2110472

Computer Network

Transport Layer &

Multimedia Networking

Kultida Rojviboonchai, Ph.D.
Email: kultida@cp.eng.chula.ac.th

Transport Layer 3-1

Course Information

Instructor: Kultida Rojviboonchai, Ph.D.

Course website:

Lecture schedule: Friday 13:00-16:00

Course materials: Lecture slides
Selected textbooks

Transport Layer 3-2

Chapter 3
Transport Layer

Kultida Rojviboonchai, Ph.D.

Dept. of Computer Engineering
Faculty of Engineering
Chulalongkorn University

A note on the use of these ppt slides:

The notes used in this course are substantially based on slides copyrighted
by J.F Kurose and K.W. Ross 1996-2007

Computer Networking:
A Top Down Approach
4th edition.

Jim Kurose, Keith Ross
Addison-Wesley, July
2007.

Transport Layer 3-3

Chapter 3: Transport Layer

Our goals:
understand principles learn about transport
behind transport layer protocols in the
layer services: Internet:
multiplexing/demultipl UDP: connectionless
exing Transport
reliable data transfer TCP: connection-oriented
flow control transport
congestion control TCP congestion control

Transport Layer 3-4

Chapter 3 outline

3.1 Transport-layer 3.5 Connection-oriented
services transport: TCP

3.2 Multiplexing and segment structure
demultiplexing reliable data transfer

3.3 Connectionless flow CO“_“‘O'
transport: UDP connection management

3.6 Principles of
congestion control

3.7 TCP congestion
control

3.4 Principles of
reliable data transfer

Transport Layer 3-5

Transport services and protocols

provide /ogical communication
between app processes |)
running on different hosts ~ e

transport protocols run in
end systems

send side: breaks app
messages into segments,
passes to network layer

rcv side: reassembles
segments into messages,
passes to app layer

more than one transport
protocol available to apps

Internet: TCP and UDP

data link
physical

Transport Layer 3-6

Transport vs. network layer

network layer: logical Household analogy:
communication 12 kids sending letters to
between hosts 12 kids
transport layer: logical processes = kids
communication app messages = letters
between processes in envelopes

relies on, enhances, hosts = houses

network layer services
transport protocol =

Ann and Bill

network-layer protocol
= postal service

Transport Layer 3-7

Internet transport-layer protocols

reliable, in-order

delivery (TCP)
congestion control
flow control
connection setup

unreliable, unordered
delivery: UDP

ho-frills extension of
"best-effort” IP

services hot available:

delay guarantees
bandwidth guarantees

application
a @M
networ
data lin
hysical
\P Y A k /
dh o network |
Py data link -
Mhysical
O
@M g a
@g :é network v
ﬂ_ | datalink |N@A
physical 3
data linkLe,
physical
network
data link m—
- cation
physical I network
physical data link
physical

Transport Layer 3-8

Chapter 3 outline

3.1 Transport-layer 3.5 Connection-oriented
services transport: TCP

3.2 Multiplexing and segment structure
demultiplexing reliable data transfer

3.3 Connectionless flow CO“_“‘O'
transport: UDP connection management

3.6 Principles of
congestion control

3.7 TCP congestion
control

3.4 Principles of
reliable data transfer

Transport Layer 3-9

Multiplexing/demultiplexing

- Demultiplexing at rcv host: — — Multiplexing at send host: _

gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

delivering received segments
to correct socket

[] =socket O = process

application application application
| |
transport %ﬁfpﬁ transport
network neTvl/or'k network
link link link
physical physical physical
host 1 host 2 host 3

Transport Layer 3-10

How demultiplexing works

host receives IP datagrams

each datagram has source
IP address, destination IP
address

each datagram carries 1
transport-layer segment

each segment has source,
destination port number

host uses IP addresses & port
numbers to direct segment to
appropriate socket

32 bits

v

source port #| dest port #

other header fields

application
data
(message)

TCP/UDP segment format

Transport Layer 3-11

Connectionless demultiplexing

When host receives UDP

Create sockets with port
segment:

humbers: o

Dat agr anSocket mySocket1 = new checks destination port
Dat agr anSocket (12534) ; humber in segment

Dat agr anBocket nySocket 2 = new directs UDP segment to
Dat agr anSocket (12535) ; socket with that port
UDP socket identified by number |
two-tuple: IP datagrams with

different source IP
addresses and/or source
port numbers directed
to same socket

(dest IP address, dest port number)

Transport Layer 3-12

Connectionless demux (cont)

Dat agr anfSocket server Socket = new Dat agr anSocket (6428) ;

e

A A

SP: 6428 SP: 6428
DP: 9157 DP: 5775

SP: 9157 SP: 5775

Clien'r DP: 6428 server DP: 6428 Cllen-r

IP: A IP: C Ir:B

SP provides "return address”

