
2110472 Computer Network

Transport Layer &
Multimedia Networking

Transport Layer 3-1

Multimedia Networking

� Kultida Rojviboonchai, Ph.D.

� Email: kultida@cp.eng.chula.ac.th



Course Information

� Instructor: Kultida Rojviboonchai, Ph.D.

http://www.cp.eng.chula.ac.th/~kultida

� Course website:   
http://www.cp.eng.chula.ac.th/~kultida/classes.html

Transport Layer 3-2

http://www.cp.eng.chula.ac.th/~kultida/classes.html

� Lecture schedule:  Friday 13:00-16:00

� Course materials:  Lecture slides 

Selected textbooks



Chapter 3
Transport Layer

Kultida Rojviboonchai, Ph.D.

Transport Layer 3-3

Computer Networking: 
A Top Down Approach 
4th edition. 
Jim Kurose, Keith Ross
Addison-Wesley, July 
2007. 

A note on the use of these ppt slides:
The notes used in this course are substantially based on slides copyrighted 
by J.F Kurose and K.W. Ross 1996-2007

Kultida Rojviboonchai, Ph.D.
Dept. of Computer Engineering
Faculty of Engineering
Chulalongkorn University



Chapter 3: Transport Layer

Our goals:

� understand principles 
behind transport 
layer services:

� multiplexing/demultipl
exing

� learn about transport 
layer protocols in the 
Internet:

� UDP: connectionless 
transport
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exing

� reliable data transfer

� flow control

� congestion control

transport

� TCP: connection-oriented 
transport

� TCP congestion control



Chapter 3 outline

� 3.1 Transport-layer 
services

� 3.2 Multiplexing and 
demultiplexing

� 3.3 Connectionless 

� 3.5 Connection-oriented 
transport: TCP

� segment structure

� reliable data transfer

� flow control
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� 3.3 Connectionless 
transport: UDP

� 3.4 Principles of 
reliable data transfer

� flow control

� connection management

� 3.6 Principles of 
congestion control

� 3.7 TCP congestion 
control



Transport services and protocols

� provide logical communication
between app processes 
running on different hosts

� transport protocols run in 
end systems 

� send side: breaks app 
messages into segments, 

application
transport
network
data link
physical
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messages into segments, 
passes to  network layer

� rcv side: reassembles 
segments into messages, 
passes to app layer

� more than one transport 
protocol available to apps

� Internet: TCP and UDP

application
transport
network
data link
physical



Transport vs. network layer

� network layer: logical 
communication 
between hosts

� transport layer: logical 
communication 

Household analogy:

12 kids sending letters to 
12 kids

� processes = kids

� app messages = letters 
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communication 
between processes 

� relies on, enhances, 
network layer services

� app messages = letters 
in envelopes

� hosts = houses

� transport protocol = 
Ann and Bill

� network-layer protocol 
= postal service



Internet transport-layer protocols

� reliable, in-order 
delivery (TCP)

� congestion control 

� flow control

� connection setup

� unreliable, unordered 

application
transport
network
data link
physical

network
data link
physical

network

network
data link
physical
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� unreliable, unordered 
delivery: UDP

� no-frills extension of 
“best-effort” IP

� services not available: 
� delay guarantees

� bandwidth guarantees

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

application
transport
network
data link
physical



Chapter 3 outline

� 3.1 Transport-layer 
services

� 3.2 Multiplexing and 
demultiplexing

� 3.3 Connectionless 

� 3.5 Connection-oriented 
transport: TCP

� segment structure

� reliable data transfer

� flow control
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� 3.3 Connectionless 
transport: UDP

� 3.4 Principles of 
reliable data transfer

� flow control

� connection management

� 3.6 Principles of 
congestion control

� 3.7 TCP congestion 
control



Multiplexing/demultiplexing

= process= socket

delivering received segments
to correct socket

Demultiplexing at rcv host:
gathering data from multiple
sockets, enveloping data with 
header (later used for 
demultiplexing)

Multiplexing at send host:
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application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2P3 P4P1

host 1 host 2 host 3



How demultiplexing works
� host receives IP datagrams

� each datagram has source 
IP address, destination IP 
address

� each datagram carries 1 
transport-layer segment

� each segment has source, 

source port # dest port #

32 bits

other header fields
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� each segment has source, 
destination port number 

� host uses IP addresses & port 
numbers to direct segment to 
appropriate socket

application
data 

(message)

TCP/UDP segment format



Connectionless demultiplexing

� Create sockets with port 
numbers:

DatagramSocket mySocket1 = new 
DatagramSocket(12534);

DatagramSocket mySocket2 = new 
DatagramSocket(12535);

� When host receives UDP 
segment:

� checks destination port 
number in segment

� directs UDP segment to 
socket with that port 
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DatagramSocket(12535);

� UDP socket identified by  
two-tuple:

(dest IP address, dest port number)

socket with that port 
number

� IP datagrams with 
different source IP 
addresses and/or source 
port numbers directed 
to same socket



Connectionless demux (cont)

DatagramSocket serverSocket = new DatagramSocket(6428);

P2 P1P1P3
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Client
IP:B

client
IP: A

server
IP: C

SP: 6428

DP: 9157

SP: 9157

DP: 6428

SP: 6428

DP: 5775

SP: 5775

DP: 6428

SP provides “return address”



