o
n

d
s)

Transport Layer 3-64

100

150

200

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
T

T
 (

m
il

lis
ec

o
n

d
s)

SampleRTT Estimated RTT

TCP Round Trip Time and Timeout

Setting the timeout
� EstimtedRTT plus “safety margin”

� large variation in EstimatedRTT -> larger safety margin

� first estimate of how much SampleRTT deviates from
EstimatedRTT:

Transport Layer 3-65

TimeoutInterval = EstimatedRTT + 4*DevRTT

DevRTT = (1-ββββ)*DevRTT +
ββββ*|SampleRTT-EstimatedRTT|

(typically, ββββ = 0.25)

Then set timeout interval:

Chapter 3 outline

� 3.1 Transport-layer
services

� 3.2 Multiplexing and
demultiplexing

� 3.3 Connectionless

� 3.5 Connection-oriented
transport: TCP

� segment structure

� reliable data transfer

� flow control

Transport Layer 3-66

� 3.3 Connectionless
transport: UDP

� 3.4 Principles of
reliable data transfer

� flow control

� connection management

� 3.6 Principles of
congestion control

� 3.7 TCP congestion
control

TCP reliable data transfer

� TCP creates rdt
service on top of IP’s
unreliable service

� Pipelined segments

� Cumulative acks

� Retransmissions are
triggered by:

� timeout events

� duplicate acks

� Initially consider

Transport Layer 3-67

� Cumulative acks

� TCP uses single
retransmission timer

� Initially consider
simplified TCP sender:

� ignore duplicate acks

� ignore flow control,
congestion control

TCP sender events:
data rcvd from app:

� Create segment with
seq #

� seq # is byte-stream
number of first data
byte in segment

timeout:

� retransmit segment
that caused timeout

� restart timer

Ack rcvd:

� If acknowledges

Transport Layer 3-68

byte in segment

� start timer if not
already running (think
of timer as for oldest
unacked segment)

� expiration interval:
TimeOutInterval

� If acknowledges
previously unacked
segments

� update what is known to
be acked

� start timer if there are
outstanding segments

TCP
sender
(simplified)

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

loop (forever) {
switch(event)

event: data received from application above
create TCP segment with sequence number NextSeqNum
if (timer currently not running)

start timer
pass segment to IP
NextSeqNum = NextSeqNum + length(data)

event: timer timeout

Comment:
• SendBase-1: last
cumulatively

Transport Layer 3-69

event: timer timeout
retransmit not-yet-acknowledged segment with

smallest sequence number
start timer

event: ACK received, with ACK field value of y
if (y > SendBase) {

SendBase = y
if (there are currently not-yet-acknowledged segments)

start timer
}

} /* end of loop forever */

cumulatively
ack’ed byte
Example:
• SendBase-1 = 71;
y= 73, so the rcvr
wants 73+ ;
y > SendBase, so
that new data is
acked

TCP: retransmission scenarios

Host A Host B

S
e
q=

9
2

 t
im

e
ou

t

Host A

loss

ti
m

e
ou

t
Host B

X

Transport Layer 3-70

time
premature timeout

S
e
q=

9
2

 t
im

e
ou

t

loss

lost ACK scenario
time
S

e
q=

9
2

 t
im

e
ou

t

SendBase
= 100

SendBase
= 120

SendBase
= 120

Sendbase
= 100

TCP retransmission scenarios (more)

Host A

loss

ti
m

e
ou

t

Host B

X

Transport Layer 3-71

loss

Cumulative ACK scenario
time

SendBase
= 120

TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Arrival of in-order segment with

TCP Receiver action

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Immediately send single cumulative

Transport Layer 3-72

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Arrival of segment that
partially or completely fills gap

Immediately send single cumulative
ACK, ACKing both in-order segments

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Immediate send ACK, provided that
segment starts at lower end of gap

Fast Retransmit

� Time-out period often
relatively long:

� long delay before
resending lost packet

� Detect lost segments

� If sender receives 3
ACKs for the same
data, it supposes that
segment after ACKed
data was lost:

Transport Layer 3-73

� Detect lost segments
via duplicate ACKs.