Transport Layer 3-13

Connection-oriented demux

TCP socket identified
by 4-tuple:
source IP address
source port number
dest IP address
dest port number

recv host uses all four
values to direct
segment to appropriate
socket

Server host may support
many simultaneous TCP
sockets:
each socket identified by
its own 4-tuple
Web servers have
different sockets for
each connecting client

non-persistent HT TP will
have different socket for
each request

Transport Layer 3-14

Connection-oriented demux

(cont)

client
IP: A

DD
L | L
SP: 5775
DP: 80
S-IP: B
D-IP:C
L
SP: 9157 SP: 9157
BP: 80 server bP: 80
S-IP: A IP: C S-IP: B
D-IP:C D-IP:C

Transport Layer 3-15

Client
IP:B

Connhection-oriented demux:

Threaded Web Server

client
IP: A

(e
L I .
SP: 5775
DP: 80
S-IP: B
D-IP:C
L
SP: 9157 SP: 9157
BP: 80 server bP: 80
S-IP: A IP: C S-IP: B
D-IP:C D-IP:C

Transport Layer 3-16

Client
IP:B

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of
reliable data transfer

3.5 Connection-oriented
transport: TCP
segment structure
reliable data transfer
flow control
connection management

3.6 Principles of
congestion control

3.7 TCP congestion
control

Transport Layer 3-17

UDP: User Datagram Protocol [RFC 768]

"no frills," "bare bones"

Internet transport Why is there a UDP?
EPOTOCOI . _ no connection
best effort” service, UDP establishment (which can
segments may be: add delay)
lost simple: ho connection state
delivered out of order at sender, receiver
To app small segment header
connectionless: ho congestion control: UDP
no handshaking between can blast away as fast as
UDP sender, receiver desired
each UDP segment

handled independently
of others

Transport Layer 3-18

UDP: more

often used for streaming

multimedia apps) 32 bits

v

loss tolerant Length, in | Source port #| dest port #
rate sensitive bytes of UDP\\Ieng‘rh checksum
segment
other UDP uses e ;
DNS header
SNMP
reliable transfer over UDP: Application
add reliability at data
application layer (message)
application-specific

error recovery!
UDP segment format

Transport Layer 3-19

UDP checksum

Goal: detect “errors” (e.g., flipped bits) in fransmitted
segment

Sender: Receiver:
treat segment contents compute checksum of
as sequence of 16-bit received segment
integers check if computed checksum
checksum: addition (1's equals checksum field value:
complement sum) of NO - error detected
segment contents YES - no error detected.
sender puts checksum But maybe errors
\;gﬂfj into UDP checksum nonetheless? More later

ie

Transport Layer 3-20

Internet Checksum Example

Note

When adding numbers, a carryout from the
most significant bit needs to be added to the
result

Example: add two 16-bit integers

1

1100110011 00110
110101010101 O01O01

wraparound@lOlllOlllOl11011

sum

1 1 00
checksum 0]

1 11
O0OO0O011

Transport Layer 3-21

011101110
1 00010001

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of
reliable data transfer

3.5 Connection-oriented
transport: TCP
segment structure
reliable data transfer
flow control
connection management

3.6 Principles of
congestion control

3.7 TCP congestion
control

Transport Layer 3-22

Principles of Reliable data transfer

important in app., transport, link layers
top-10 list of important networking topics!

-

O

-

O O

S, = |receiver I
8 = DroCess process

o) 1
1(:) L()relidble c:hclrmel)j

o =

=

(a) provided service

characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-23

Principles of Reliable data transfer

important in app., transport, link layers
top-10 list of important networking topics!

-

O

-

O O

S, = |receiver I
8 = DroCess process

o) 1
1(:) L()relidble c:hclrmel)j

o =

=

Junreliable c:hc:mnel)iA

(a) provided service (b) service implementation

characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-24

Principles of Reliable data transfer

important in app., transport, link layers
top-10 list of important networking topics!