Connection-oriented demux

� TCP socket identified 
by 4-tuple: 

� source IP address

� source port number

� dest IP address

� Server host may support 
many simultaneous TCP 
sockets:

� each socket identified by 
its own 4-tuple

Transport Layer 3-14

� dest IP address

� dest port number

� recv host uses all four 
values to direct 
segment to appropriate 
socket

� Web servers have 
different sockets for 
each connecting client

� non-persistent HTTP will 
have different socket for 
each request



Connection-oriented demux 
(cont)

P1 P1P2P4 P5 P6 P3

SP: 5775

DP: 80
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Client
IP:B

client
IP: A

server
IP: C

SP: 9157

DP: 80

SP: 9157

DP: 80

D-IP:C

S-IP: A

D-IP:C

S-IP: B

DP: 80

D-IP:C

S-IP: B



Connection-oriented demux: 
Threaded Web Server

P1 P1P2P4 P3

SP: 5775

DP: 80
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Client
IP:B

client
IP: A

server
IP: C

SP: 9157

DP: 80

SP: 9157

DP: 80

D-IP:C

S-IP: A

D-IP:C

S-IP: B

DP: 80

D-IP:C

S-IP: B



Chapter 3 outline

� 3.1 Transport-layer 
services

� 3.2 Multiplexing and 
demultiplexing

� 3.3 Connectionless 

� 3.5 Connection-oriented 
transport: TCP

� segment structure

� reliable data transfer

� flow control
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� 3.3 Connectionless 
transport: UDP

� 3.4 Principles of 
reliable data transfer

� flow control

� connection management

� 3.6 Principles of 
congestion control

� 3.7 TCP congestion 
control



UDP: User Datagram Protocol [RFC 768]

� “no frills,” “bare bones” 
Internet transport 
protocol

� “best effort” service, UDP 
segments may be:

� lost

Why is there a UDP?
� no connection 

establishment (which can 
add delay)

� simple: no connection state 
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lost

� delivered out of order 
to app

� connectionless:
� no handshaking between 

UDP sender, receiver

� each UDP segment 
handled independently 
of others

� simple: no connection state 
at sender, receiver

� small segment header

� no congestion control: UDP 
can blast away as fast as 
desired



UDP: more

� often used for streaming 
multimedia apps

� loss tolerant

� rate sensitive

� other UDP uses
� DNS

source port # dest port #

32 bits

length checksum
Length, in

bytes of UDP
segment,
including

header
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� DNS

� SNMP

� reliable transfer over UDP: 
add reliability at 
application layer

� application-specific 
error recovery!

Application
data 

(message)

UDP segment format

header



UDP checksum

Sender:
� treat segment contents 

as sequence of 16-bit 

Receiver:
� compute checksum of 

received segment

Goal: detect “errors” (e.g., flipped bits) in transmitted 
segment

Transport Layer 3-20

as sequence of 16-bit 
integers

� checksum: addition (1’s 
complement sum) of 
segment contents

� sender puts checksum 
value into UDP checksum 
field

received segment

� check if computed checksum 
equals checksum field value:

� NO - error detected

� YES - no error detected. 
But maybe errors 
nonetheless? More later 
….



Internet Checksum Example
� Note

� When adding numbers, a carryout from the 
most significant bit needs to be added to the 
result

� Example: add two 16-bit integers
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1 1  1  1  0  0  1  1  0  0  1  1  0  0  1  1  0
1 1  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1

1  1  0  1  1  1  0  1  1  1  0  1  1  1  0  1  1

1 1  0  1  1  1  0  1  1  1  0  1  1  1  1  0  0
1 0  1  0  0  0  1  0  0  0  1  0  0  0  0  1  1

wraparound

sum

checksum



Chapter 3 outline

� 3.1 Transport-layer 
services

� 3.2 Multiplexing and 
demultiplexing

� 3.3 Connectionless 

� 3.5 Connection-oriented 
transport: TCP

� segment structure

� reliable data transfer

� flow control
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� 3.3 Connectionless 
transport: UDP

� 3.4 Principles of 
reliable data transfer

� flow control

� connection management

� 3.6 Principles of 
congestion control

� 3.7 TCP congestion 
control



Principles of Reliable data transfer

� important in app., transport, link layers

� top-10 list of important networking topics!
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� characteristics of unreliable channel will determine 
complexity of reliable data transfer protocol (rdt)



Principles of Reliable data transfer

� important in app., transport, link layers

� top-10 list of important networking topics!
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� characteristics of unreliable channel will determine 
complexity of reliable data transfer protocol (rdt)



Principles of Reliable data transfer

� important in app., transport, link layers

� top-10 list of important networking topics!
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� characteristics of unreliable channel will determine 
complexity of reliable data transfer protocol (rdt)



Reliable data transfer: getting started

send receive

rdt_send(): called from above, 
(e.g., by app.). Passed data to 

deliver to receiver upper layer

deliver_data(): called by 
rdt to deliver data to upper
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send
side

receive
side

udt_send(): called by rdt,
to transfer packet over 

unreliable channel to receiver

rdt_rcv(): called when packet 
arrives on rcv-side of channel



Reliable data transfer: getting started

We’ll:

� incrementally develop sender, receiver sides of 
reliable data transfer protocol (rdt)

� consider only unidirectional data transfer
� but control info will flow on both directions!

use finite state machines (FSM)  to specify 
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� use finite state machines (FSM)  to specify 
sender, receiver

state
1

state
2

event causing state transition
actions taken on state transition

state: when in this 
“state” next state 

uniquely determined 
by next event

event
actions



Rdt1.0: reliable transfer over a reliable channel

� underlying channel perfectly reliable
� no bit errors

� no loss of packets

� separate FSMs for sender, receiver:
� sender sends data into underlying channel

� receiver read data from underlying channel
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� receiver read data from underlying channel

Wait for 
call from 
above packet = make_pkt(data)

udt_send(packet)

rdt_send(data)

extract (packet,data)
deliver_data(data)

Wait for 
call from 

below

rdt_rcv(packet)

sender receiver



Rdt2.0: channel with bit errors

� underlying channel may flip bits in packet
� checksum to detect bit errors

� the question: how to recover from errors:
� acknowledgements (ACKs): receiver explicitly tells sender 

that pkt received OK

� negative acknowledgements (NAKs): receiver explicitly 
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� negative acknowledgements (NAKs): receiver explicitly 
tells sender that pkt had errors

� sender retransmits pkt on receipt of NAK

� new mechanisms in rdt2.0 (beyond rdt1.0):
� error detection

� receiver feedback: control msgs (ACK,NAK) rcvr->sender



rdt2.0: FSM specification

Wait for 
call from 
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && 
corrupt(rcvpkt)

Wait for 
ACK or 

NAK

receiver
rdt_send(data)
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extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) && 
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
Wait for 
call from 

belowsender

Λ



rdt2.0: operation with no errors

Wait for 
call from 
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && 
corrupt(rcvpkt)

Wait for 
ACK or 

NAK

rdt_send(data)
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extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) && 
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
Wait for 
call from 

below
Λ



rdt2.0: error scenario

Wait for 
call from 
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && 
corrupt(rcvpkt)

Wait for 
ACK or 

NAK

rdt_send(data)
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extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) && 
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
Wait for 
call from 

below
Λ



rdt2.0 has a fatal flaw!

What happens if 
ACK/NAK corrupted?

� sender doesn’t know what 
happened at receiver!

� can’t just retransmit: 
possible duplicate

Handling duplicates: 
� sender retransmits current 

pkt if ACK/NAK garbled

� sender adds sequence 
number to each pkt

receiver discards (doesn’t 
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possible duplicate � receiver discards (doesn’t 
deliver up) duplicate pkt

Sender sends one packet, 
then waits for receiver 
response

stop and wait



rdt2.1: sender, handles garbled ACK/NAKs

Wait for 
call 0 from 

above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

Wait for 
ACK or 
NAK 0 udt_send(sndpkt)

rdt_rcv(rcvpkt) &&  
( corrupt(rcvpkt) ||
isNAK(rcvpkt) )

rdt_rcv(rcvpkt)   
rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
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sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt) 

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&  
( corrupt(rcvpkt) ||
isNAK(rcvpkt) )

&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt)

Wait for
call 1 from 

above

Wait for 
ACK or 
NAK 1

ΛΛ



rdt2.1: receiver, handles garbled ACK/NAKs

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) 
&& has_seq0(rcvpkt) 

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)
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Wait for 
0 from 
below

udt_send(sndpkt)

rdt_rcv(rcvpkt) && 
not corrupt(rcvpkt) &&
has_seq0(rcvpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) 
&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Wait for 
1 from 
below

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && 
not corrupt(rcvpkt) &&
has_seq1(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)



rdt2.1: discussion

Sender:

� seq # added to pkt

� two seq. #’s (0,1) will 
suffice.  Why?

� must check if received 

Receiver:

� must check if received 
packet is duplicate

� state indicates whether 
0 or 1 is expected pkt 
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� must check if received 
ACK/NAK corrupted 

� twice as many states
� state must “remember” 

whether “current” pkt 
has 0 or 1 seq. #

0 or 1 is expected pkt 
seq #

� note: receiver can not
know if its last 
ACK/NAK received OK 
at sender



rdt2.2: a NAK-free protocol

� same functionality as rdt2.1, using ACKs only

� instead of NAK, receiver sends ACK for last pkt 
received OK

� receiver must explicitly include seq # of pkt being ACKed 

� duplicate ACK at sender results in same action as 
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� duplicate ACK at sender results in same action as 
NAK: retransmit current pkt



rdt2.2: sender, receiver fragments

Wait for 
call 0 from 

above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&  
( corrupt(rcvpkt) ||

isACK(rcvpkt,1) )

rdt_rcv(rcvpkt)   

Wait for 
ACK

0

sender FSM
fragment
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rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt,0)

fragment

Wait for 
0 from 
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) 
&& has_seq1(rcvpkt) 

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK1, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && 
(corrupt(rcvpkt) ||

has_seq1(rcvpkt))

udt_send(sndpkt)

receiver FSM
fragment

Λ



rdt3.0: channels with errors and loss

New assumption:
underlying channel can 
also lose packets (data 
or ACKs)