� Sender often sends
many segments back-to-
back

� If segment is lost,
there will likely be many
duplicate ACKs.

data was lost:
� fast retransmit: resend

segment before timer
expires

Host A Host B

X

Transport Layer 3-74

ti
m

e
ou

t

time

Figure 3.37 Resending a segment after triple duplicate ACK

event: ACK received, with ACK field value of y
if (y > SendBase) {

SendBase = y
if (there are currently not-yet-acknowledged segments)

start timer
}

Fast retransmit algorithm:

Transport Layer 3-75

}
else {

increment count of dup ACKs received for y
if (count of dup ACKs received for y = 3) {

resend segment with sequence number y
}

a duplicate ACK for
already ACKed segment

fast retransmit

Chapter 3 outline

� 3.1 Transport-layer
services

� 3.2 Multiplexing and
demultiplexing

� 3.3 Connectionless

� 3.5 Connection-oriented
transport: TCP

� segment structure

� reliable data transfer

� flow control

Transport Layer 3-76

� 3.3 Connectionless
transport: UDP

� 3.4 Principles of
reliable data transfer

� flow control

� connection management

� 3.6 Principles of
congestion control

� 3.7 TCP congestion
control

TCP Flow Control

� receive side of TCP
connection has a
receive buffer:

� speed-matching

sender won’t overflow
receiver’s buffer by

transmitting too much,
too fast

flow control

Transport Layer 3-77

� speed-matching
service: matching the
send rate to the
receiving app’s drain
rate

� app process may be
slow at reading from
buffer

TCP Flow control: how it works

(Suppose TCP receiver

� Rcvr advertises spare
room by including value
of RcvWindow in
segments

� Sender limits unACKed
data to RcvWindow

Transport Layer 3-78

(Suppose TCP receiver
discards out-of-order
segments)

� spare room in buffer
= RcvWindow

= RcvBuffer-[LastByteRcvd -
LastByteRead]

data to RcvWindow
� guarantees receive

buffer doesn’t overflow

Chapter 3 outline

� 3.1 Transport-layer
services

� 3.2 Multiplexing and
demultiplexing

� 3.3 Connectionless

� 3.5 Connection-oriented
transport: TCP

� segment structure

� reliable data transfer

� flow control

Transport Layer 3-79

� 3.3 Connectionless
transport: UDP

� 3.4 Principles of
reliable data transfer

� flow control

� connection management

� 3.6 Principles of
congestion control

� 3.7 TCP congestion
control

TCP Connection Management

Recall: TCP sender, receiver
establish “connection”
before exchanging data
segments

� initialize TCP variables:

� seq. #s

� buffers, flow control
info (e.g. RcvWindow)

Three way handshake:

Step 1: client host sends TCP
SYN segment to server

� specifies initial seq #

� no data

Step 2: server host receives
SYN, replies with SYNACK

Transport Layer 3-80

info (e.g. RcvWindow)

� client: connection initiator
Socket clientSocket = new
Socket("hostname","port

number");

� server: contacted by client
Socket connectionSocket =
welcomeSocket.accept();

SYN, replies with SYNACK
segment

� server allocates buffers

� specifies server initial
seq. #

Step 3: client receives SYNACK,
replies with ACK segment,
which may contain data

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close();

Step 1: client end system

client server

close

close

Transport Layer 3-81

Step 1: client end system
sends TCP FIN control

segment to server

Step 2: server receives
FIN, replies with ACK.
Closes connection, sends
FIN.

close

closed
ti

m
e
d
 w

ai
t

TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK.

� Enters “timed wait” -
will respond with ACK
to received FINs

client server

closing

closing

Transport Layer 3-82

to received FINs

Step 4: server, receives
ACK. Connection closed.

Note: with small
modification, can handle
simultaneous FINs.

closing

closed
ti

m
e
d
 w

ai
t

closed

TCP Connection Management (cont)

TCP server
lifecycle

Transport Layer 3-83

TCP client
lifecycle

Chapter 3 outline

� 3.1 Transport-layer
services

� 3.2 Multiplexing and
demultiplexing

� 3.3 Connectionless

� 3.5 Connection-oriented
transport: TCP

� segment structure

� reliable data transfer

� flow control

Transport Layer 3-84

� 3.3 Connectionless
transport: UDP

� 3.4 Principles of
reliable data transfer

� flow control

� connection management

� 3.6 Principles of
congestion control

� 3.7 TCP congestion
control

Principles of Congestion Control

Congestion:
� informally: “too many sources sending too much

data too fast for network to handle”

� different from flow control!

manifestations:

Transport Layer 3-85

� manifestations:

� lost packets (buffer overflow at routers)

� long delays (queueing in router buffers)

� a top-10 problem!