-
O
=
O 0
S, = |receiver I
8 ~ orocess process
S)

dt d :
= L()relidble c:hclrmel)j xdt_send () deliver data()
8_ 5 relicble data reliable data
B > transfer protocol transfer protocol
% O (sending side) (receiving side)
=

udt_send()i Irdt_rcv ()

Junreliable c:hc:mnel)iA

(a) provided service (b) service implementation

characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-25

Reliable data transfer: getting started

rdt _send(): called from above, del i ver _data(): called by

(e.g., by app.). Passed data to rdt to deliver data to upper
deliver to receiver upper layer /
\ rdt_send() data Tdeliver_data ()

send [relidble data relicble data receive
sid fransfer profocol transfer protocol id
ld€ |(sending side) (receiving side) siae
udt send ()i packet packet Irdt_rcv ()
T—»()unrelicible channel)J
udt _send(): called by rdft, rdt _rcv(): called when packet
to transfer packet over arrives on rcv-side of channel

unreliable channel to receiver

Transport Layer 3-26

Reliable data transfer: getting started

we'll:
incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

consider only unidirectional data transfer
but control info will flow on both directions!

use finite state machines (FSM) to specify

sender, receiver
event causing state transition

actions taken on state transition

— \
event @
actions)

Transport Layer 3-27

state: when in this
"state” next state
uniquely determined
by next event

Rdt1.0: reliable transfer over a reliable channel

underlying channel perfectly reliable

no bit errors
ho loss of packets

separate FSMs for sender, receiver:
sender sends data into underlying channel
receiver read data from underlying channel

A ait for rdt_send(data)
call from

above

packet = make pkt(data)
udt_send(packet)

sender

"% \Wait for

rdt_rcv(packet)

call from

extract (packet,data)
below

deliver_data(data)

receiver

Transport Layer 3-28

Rdt2.0: channel with bit errors

underlying channel may flip bits in packet
checksum to detect bit errors

the question: how to recover from errors:

acknowledgements (ACKs): receiver explicitly tells sender
that pkt received OK

negative acknowledgements (NAKs): receiver explicitly
tells sender that pkt had errors

sender reftransmits pkt on receipt of NAK
new mechanisms in r dt 2. 0 (beyond r dt 1. 0):

error detection
receiver feedback: control msgs (ACK,NAK) rcvr->sender

Transport Layer 3-29

rdt2.0: FSM specification

rdt_send(data)

snkpkt = make_pkt(data, checksum) r'eceiver'
udt_send(sndpkt)
rdt_rcv(rcvpkt) &&

ISNAK(rcvpkt)

Wait for
call from
above

rdt_rcv(rcvpkt) &&
udt_send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

. ~ (>

rdt_rcv(rcvpkt) && isACK(rcvpkt) h .
X Wait for
call from
below

sender

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)

deliver_data(data)
udt_send(ACK)

Transport Layer 3-30

rdt2.0: operation with no errors

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt send(sndpkt

rdt_rcv(rcvpkt) &&

Wait for ISNAK(rcvpkt)

call from
above

rdt_rcv(rcvpkt) &&
udt_send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

. C

Wait for
call from
below

rdt_rcv(rcvpkt) && isACK(rcvpkt)
<
A\

rdt rcv(rcvka &&
notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-31

rdt2.0: error scenario

rdt_send(data)
snkpkt = make_pkt(data, checksum)

udt send(sndpkt
t rcv(rcvpkt) &&
ISNA S

14

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

dt send(NAK

Wait for
call from
above

udt_send(sndpkt)

Wait for
call from
below

rdt_rcv(rcvpkt) && isACK(rcvpkt)
<

N

rdt_rcv(rcvp ktl &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-32

rdt2.0 has a fatal flaw!

What happens if Handling duplicates:
ACK/NAK corrupted? sender retransmits current
sender doesn't know what pkt if ACK/NAK garbled
happened at receiver! sender adds seguence
can't just retransmit: number to each pkf
possible duplicate receiver discards (doesn't

deliver up) duplicate pkt

—stop and wait
Sender sends one packef,
then waits for receiver
response

Transport Layer 3-33

rdt2.1: sender, handles garbled ACK/NAKSs

rdt_send(data)

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
ISNAK(rcvpkt))

udt_send(sndpkt)

Wait for
ACK or
NAK O

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iISACK(rcvpkt)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iISACK(rcvpkt)

A N
\,/A\Vgilifgrr Wait for
rdt_rcv(rcvpkt) && NAK 1 Caalllb%)\lom
(corrupt(rcvpkt) ||
iSNAK(rcvpkt)) rdt_send(data)
udt_send(sndpkt) sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

Transport Layer 3-34

rdt2.1: receiver, handles garbled ACK/NAKs

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seqO(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