� checksum, seq. #, ACKs, 

Approach: sender waits 
“reasonable” amount of 
time for ACK 

� retransmits if no ACK 
received in this time
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� checksum, seq. #, ACKs, 
retransmissions will be 
of help, but not enough

� if pkt (or ACK) just delayed 
(not lost):

� retransmission will be  
duplicate, but use of seq. 
#’s already handles this

� receiver must specify seq 
# of pkt being ACKed

� requires countdown timer



rdt3.0 sender

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

Wait 
for 

ACK0

rdt_rcv(rcvpkt) &&  
( corrupt(rcvpkt) ||
isACK(rcvpkt,1) )

rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 

rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt,1)

udt_send(sndpkt)
start_timer

timeout

rdt_rcv(rcvpkt)

Wait for 
call 0from 

above

Λ
Λ
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Wait for 
call 1 from 

above

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt,0)

rdt_rcv(rcvpkt) &&  
( corrupt(rcvpkt) ||
isACK(rcvpkt,0) )

&& isACK(rcvpkt,1)

stop_timer
stop_timer

udt_send(sndpkt)
start_timer

timeout
Wait 
for 

ACK1

Λ
rdt_rcv(rcvpkt)

Λ



rdt3.0 in action
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rdt3.0 in action
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Performance of rdt3.0

� rdt3.0 works, but performance stinks

� ex: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

dsmicrosecon8
bps10

bits8000
9

===
R

L
dtrans
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� U sender: utilization – fraction of time sender busy sending

 

U 
sender 

= 
.008 

30.008 
= 0.00027 

microsec

L / R 

RTT + L / R 
= 

� 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link

� network protocol limits use of physical resources!

bps10R



rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK
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ACK arrives, send next 
packet, t = RTT + L / R

 

U 
sender 

= 
.008 

30.008 
= 0.00027 

microsec

L / R 

RTT + L / R 
= 



Pipelined protocols

Pipelining: sender allows multiple, “in-flight”, yet-to-
be-acknowledged pkts

� range of sequence numbers must be increased

� buffering at sender and/or receiver
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� Two generic forms of pipelined protocols: go-Back-N, 
selective repeat



Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT 

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK
last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

Transport Layer 3-46

ACK arrives, send next 
packet, t = RTT + L / R

last bit of 3rd packet arrives, send ACK

 

U 
sender 

= 
.024 

30.008 
= 0.0008 

microsecon

3 * L / R 

RTT + L / R 
= 

Increase utilization
by a factor of 3!



Pipelining Protocols

Go-back-N: big picture:
� Sender can have up to 

N unacked packets in 
pipeline

� Rcvr only sends 
cumulative acks

Selective Repeat: big pic
� Sender can have up to 

N unacked packets in 
pipeline

� Rcvr acks individual 
packets
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Rcvr only sends 
cumulative acks

� Doesn’t ack packet if 
there’s a gap

� Sender has timer for 
oldest unacked packet

� If timer expires, 
retransmit all unacked 
packets

Rcvr acks individual 
packets

� Sender maintains 
timer for each 
unacked packet

� When timer expires, 
retransmit only unack 
packet



Selective repeat: big picture

� Sender can have up to N unacked packets 
in pipeline

� Rcvr acks individual packets

� Sender maintains timer for each unacked 
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� Sender maintains timer for each unacked 
packet
� When timer expires, retransmit only unack 

packet



Go-Back-N
Sender:
� k-bit seq # in pkt header

� “window” of up to N, consecutive unack’ed pkts allowed
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� ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”

� may receive duplicate ACKs (see receiver)

� timer for each in-flight pkt

� timeout(n): retransmit pkt n and all higher seq # pkts in window



GBN: sender extended FSM
rdt_send(data)

if (nextseqnum < base+N) {
sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)
udt_send(sndpkt[nextseqnum])
if (base == nextseqnum)

start_timer
nextseqnum++
}

else
refuse_data(data)

base=1

Λ
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Wait start_timer
udt_send(sndpkt[base])
udt_send(sndpkt[base+1])
…
udt_send(sndpkt[nextseqnum-1])

timeout

base = getacknum(rcvpkt)+1
If (base == nextseqnum)

stop_timer
else
start_timer

rdt_rcv(rcvpkt) && 
notcorrupt(rcvpkt) 

base=1
nextseqnum=1

rdt_rcv(rcvpkt) 
&& corrupt(rcvpkt)



GBN: receiver extended FSM

Wait

udt_send(sndpkt)

default

rdt_rcv(rcvpkt)
&& notcurrupt(rcvpkt)
&& hasseqnum(rcvpkt,expectedseqnum) 

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedseqnum++

expectedseqnum=1
sndpkt =    
make_pkt(expectedseqnum,ACK,chksum)

Λ
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ACK-only: always send ACK for correctly-received pkt 
with highest in-order seq #

� may generate duplicate ACKs

� need only remember expectedseqnum

� out-of-order pkt: 
� discard (don’t buffer) -> no receiver buffering!