Causes/costs of congestion: scenario 1

� two senders, two
receivers

� one router,
infinite buffers

� no retransmission

unlimited shared
output link buffers

Host A
λin : original data

Host B

λout

Transport Layer 3-86

� no retransmission

� large delays
when congested

� maximum
achievable
throughput

Causes/costs of congestion: scenario 2

� one router, finite buffers

� sender retransmission of lost packet

Host A λin : original
data

λout

λ' : original data, plus

Transport Layer 3-87

finite shared output
link buffers

Host B

λ'in : original data, plus
retransmitted data

Causes/costs of congestion: scenario 2
� always: (goodput)

� “perfect” retransmission only when loss:

� retransmission of delayed (not lost) packet makes larger

(than perfect case) for same

λ
in

λ
out

=

λ
in

λ
out

>
λ

in
λ

out
R/2R/2 R/2

Transport Layer 3-88

“costs” of congestion:

� more work (retrans) for given “goodput”

� unneeded retransmissions: link carries multiple copies of pkt

R/2
λin

λ o
ut

b.

R/2
λin

λ o
ut

a.

R/2
λin

λ o
ut

c.

R/4

R/3

Causes/costs of congestion: scenario 3

� four senders

� multihop paths

� timeout/retransmit

λ
in

Q: what happens as
and increase ?λ

in

Host A
λin : original data λout

λ'in : original data, plus
retransmitted data

Transport Layer 3-89

finite shared output
link buffers

Host B

Causes/costs of congestion: scenario 3

H
o
s
t
A

H
o
s
t
B

λ
o
u

t

Transport Layer 3-90

Another “cost” of congestion:

� when packet dropped, any “upstream transmission
capacity used for that packet was wasted!

Approaches towards congestion control

End-end congestion
control:

� no explicit feedback from
network

Network-assisted
congestion control:

� routers provide feedback
to end systems

Two broad approaches towards congestion control:

Transport Layer 3-91

network

� congestion inferred from
end-system observed loss,
delay

� approach taken by TCP

to end systems

� single bit indicating
congestion (SNA,
DECbit, TCP/IP ECN,
ATM)

� explicit rate sender
should send at

Case study: ATM ABR congestion control

ABR: available bit rate:
� “elastic service”

� if sender’s path
“underloaded”:

� sender should use
available bandwidth

RM (resource management)
cells:

� sent by sender, interspersed
with data cells

� bits in RM cell set by switches
(“network-assisted”)

Transport Layer 3-92

available bandwidth

� if sender’s path
congested:

� sender throttled to
minimum guaranteed
rate

(“network-assisted”)
� NI bit: no increase in rate

(mild congestion)

� CI bit: congestion
indication

� RM cells returned to sender by
receiver, with bits intact

Case study: ATM ABR congestion control

Transport Layer 3-93

� two-byte ER (explicit rate) field in RM cell
� congested switch may lower ER value in cell

� sender’ send rate thus maximum supportable rate on path

� EFCI bit in data cells: set to 1 in congested switch
� if data cell preceding RM cell has EFCI set, sender sets CI

bit in returned RM cell

Chapter 3 outline

� 3.1 Transport-layer
services

� 3.2 Multiplexing and
demultiplexing

� 3.3 Connectionless

� 3.5 Connection-oriented
transport: TCP

� segment structure

� reliable data transfer

� flow control

Transport Layer 3-94

� 3.3 Connectionless
transport: UDP

� 3.4 Principles of
reliable data transfer

� flow control

� connection management

� 3.6 Principles of
congestion control

� 3.7 TCP congestion
control

TCP congestion control: additive increase,
multiplicative decrease

� Approach: increase transmission rate (window size),
probing for usable bandwidth, until loss occurs

� additive increase: increase CongWin by 1 MSS
every RTT until loss detected

� multiplicative decrease: cut CongWin in half after
loss

Transport Layer 3-95

8 Kbytes

16 Kbytes

24 Kbytes

time

congestion
window

loss

timeco
ng

es
tio

n
w

in
do

w
 s

iz
e

Saw tooth
behavior: probing

for bandwidth

TCP Congestion Control: details

� sender limits transmission:
LastByteSent-LastByteAcked

≤≤≤≤ CongWin

� Roughly,

How does sender
perceive congestion?

� loss event = timeout or
3 duplicate acks

� TCP sender reduces CongWin

Transport Layer 3-96

� CongWin is dynamic, function
of perceived network
congestion

� TCP sender reduces
rate (CongWin) after
loss event

three mechanisms:
� AIMD

� slow start

� conservative after
timeout events

rate =
CongWin

RTT
Bytes/sec

TCP Slow Start

� When connection begins,
CongWin = 1 MSS

� Example: MSS = 500
bytes & RTT = 200 msec

� initial rate = 20 kbps

� When connection begins,
increase rate
exponentially fast until
first loss event

Transport Layer 3-97

� available bandwidth may
be >> MSS/RTT

� desirable to quickly ramp
up to respectable rate

TCP Slow Start (more)

� When connection
begins, increase rate
exponentially until
first loss event:

� double CongWin every

Host A

R
T

T

Host B

Transport Layer 3-98

double CongWin every
RTT

� done by incrementing
CongWin for every ACK
received

� Summary: initial rate
is slow but ramps up
exponentially fast time

Refinement: inferring loss

� After 3 dup ACKs:

� CongWin is cut in half

� window then grows
linearly

� But after timeout event:

� 3 dup ACKs indicates
network capable of

Philosophy:

Transport Layer 3-99

� But after timeout event:

� CongWin instead set to
1 MSS;

� window then grows
exponentially

� to a threshold, then
grows linearly

network capable of
delivering some segments
� timeout indicates a
“more alarming”
congestion scenario

Refinement

Q: When should the
exponential
increase switch to
linear?

A: When CongWin
gets to 1/2 of its
value before
timeout.

Transport Layer 3-100

value before
timeout.

Implementation:
� Variable Threshold

� At loss event, Threshold is
set to 1/2 of CongWin just
before loss event

Summary: TCP Congestion Control

� When CongWin is below Threshold, sender in
slow-start phase, window grows exponentially.

� When CongWin is above Threshold, sender is in
congestion-avoidance phase, window grows linearly.

Transport Layer 3-101

congestion-avoidance phase, window grows linearly.

� When a triple duplicate ACK occurs, Threshold
set to CongWin/2 and CongWin set to
Threshold.

� When timeout occurs, Threshold set to
CongWin/2 and CongWin is set to 1 MSS.

TCP sender congestion control

State Event TCP Sender Action Commentary

Slow Start
(SS)

ACK receipt
for previously
unacked
data

CongWin = CongWin + MSS,
If (CongWin > Threshold)

set state to “Congestion
Avoidance”

Resulting in a doubling of
CongWin every RTT

Congestion
Avoidance
(CA)

ACK receipt
for previously
unacked
data

CongWin = CongWin+MSS *
(MSS/CongWin)

Additive increase, resulting
in increase of CongWin by
1 MSS every RTT

Transport Layer 3-102

data

SS or CA Loss event
detected by
triple
duplicate
ACK

Threshold = CongWin/2,
CongWin = Threshold,
Set state to “Congestion
Avoidance”

Fast recovery,
implementing multiplicative
decrease. CongWin will not
drop below 1 MSS.

SS or CA Timeout Threshold = CongWin/2,
CongWin = 1 MSS,
Set state to “Slow Start”

Enter slow start

SS or CA Duplicate
ACK

Increment duplicate ACK count
for segment being acked

CongWin and Threshold not
changed

TCP throughput

� What’s the average throughout of TCP as a
function of window size and RTT?
� Ignore slow start

� Let W be the window size when loss occurs.

Transport Layer 3-103

Let W be the window size when loss occurs.

� When window is W, throughput is W/RTT

� Just after loss, window drops to W/2,
throughput to W/2RTT.

� Average throughout: .75 W/RTT

TCP Futures: TCP over “long, fat pipes”

� Example: 1500 byte segments, 100ms RTT, want 10
Gbps throughput

� Requires window size W = 83,333 in-flight
segments

� Throughput in terms of loss rate:

Transport Layer 3-104

� Throughput in terms of loss rate:

� ➜ L = 2·10-10 Wow
� New versions of TCP for high-speed

LRTT

MSS⋅22.1

Fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

TCP Fairness

Transport Layer 3-105

bottleneck
router

capacity R

TCP
connection 2

Why is TCP fair?

Two competing sessions:
� Additive increase gives slope of 1, as throughout increases

� multiplicative decrease decreases throughput proportionally

R equal bandwidth share

Transport Layer 3-106

RConnection 1 throughput

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

Fairness (more)

Fairness and UDP
� Multimedia apps often

do not use TCP
� do not want rate

throttled by congestion
control

� Instead use UDP:

Fairness and parallel TCP
connections

� nothing prevents app from
opening parallel
connections between 2
hosts.

� Web browsers do this

Transport Layer 3-107

� Instead use UDP:
� pump audio/video at

constant rate, tolerate
packet loss

� Research area: TCP
friendly

� Web browsers do this
� Example: link of rate R

supporting 9 connections;
� new app asks for 1 TCP, gets

rate R/10
� new app asks for 11 TCPs,

gets R/2 !

Chapter 3: Summary

� principles behind transport
layer services:

� multiplexing,
demultiplexing

� reliable data transfer

flow control

Transport Layer 3-108

� flow control

� congestion control

� instantiation and
implementation in the
Internet

� UDP

� TCP

Next:

� leaving the network
“edge” (application,
transport layers)

� into the network
“core”