\
\
rdt_rcv(rcvpkt) && (corrupt(rcvpk) ‘\ rdt_rcv(rcvpkt) && (corrupt(revpk)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum) \

udt_send(sndpkt) Q

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) && (
has_seql(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seqO(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seql(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Transport Layer 3-35

rdt2.1: discussion

Sender: Receiver:
seq # added to pkt must check if received
two seq. #'s (0,1) will packet is duplicate
suffice. Why? state indicates whether
: : O or 1 is expected pkt

must check if received seq #
AC.K/ NAK corrupted hote: receiver can not
Twice as many states know if its last

state must “remember” ACK/NAK received OK

whether “current” pkt

has O or 1 seq. # at sender

Transport Layer 3-36

rdt2.2: a NAK-free protocol

same functionality as rdt2.1, using ACKs only

instead of NAK, receiver sends ACK for last pkt
received OK

receiver must explicitly include seq # of pkt being ACKed

duplicate ACK at sender results in same action as
NAK: retransmit current pkt

Transport Layer 3-37

rdt2.2: sender, receiver fragments

rdt_send(data)
sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt) rdt_rcv(rcvpkt) &&

S.o —_— Y
S Wait for (porrupt(rcvpkt) |
..................... call O from ACK SALKEevpKLY))
.................................... above 0 udt_send(sndpkt)
.. sender FSM
... fragmenT rdt_rcv(rcvpkt)
.................................... && notcorrupt(rcvpkt)
rdt_rev(revpkt) && e && IsACK(revpkt,0)
(corrupt(revpkt) ||~ T N
has_seql(rcvpkt)) receiver FSM "
udt_send(sndpkt) fr‘agmen‘r ...
(T T

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seql(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_ pkt(ACK1, chksum)
udt_send(sndpkt) Transport Layer 3-38

rdt3.0: channels with errors andloss

New assumption: Approach: sender waits
underlying channel can “reasonable” amount of
also lose packets (data time for ACK
or ACKs) retransmits if no ACK

checksum, seq. #, ACKs, received in this time
retransmissions will be if pkt (or ACK) just delayed
of help, but not enough (not lost):

retransmission will be
duplicate, but use of seq.
#'s already handles this

receiver must specify seq
of pkt being ACKed

requires countdown timer

Transport Layer 3-39

rdt3.0 sender

rdt_

send(data) rdt_rcv(rcvpkt) &&

\

rdt_rcv(rcvpkt)
AN

Wait for

above

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iIsSACK(rcvpkt,1)

stop_timer

timeout
udt_send(sndpkt) C
start_timer (_/

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
ISACK(rcvpkt,0))

N

sndpkt = make_pkt(0, data, checksum)

\ udt_send(sndpkt)
\ start_timer
—

call Ofrom

(corrupt(rcvpkt) ||
ISACK(rcvpkt,1))
N

timeout

udt_send(sndpkt)
start_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iIsACK(rcvpkt,0)

stop_timer

Wait for
call 1 from
above

rdt_rcv(rcvpkt)
AN

rdt_send(data)

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

Transport Layer 3-40

rdt3.0 in action

sender receiver
rcv pktO ACK

sender receiver okt .
send pki0 kaO send pkiO \ rcv pkto
\ send ACKO
]

send ACKO
y oV ACKO
rcv ACKO send pkt1] kT]
send pki1 \M\A (loss)
rcv pktl
ACK] y send ACK1
[cv,
send pki0 kt fimeout kt
Q resend pki1 R
ACK rcv Pki0 \ rcv pkt1
send ACKO ACK send ACK1

[CVvACK o
send pkio

d) operation with no loss rev pki0
(@) op ‘ﬂ@/ send ACKO

(b) lost packet

Transport Layer 3-41

rdt3.0 in action

sender receiver sender receiver
okt kt
send pki0 Nb v PO send pki0 \% rcv pki0
ACK send ACKO ACK send ACKO
rcv ACKO rcv ACKO _
send pkt] DKT send pkt1
rcv pkil rcv pktl
ACK send ACKI1 send ACK
(loss) Xl’l/
timeout
fimeout = Pkt 4 resend pkil =
resend ki \rcv okt 1 rCv ki
ACK (detect duplicate) rcvACK (detect duplicate)
ACK] send ACK send pkto send ACK]
send pkio d v Pkl
v bkto send ACKO
ACK e ACK 0
send ACKO
(c) lost ACK (d) premature timeout

Transport Layer 3-42

Performance of rdt3.0

rdt3.0 works, but performance stinks
ex: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

L 8000bits
"SR 10%bps

U cendger: Utilization - fraction of time sender busy sending

= 8microseconds

y ._ L/R _ .008
Sender' RTT+ L / R B 30008

1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link
network protocol limits use of physical resources!