� Re-ACK pkt with highest in-order seq #



GBN in
action
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Selective Repeat

� receiver individually acknowledges all correctly 
received pkts

� buffers pkts, as needed, for eventual in-order delivery 
to upper layer

� sender only resends pkts for which ACK not 
received
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received
� sender timer for each unACKed pkt

� sender window
� N consecutive seq #’s

� again limits seq #s of sent, unACKed pkts



Selective repeat: sender, receiver windows
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Selective repeat

data from above :
� if next available seq # in 

window, send pkt

timeout(n):
� resend pkt n, restart timer

sender
pkt n in [rcvbase, rcvbase+N-1]

� send ACK(n)

� out-of-order: buffer

� in-order: deliver (also 
deliver buffered, in-order 
pkts), advance window to 

receiver
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� resend pkt n, restart timer

ACK(n) in [sendbase,sendbase+N]:

� mark pkt n as received

� if n smallest unACKed pkt, 
advance window base to 
next unACKed seq # 

pkts), advance window to 
next not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]

� ACK(n)

otherwise:
� ignore 



Selective repeat in action
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Selective repeat:
dilemma

Example: 
� seq #’s: 0, 1, 2, 3

� window size=3

� receiver sees no 
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� receiver sees no 
difference in two 
scenarios!

� incorrectly passes 
duplicate data as new 
in (a)

Q: what relationship 
between seq # size 
and window size?



Chapter 3 outline

� 3.1 Transport-layer 
services

� 3.2 Multiplexing and 
demultiplexing
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� 3.5 Connection-oriented 
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� flow control
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� 3.3 Connectionless 
transport: UDP

� 3.4 Principles of 
reliable data transfer

� flow control

� connection management

� 3.6 Principles of 
congestion control

� 3.7 TCP congestion 
control



TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

� full duplex data:
� bi-directional data flow 

in same connection

� MSS: maximum segment 
size

connection-oriented:

� point-to-point:
� one sender, one receiver

� reliable, in-order byte 
steam:

� no “message boundaries”
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� connection-oriented:
� handshaking (exchange 

of control msgs) init’s 
sender, receiver state 
before data exchange

� flow controlled:
� sender will not 

overwhelm receiver

� no “message boundaries”

� pipelined:
� TCP congestion and flow 

control set window size

� send & receive buffers

socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data



TCP segment structure

source port # dest port #

32 bits

sequence number

acknowledgement number

Receive window

Urg data pnterchecksum

FSRPAU
head
len

not
used

URG: urgent data 
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used) # bytes 

rcvr willing

counting
by bytes 
of data
(not segments!)
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application
data 

(variable length)

Urg data pnterchecksum

Options (variable length)RST, SYN, FIN:
connection estab
(setup, teardown

commands)

rcvr willing
to accept

Internet
checksum

(as in UDP)



TCP seq. #’s and ACKs
Seq. #’s:

� byte stream 
“number” of first 
byte in segment’s 
data

ACKs:

seq # of next byte 

Host A Host B

User
types

‘C’
host ACKs
receipt of
‘C’, echoes

back ‘C’
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� seq # of next byte 
expected from 
other side

� cumulative ACK

Q: how receiver handles 
out-of-order segments

� A: TCP spec doesn’t 
say, - up to 
implementor

host ACKs
receipt 

of echoed
‘C’

back ‘C’

time
simple telnet scenario



TCP Round Trip Time and Timeout

Q: how to set TCP 
timeout value?

� longer than RTT
� but RTT varies

� too short: premature 
timeout

Q: how to estimate RTT?
� SampleRTT: measured time from 

segment transmission until ACK 
receipt

� ignore retransmissions

� SampleRTT will vary, want 
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timeout

� unnecessary 
retransmissions

� too long: slow reaction 
to segment loss

SampleRTT will vary, want 
estimated RTT “smoother”

� average several recent 
measurements, not just 
current SampleRTT



TCP Round Trip Time and Timeout

EstimatedRTT = (1- αααα)*EstimatedRTT + αααα*SampleRTT

� Exponential weighted moving average

� influence of past sample decreases exponentially fast

� typical value: αααα = 0.125
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Example RTT estimation:
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr
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TCP Round Trip Time and Timeout

Setting the timeout
� EstimtedRTT plus “safety margin”

� large variation in EstimatedRTT -> larger safety margin

� first estimate of how much SampleRTT deviates from 
EstimatedRTT: 
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TimeoutInterval = EstimatedRTT + 4*DevRTT

DevRTT = (1-ββββ)*DevRTT +
ββββ*|SampleRTT-EstimatedRTT|

(typically, ββββ = 0.25)

Then set timeout interval:



Chapter 3 outline

� 3.1 Transport-layer 
services

� 3.2 Multiplexing and 
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� 3.3 Connectionless 
transport: UDP

� 3.4 Principles of 
reliable data transfer

� flow control

� connection management

� 3.6 Principles of 
congestion control

� 3.7 TCP congestion 
control



TCP reliable data transfer

� TCP creates rdt 
service on top of IP’s 
unreliable service

� Pipelined segments

� Cumulative acks

� Retransmissions are 
triggered by:

� timeout events

� duplicate acks

� Initially consider 
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� Cumulative acks

� TCP uses single 
retransmission timer

� Initially consider 
simplified TCP sender:

� ignore duplicate acks

� ignore flow control, 
congestion control



TCP sender events:
data rcvd from app:

� Create segment with 
seq #

� seq # is byte-stream 
number of first data 
byte in  segment

timeout:

� retransmit segment 
that caused timeout

� restart timer

Ack rcvd:

� If acknowledges 
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byte in  segment

� start timer if not 
already running (think 
of timer as for oldest 
unacked segment)

� expiration interval: 
TimeOutInterval 

� If acknowledges 
previously unacked 
segments

� update what is known to 
be acked

� start timer if there are  
outstanding segments



TCP 
sender
(simplified)

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

loop (forever) {
switch(event)

event: data received from application above 
create TCP segment with sequence number NextSeqNum 
if (timer currently not running)

start timer
pass segment to IP 
NextSeqNum = NextSeqNum + length(data) 

event: timer timeout

Comment:
• SendBase-1: last 
cumulatively 
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event: timer timeout
retransmit not-yet-acknowledged segment with 

smallest sequence number
start timer

event: ACK received, with ACK field value of y 
if (y > SendBase) { 

SendBase = y
if (there are currently not-yet-acknowledged segments)

start timer 
} 

}  /* end of loop forever */

cumulatively 
ack’ed byte
Example:
• SendBase-1 = 71;
y= 73, so the rcvr
wants 73+ ;
y > SendBase, so
that new data is 
acked



TCP: retransmission scenarios

Host A Host B
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Host B

X
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time
premature timeout

S
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loss

lost ACK scenario
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S
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SendBase
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SendBase
= 120

SendBase
= 120

Sendbase
= 100



TCP retransmission scenarios (more)

Host A

loss

ti
m

e
ou

t

Host B

X
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loss

Cumulative ACK scenario
time

SendBase
= 120



TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Arrival of in-order segment with

TCP Receiver action

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Immediately send single cumulative 
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Arrival of in-order segment with
expected seq #. One other 
segment has ACK pending

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Arrival of segment that 
partially or completely fills gap

Immediately send single cumulative 
ACK, ACKing both in-order segments 

Immediately send duplicate ACK, 
indicating seq. # of next expected byte

Immediate send ACK, provided that
segment starts at lower end of gap



Fast  Retransmit

� Time-out period  often 
relatively long:

� long delay before 
resending lost packet

� Detect lost segments 

� If sender receives 3 
ACKs for the same 
data, it supposes that 
segment after ACKed 
data was lost:
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� Detect lost segments 
via duplicate ACKs.

� Sender often sends 
many segments back-to-
back

� If segment is lost, 
there will likely be many 
duplicate ACKs.

data was lost:
� fast retransmit: resend 

segment before timer 
expires



Host A Host B

X
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ti
m

e
ou

t

time

Figure 3.37 Resending a segment after triple duplicate ACK



event: ACK received, with ACK field value of y 
if (y > SendBase) { 

SendBase = y
if (there are currently not-yet-acknowledged segments)

start timer 
} 

Fast retransmit algorithm:
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} 
else { 

increment count of dup ACKs received for y
if (count of dup ACKs received for y = 3) {

resend segment with sequence number y
}

a duplicate ACK for 
already ACKed segment

fast retransmit
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� 3.3 Connectionless 
transport: UDP

� 3.4 Principles of 
reliable data transfer

� flow control

� connection management

� 3.6 Principles of 
congestion control

� 3.7 TCP congestion 
control



TCP Flow Control

� receive side of TCP 
connection has a 
receive buffer:

� speed-matching 

sender won’t overflow
receiver’s buffer by

transmitting too much,
too fast

flow control
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� speed-matching 
service: matching the 
send rate to the 
receiving app’s drain 
rate

� app process may be 
slow at reading from 
buffer



TCP Flow control: how it works

(Suppose TCP receiver 

� Rcvr advertises spare 
room by including value 
of RcvWindow in 
segments

� Sender limits unACKed 
data to RcvWindow
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(Suppose TCP receiver 
discards out-of-order 
segments)

� spare room in buffer
= RcvWindow

= RcvBuffer-[LastByteRcvd -
LastByteRead]

data to RcvWindow
� guarantees receive 

buffer doesn’t overflow
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� 3.3 Connectionless 
transport: UDP

� 3.4 Principles of 
reliable data transfer

� flow control

� connection management

� 3.6 Principles of 
congestion control

� 3.7 TCP congestion 
control



TCP Connection Management

Recall: TCP sender, receiver 
establish “connection” 
before exchanging data 
segments

� initialize TCP variables:

� seq. #s

� buffers, flow control 
info (e.g. RcvWindow)

Three way handshake:

Step 1: client host sends TCP 
SYN segment to server

� specifies initial seq #

� no data

Step 2: server host receives 
SYN, replies with SYNACK 
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info (e.g. RcvWindow)

� client: connection initiator
Socket clientSocket = new   
Socket("hostname","port 

number");

� server: contacted by client
Socket connectionSocket = 
welcomeSocket.accept();

SYN, replies with SYNACK 
segment

� server allocates buffers

� specifies server initial 
seq. #

Step 3: client receives SYNACK, 
replies with ACK segment, 
which may contain data



TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close();

Step 1: client end system 

client server

close

close
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Step 1: client end system 
sends TCP FIN control 

segment to server

Step 2: server receives 
FIN, replies with ACK. 
Closes connection, sends 
FIN. 

close

closed
ti

m
e
d
 w

ai
t



TCP Connection Management (cont.)