= 0.00027

Transport Layer 3-43

rdt3.0: stop-and-wait operation

sender receiver

first packet bit transmitted, t = 0 —x-------------o oo
last packet bit transmitted, t =L/ R 17

first packet bit arrives

RTT —last packet bit arrives, send ACK

ACK arrives, send next]
packet,t=RTT+L/R

U = L/R = ~008 = 0.00027

sender pTTL.L /R 30008

Transport Layer 3-44

Pipelined protocols

Pipelining: sender allows multiple, "in-flight”, yet-to-
be-acknowledged pkts
range of sequence humbers must be increased
buffering at sender and/or receiver

<+— ACK packets

{(a) a stop-and-wait protocol in operation (b) a pipelined protocol in operation

Two generic forms of pipelined protocols: go-Back-N,
selective repeat

Transport Layer 3-45

Pipelining: increased utilization

sender receiver

first packet bit transmitted, t = 0 —fo--------ocoomomoeee
last bit transmitted, t =L/ R

first packet bit arrives
last packet bit arrives, send ACK

last bit of 2" packet arrives, send ACK
last bit of 3 packet arrives, send ACK

RTT

ACK arrives, send next
packet, t = RTT + L/ R [=7 777

................. Increase utilization
................ \ / by a factor of 3!

U _ 3*L/R _ .024
sender RTT+L/R 30.008

= 0.0008

Transport Layer 3-46

Pipelining Protocols

Go-back-N: big picture:

Sender can have up to

N unacked packets in

pipeline

Rcvr only sends

cumulative acks
Doesn't ack packet if
there's a gap

Sender has timer for

oldest unacked packet

If timer expires,
retransmit all unacked
packets

Selective Repeat: big pic

Sender can have up to
N unacked packets in
pipeline

Rcvr acks individual
packets

Sender maintains
timer for each
unacked packet

When timer expires,
retransmit only unack
packet

Transport Layer 3-47

Selective repeat: big picture

Sender can have up to N unacked packets
in pipeline
Rcvr acks individual packets

Sender maintains timer for each unacked
packet

When timer expires, retransmit only unack
packet

Transport Layer 3-48

Go-Back-N

Sender:
k-bit seq # in pkt header
“window" of up to N, consecutive unack'ed pkts allowed

send._ base nexfseqnum dready Usable. nof
ack’'ed yet sent
UM T pe

S Wlndow 3|ze

ACK(n): ACKs all pkts up to, including seq # n - "cumulative ACK"
may receive duplicate ACKs (see receiver)

timer for each in-flight pkt

timeout(n): retransmit pkt n and all higher seq # pkts in window

Transport Layer 3-49

GBN: sender extended FSM

rdt_send(data)

if (nextsegnum < base+N) {
sndpkt[nextsegnum] = make_pkt(nextsegnum,data,chksum)

udt_send(sndpkt[nextsegnuml)
if (base == nextsegnum)

start_timer
nextsegnum-++
~~~~~ }
A e else
base=1 .. refuse_(f%ta(data)
nextsegnum=1 .,
anum==-— e < timeout
start_timer
udt_send(sndpkt[base])
rdt_rcv(rcvpkt) O Udt_send(sndpkt[base+l])
&& corrupt(rcvpkt)
udt_send(sndpkt[nextseqnum-1])
rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base = getacknum(rcvpkt)+1
If (base == nextsegnum)
stop_timer
else
start_timer Transport Layer 3-50



GBN: receiver extended FSM

default
udt_send(sndpkt) rdt_rev(revpkt)
T~ ( ) && notcurrupt(rcvpkt)

N Ts~a - && hassegnum(rcvpkt,expectedsegnum)
= -

expectedsegnum=1 A:_Dextract(rcvpkt,data)

sndpkt = deliver_data(data)

make_pkt(expectedseqnum,ACK,chksum) snhdpkt = make_pkt(expectedsegnum,ACK,chksum)
udt_send(sndpkt)

expectedsegnum++

ACK-only: always send ACK for correctly-received pkt
with highest /n-order seq #
may generate duplicate ACKs
need only remember expect edsegnum

out-of-order pkf:
discard (don't buffer) -> no receiver buffering!
Re-ACK pkt with highest in-order seq #

Transport Layer 3-51



GBN in

action

sender

send pktQ
send pki

send pkt2

send pkt3
(walit)

-»>

rcv ACKO
send pkt4

rcv ACK]

—pkt2 timeout
send pkiZ
send pkt3
send pkt4
send pktd

receiver

\
\(l&ss)

N

send pkts \

—
~

rcv pktQ
send ACKO

rcv PKrl
send ACKI

rcv pkt3, discard
send ACKI

rcv pktd, discard
send ACK]

rcv pkid, discard
seng ACK

rcv pkt2, deliver

send ACK? |
rcv pkt3, deliver

send ACK3

Transport Layer 3-52



Selective Repeat

receiver /ndividually acknowledges all correctly
received pkts

buffers pkts, as needed, for eventual in-order delivery
to upper layer

sender only resends pkts for which ACK not
received
sender timer for each unACKed pkt

sender window
N consecutive seq #'s
again limits seq #s of sent, unACKed pkts

Transport Layer 3-53



Selective repeat: sender, receiver windows

send_base  hexfseghum dlready Lsable. rot
lv i ack’ed yet sent
LTI == pte
t _ window size —2
N

(a) sender view of segquence numbers

out of order

acceptable
(buffered) but  § \yithin window)
already ack’ed

ﬂﬂﬂﬂﬂﬂﬂﬂﬂlllllllllIIIIIIHIII gzt e

L indow size—4
N

rcv_base

(b) receiver view of sequence numbers

Transport Layer 3-54



Selective repeat

—sender — receiver
data from above : ka N iN [rcvbase, revbase+N-1]
if next available seq # in send ACK(n)
window, send pkft out-of-order: buffer
timeout(n): in-order: deliver (also
resend pkt n, restart timer deliver buffered, in-order

pkts), advance window to
next not-yet-received pkt

ka nin [rcvbase-N,rcvbase-1]

AC K(n) In [sendbase,sendbase+N];
mark pkt n as received
if n smallest unACKed pkft,

advance window base to ACK(“_)
next unACKed seq # otherwise:
ignhore

Transport Layer 3-55



Selective repeat in action

pktl =ent
n1za3a

pktl =ent
ni1za3

pkt? =ent
nilza3

0123

pkt3 =ent.

4 5 6 7 819

window full
4 56 7 89

ACED rovd, pktd ==nt

|1 2 3 4

e 7889

ACKE]l rovd, pktbS ==nt

o1

2 345

B 7 89

—— pkt2 TIMEOUT, pkt? resent

01

2 345

B 7 8 9

ACK3 rowd, nothing =sent

n1i

2345

B 7 89

0

1 23 4|5

456789 T L 110 revd, deliversd, ACKO sent

B 7 8 9

pktl rovd, deliversed. ACKL =ent

01
456 789 W

(loss)

2 345

B 7 89

pktd rovd, uffered. ACK3I =ent

o1

2 345

B 7 89

pktd rovd., buffered. ACK4 sent

01

phkth
n1

2 345

rovd,

& 345

B 7 89

uf fered,. ACKS =ent

& 7 89

pkt2 rovd, pkt? pkt3 pktd, pkth
delivered,. ACKZ? =ent

0123465k

B 7 89

~t Layer

3-56



sender window

SeleCTive r‘epeaT: (after receipt )

ktO
01230149

dllemma 012301

0123012

receiver window
(after receipt)

Ofl 2 3jJ0 1 2

01123 0]1 2

0123012

Example:
seq#'s:0,1,2,3 Fetranamit PKtQ, o
window size=3 o1 dson? e P 0
. (a)
recelver sees no
difference in two tter roceint ) (oftor vecoity "
scenarios! 5T 2]z 0 1 2RO ol 23jo12
incorr'ec’rly passes 012301 o123 01 2
dLIp“CGTQ data as new 0123012 AR EEE
in (G) o1 2 3o 1
013 9f receive packet
Q: what relationship with seq number 0
between seq # size
and window size? (b)

Transport Layer 3-57



Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of
reliable data transfer

3.5 Connection-oriented
transport: TCP
segment structure
reliable data transfer
flow control
connection management

3.6 Principles of
congestion control

3.7 TCP congestion
control

Transport Layer 3-58



TCP: Overview rrcs: 793, 1122, 1323, 2018, 2581

point-to-point: full duplex data:
one sender, one receiver bi-directional data flow
reliable, in-order byte In same connection
steam: MSS: maximum segment
size

ho "message boundaries”
pipelined:

TCP congestion and flow

control set window size

connection-oriented:

handshaking (exchange
of control msgs) init's
sender, receiver state
send & receive buffers before data exchange

flow controlled:

sender will not
overwhelm receiver

socket
door —

__ socket
door

receive buffer

() Segment] —» ()

send buffer

Transport Layer 3-59



TCP segment structure

32 bits >