Step 3: client receives FIN, 
replies with ACK. 

� Enters “timed wait” -
will respond with ACK 
to received FINs 

client server

closing

closing
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to received FINs 

Step 4: server, receives 
ACK.  Connection closed. 

Note: with small 
modification, can handle 
simultaneous FINs.

closing

closed
ti

m
e
d
 w

ai
t

closed



TCP Connection Management (cont)

TCP server
lifecycle
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TCP client
lifecycle
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� 3.3 Connectionless 
transport: UDP

� 3.4 Principles of 
reliable data transfer

� flow control

� connection management

� 3.6 Principles of 
congestion control

� 3.7 TCP congestion 
control



Principles of Congestion Control

Congestion:
� informally: “too many sources sending too much 

data too fast for network to handle”

� different from flow control!

manifestations:
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� manifestations:

� lost packets (buffer overflow at routers)

� long delays (queueing in router buffers)

� a top-10 problem!



Causes/costs of congestion: scenario 1

� two senders, two 
receivers

� one router, 
infinite buffers 

� no retransmission

unlimited shared 
output link buffers

Host A
λin : original data

Host B

λout
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� no retransmission

� large delays 
when congested

� maximum 
achievable 
throughput



Causes/costs of congestion: scenario 2

� one router, finite buffers 

� sender retransmission of lost packet

Host A λin : original 
data

λout

λ' : original data, plus 
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finite shared output 
link buffers

Host B

λ'in : original data, plus 
retransmitted data



Causes/costs of congestion: scenario 2
� always:                   (goodput)

� “perfect” retransmission only when loss:

� retransmission of delayed (not lost) packet makes         larger 

(than perfect case) for same

λ
in

λ
out

=

λ
in

λ
out

>
λ

in
λ

out
R/2R/2 R/2
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“costs” of congestion:

� more work (retrans) for given “goodput”

� unneeded retransmissions: link carries multiple copies of pkt

R/2
λin

λ o
ut

b.

R/2
λin

λ o
ut

a.

R/2
λin

λ o
ut

c.

R/4

R/3



Causes/costs of congestion: scenario 3

� four senders

� multihop paths

� timeout/retransmit

λ
in

Q: what happens as      
and     increase ?λ

in

Host A
λin : original data λout

λ'in : original data, plus 
retransmitted data
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finite shared output 
link buffers

Host B



Causes/costs of congestion: scenario 3

H
o
s
t 
A

H
o
s
t 
B

λ
o
u

t
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Another “cost” of congestion:

� when packet dropped, any “upstream transmission 
capacity used for that packet was wasted!



Approaches towards congestion control

End-end congestion 
control:

� no explicit feedback from 
network

Network-assisted 
congestion control:

� routers provide feedback 
to end systems

Two broad approaches towards congestion control:
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network

� congestion inferred from 
end-system observed loss, 
delay

� approach taken by TCP

to end systems

� single bit indicating 
congestion (SNA, 
DECbit, TCP/IP ECN, 
ATM)

� explicit rate sender 
should send at



Case study: ATM ABR congestion control

ABR: available bit rate:
� “elastic service” 

� if sender’s path 
“underloaded”: 

� sender should use 
available bandwidth

RM (resource management) 
cells:

� sent by sender, interspersed 
with data cells

� bits in RM cell set by switches 
(“network-assisted”) 

Transport Layer 3-92

available bandwidth

� if sender’s path 
congested: 

� sender throttled to 
minimum guaranteed 
rate

(“network-assisted”) 
� NI bit: no increase in rate 

(mild congestion)

� CI bit: congestion 
indication

� RM cells returned to sender by 
receiver, with bits intact



Case study: ATM ABR congestion control
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� two-byte ER (explicit rate) field in RM cell
� congested switch may lower ER value in cell

� sender’ send rate thus maximum supportable rate on path

� EFCI bit in data cells: set to 1 in congested switch
� if data cell preceding RM cell has EFCI set, sender sets CI 

bit in returned RM cell
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� 3.3 Connectionless 
transport: UDP

� 3.4 Principles of 
reliable data transfer

� flow control

� connection management

� 3.6 Principles of 
congestion control

� 3.7 TCP congestion 
control



TCP congestion control: additive increase, 
multiplicative decrease

� Approach: increase transmission rate (window size), 
probing for usable bandwidth, until loss occurs

� additive increase: increase  CongWin by 1 MSS 
every RTT until loss detected

� multiplicative decrease: cut CongWin in half after 
loss 
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8 Kbytes

16 Kbytes
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time

congestion
window
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Saw tooth
behavior: probing

for bandwidth



TCP Congestion Control: details

� sender limits transmission:
LastByteSent-LastByteAcked

≤≤≤≤ CongWin

� Roughly,

How does  sender 
perceive congestion?