URG: urgent data
(generally not used)™_| Source port # | dest port #

ACK: ACK # . Sequence humber
valid\\MwledgemenT number
PSH: push data now hlead ﬂ%qﬁb RIS|F| Receive window

L~

(generally not used)// }hzel(um ), Urg data pnter
RST, SYN, FIN:—| Op’r/iaé (variable length)

connection estab
(setup, teardown /
commands) application

Internet / data
checksum (variable length)

(as in UDP)

counting

by bytes

of data

(not segments!)

# bytes
rcvr willing
to accept

Transport Layer 3-60



TCP seq. #'s and ACKs

Seq. #'s:
byte stream
“number” of first
byte in segment’s
data

ACKs:
seq # of next byte

expected from
other side

cumulative ACK

Q: how receiver handles
out-of-order segments

A: TCP spec doesn't
say, - up to
implementor

silr
II(:\;!) Host A Host B @
—
User Se
9=42
types :ACK=7g
|C, W
host ACKs
. receipt of
3 qata=5— 'C', echoes
/79 C ;A- bCle ‘C'
gseq™ '
host ACKs
receipt Sen
of echoed q‘43,ACK=80
‘C' \

Time
simple telnet scenario

v

Transport Layer 3-61



TCP Round Trip Time and Timeout

Q: how to set TCP Q: how fo estimate RTT?
timeout value? Sanpl eRTT: measured time from
longer than RTT segment transmission until ACK

but RTT varies r‘ec.elp‘l' o
too short: premature Ighore refransmissions
timeout Sanpl eRTT will vary, want
unnecessary estimated RTT “"smoother”
retransmissions average several recent

measurements, not just

too long: slow reaction
J current Sanpl eRTT

to segment loss

Transport Layer 3-62



TCP Round Trip Time and Timeout

Estimat edRTT = (1- o) *Estimat edRTT + o* Sanpl eRTT

Exponential weighted moving average
influence of past sample decreases exponentially fast
typical value: o = 0.125

Transport Layer 3-63



Example RTT estimation:

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

350 +

300 +

N

al

o
—¢
—
>
—
Y
—

RTT (milliseconds)

200 ~

150 -

100 T T T T T T T T T T T T T T T
1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

—— SampleRTT —&— Estimated RTT

Transport Layer 3-64



TCP Round Trip Time and Timeout

Setting the timeout

Esti nt edRTT plus "safety margin”
large variation in Est i mat edRTT - > larger safety margin

first estimate of how much SampleRTT deviates from
EstimatedRTT:

DevRTT = (1-B)*DevRTT +
B*| Sanpl eRTT- Esti mat edRTT]|

(typically, B = 0.25)
Then set timeout interval:

Ti meout I nterval = EstinatedRTT + 4*DevRTT

Transport Layer 3-65



Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of
reliable data transfer

3.5 Connection-oriented
transport: TCP
segment structure
reliable data transfer
flow control
connection management

3.6 Principles of
congestion control

3.7 TCP congestion
control

Transport Layer 3-66



TCP reliable data transfer

TCP creates rdt Retransmissions are
service on top of IP's triggered by:
unreliable service timeout events
Pipelined segments duplicate acks
Cumulative acks Initially consider

simplified TCP sender:
ignore duplicate acks

ignore flow control,
congestion control

TCP uses single
retransmission timer

Transport Layer 3-67



TCP sender events:

data rcvd from app: timeout:
Create segment with retransmit segment
seq # that caused timeout
seq # is byte-stream restart timer

humber of first data Ack rcvd:
byte in segment

If acknowledges

start fimer if not previously unacked
already running (think segments

of timer as for oldest update what is known to
unacked segment) be acked

expiration interval: start timer if there are
Ti meQut | nt er val outstanding segments

Transport Layer 3-68



NextSegNum = InitialSeqNum
SendBase = InitialSeqNum

loop (forever) {
switch(event)

event: data received from application above
create TCP segment with sequence number NextSegNum
if (timer currently not running)
start timer
pass segment to IP
NextSegNum = NextSegNum + length(data)

event: timer timeout
retransmit not-yet-acknowledged segment with
smallest sequence number
start timer

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer

}

} /* end of loop forever */

TCP

sender
(simplified)

Comment:

- SendBase-1: last
cumulatively
ack'ed byte
Example:

+ SendBase-1=71;
y= 73, so the rcvr
wants 73+ ;

y > SendBase, so
that new data is
acked

Transport Layer 3-69



TCP: retransmission scenarios

SendBase

= 100

«—timeout ——

v

time

lost ACK scenario

<
<

Sendbase
= 100
SendBase
=120

SendBase
=120

92 TimeouT—>|

92 timeout—s+— Seq

eq=

(Y]
3
v

time

premature timeout

Transport Layer 3-70



TCP retransmission scenarios (more)
@ Host A Host B @

Seq=

9

?<
SendBase ‘P\c‘&/

timeout ——
(%)
)
Q
/
Q
A
=
Qo

=120

A
4

time
Cumulative ACK scenario

Transport Layer 3-71



TCP ACK generation [RFc 1122, RFC 2581]

Event at Receiver TCP Receiver action

Arrival of in-order segment with Delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,
expected seq # already ACKed send ACK