� loss event = timeout or
3 duplicate acks

� TCP sender reduces CongWin
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� CongWin is dynamic, function 
of perceived network 
congestion

� TCP sender reduces 
rate (CongWin) after 
loss event

three mechanisms:
� AIMD

� slow start

� conservative after 
timeout events

rate =
CongWin

RTT
Bytes/sec



TCP Slow Start

� When connection begins, 
CongWin = 1 MSS

� Example: MSS = 500 
bytes & RTT = 200 msec

� initial rate = 20 kbps

� When connection begins, 
increase rate 
exponentially fast until 
first loss event
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� available bandwidth may 
be >> MSS/RTT

� desirable to quickly ramp 
up to respectable rate



TCP Slow Start (more)

� When connection 
begins, increase rate 
exponentially until 
first loss event:

� double CongWin every 

Host A

R
T

T

Host B
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double CongWin every 
RTT

� done by incrementing 
CongWin for every ACK 
received

� Summary: initial rate 
is slow but ramps up 
exponentially fast time



Refinement: inferring loss

� After 3 dup ACKs:

� CongWin is cut in half

� window then grows 
linearly

� But after timeout event:

� 3 dup ACKs indicates 
network capable of 

Philosophy:
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� But after timeout event:

� CongWin instead set to 
1 MSS; 

� window then grows 
exponentially

� to a threshold, then 
grows linearly

network capable of 
delivering some segments
� timeout indicates a 
“more alarming” 
congestion scenario



Refinement

Q: When should the 
exponential 
increase switch to 
linear? 

A: When CongWin
gets to 1/2 of its 
value before 
timeout.
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value before 
timeout.

Implementation:
� Variable Threshold 

� At loss event, Threshold is 
set to 1/2 of CongWin just 
before loss event



Summary: TCP Congestion Control

� When CongWin is below Threshold, sender in 
slow-start phase, window grows exponentially.

� When CongWin is above Threshold, sender is in 
congestion-avoidance phase, window grows linearly.
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congestion-avoidance phase, window grows linearly.

� When a triple duplicate ACK occurs, Threshold
set to CongWin/2 and CongWin set to 
Threshold.

� When timeout occurs, Threshold set to 
CongWin/2 and CongWin is set to 1 MSS.



TCP sender congestion control

State Event TCP Sender Action Commentary

Slow Start 
(SS)

ACK receipt 
for previously 
unacked 
data 

CongWin = CongWin + MSS, 
If (CongWin > Threshold)

set state to “Congestion             
Avoidance”

Resulting in a doubling of 
CongWin every RTT

Congestion
Avoidance 
(CA) 

ACK receipt 
for previously 
unacked 
data

CongWin = CongWin+MSS * 
(MSS/CongWin)

Additive increase, resulting 
in increase of CongWin  by 
1 MSS every RTT
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data

SS or CA Loss event 
detected by 
triple 
duplicate 
ACK

Threshold = CongWin/2,      
CongWin = Threshold,
Set state to “Congestion 
Avoidance”

Fast recovery, 
implementing multiplicative 
decrease. CongWin will not 
drop below 1 MSS.

SS or CA Timeout Threshold = CongWin/2,      
CongWin = 1 MSS,
Set state to “Slow Start”

Enter slow start

SS or CA Duplicate 
ACK

Increment duplicate ACK count 
for segment being acked

CongWin and Threshold not 
changed



TCP throughput

� What’s the average throughout of TCP as a 
function of window size and RTT?
� Ignore slow start

� Let W be the window size when loss occurs.
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Let W be the window size when loss occurs.

� When window is W, throughput is W/RTT

� Just after loss, window drops to W/2, 
throughput to W/2RTT. 

� Average throughout: .75 W/RTT



TCP Futures: TCP over “long, fat pipes”

� Example: 1500 byte segments, 100ms RTT, want 10 
Gbps throughput

� Requires window size W = 83,333 in-flight 
segments

� Throughput in terms of loss rate:
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� Throughput in terms of loss rate:

� ➜ L = 2·10-10  Wow
� New versions of TCP for high-speed

LRTT

MSS⋅22.1



Fairness goal: if K TCP sessions share same 
bottleneck link of bandwidth R, each should have 
average rate of R/K

TCP connection 1

TCP Fairness
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bottleneck
router

capacity R

TCP 
connection 2



Why is TCP fair?

Two competing sessions:
� Additive increase gives slope of 1, as throughout increases

� multiplicative decrease decreases throughput proportionally 

R equal bandwidth share
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RConnection 1 throughput

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2



Fairness (more)

Fairness and UDP
� Multimedia apps often 

do not use TCP
� do not want rate 

throttled by congestion 
control

� Instead use UDP:

Fairness and parallel TCP 
connections

� nothing prevents app from 
opening parallel 
connections between 2 
hosts.

� Web browsers do this 
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� Instead use UDP:
� pump audio/video at 

constant rate, tolerate 
packet loss

� Research area: TCP 
friendly

� Web browsers do this 
� Example: link of rate R 

supporting 9 connections; 
� new app asks for 1 TCP, gets 

rate R/10
� new app asks for 11 TCPs, 

gets R/2 !



Chapter 3: Summary

� principles behind transport 
layer services:

� multiplexing, 
demultiplexing

� reliable data transfer

flow control
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� flow control

� congestion control

� instantiation and 
implementation in the 
Internet

� UDP

� TCP

Next:

� leaving the network 
“edge” (application, 
transport layers)

� into the network 
“core”