Arrival of in-order segment with Immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

Arrival of out-of-order segment Immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte

Gap detected

Arrival of segment that Immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap

Transport Layer 3-72



Fast Retransmit

Time-out period often
relatively long:
long delay before
resending lost packet
Detect lost segments
via duplicate ACKs.

Sender often sends

many segments back-to-
back

If segment is lost,
there will likely be many
duplicate ACKs.

If sender receives 3
ACKs for the same
data, it supposes that
segment after ACKed
data was lost:

fast retransmit: resend
segment before timer
expires

Transport Layer 3-73



Host A

timeout
@
(73]
D
D
Q
N
3
(7]
D
(o]}
/
D
3

—

v

time

Figure 3.37 Resending a segment after triple duplicaftr%,@&)tﬁr Layer 3-74



Fast retransmit algorithm:

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer
}
else {
increment count of dup ACKs received for y
if (count of dup ACKs received fory = 3) {
resend segment with sequence number y

}
/ \

a duplicate ACK for fast retransmit
already ACKed segment

Transport Layer 3-75



Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of
reliable data transfer

3.5 Connection-oriented
transport: TCP
segment structure
reliable data transfer
flow control
connection management

3.6 Principles of
congestion control

3.7 TCP congestion
control

Transport Layer 3-76



TCP Flow Control

receive side of TCP
connection has a
receive buffer:

-||— RevWindow —4-

77
///

i
7 /
b—— RevBuffer ————#

data from
IF

app process may be
slow at reading from

buffer

application
process

-flow control

sender won't overflow
receiver's buffer by

transmitting foo much,

too fast

speed-matching
service: matching the
send rate to the
receiving app's drain
rate

Transport Layer 3-77



TCP Flow control: how it works

-||— Revwindow —||-

7
/ A / _Papplication

/ process
////
b—— RevBuffer ————#

data from
IFP

(Suppose TCP receiver
discards out-of-order
segments)

spare room in buffer

= RcvW ndow

RcvBuf f er-[ Last Byt eRcvd -
Last Byt eRead]

Rcvr advertises spare
room by including value
of RcvW ndow in

segments

Sender limits unACKed
data to RcvW ndow

guarantees receive
buffer doesn't overflow

Transport Layer 3-78



Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of
reliable data transfer

3.5 Connection-oriented
transport: TCP
segment structure
reliable data transfer
flow control
connection management

3.6 Principles of
congestion control

3.7 TCP congestion
control

Transport Layer 3-79



TCP Connection Management

Recall: TCP sender, receiver
establish "connection”
before exchanging data
segments

initialize TCP variables:
seq. #s

buffers, flow control
info (e.g. RcvW ndow)

clrent: connection initiator

Socket client Socket = new
Socket (" host nane", " port

nunber ") ;

server: contacted by client

Socket connecti onSocket =
wel coneSocket . accept () ;

Three way handshake:

Step 1. client host sends TCP
SYN segment to server

specifies initial seq #
ho data
Step 2: server host receives
SYN, replies with SYNACK
segment
server allocates buffers

specifies server initial
seq. #

Step 3: client receives SYNACK,
replies with ACK segment,
which may contain data

Transport Layer 3-80



TCP Connection Management (cont.)

Closing a connection:

client closes socket:
cl i ent Socket . cl ose();

Step 1: client end system
sends TCP FIN control

segment to server

Step 2: server receives
FIN, replies with ACK.
Closes connection, sends
FIN.

@ client

close

d wait

Q. time

close

FIN

CK
/ close
/
K

server@

Transport Layer 3-81



TCP Connection Management (cont.)

Step 3: client receives FIN, @ client server@
replies with ACK.

closing
Wy gl FIN

will respond with ACK
to received FINs

/ CIOSing
, N
Step 4: server, receives /
ACK. Connection closed. —
K

Note: with small
modification, can handle
simultaneous FINSs.

d wait

closed

Q time

close

Transport Layer 3-82



TCP Connection Management (cont)

wait 30 seconds

CLOSED

TIME_WAIT

Fy

receive FIM
send ACK

FIN_WAIT 2

receive ACK
send nothing

TCP client
lifecycle

client application
initiates a TCP connection

send SYM

SYN_SENT

receive 3TN & ACK
zend ACK

) 4

ESTABLISHED

FIN_WAIT_1

client application
initiates close connection

send FIM CLOSED

receive ACK
send nothing

LAST_ACK

TCP server

lifecycle

server application
creates a listen socket

LISTEN

i

3

send FIM

CLOSE_WAIT

receive FIM
send ACK

h

receive SN
send SYM & ACK

4

SYN_RCVD

ESTABLISHED

Trans

receive ACK
send nothing

port Layer

3-83



Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of
reliable data transfer

3.5 Connection-oriented
transport: TCP
segment structure
reliable data transfer
flow control
connection management

3.6 Principles of
congestion control

3.7 TCP congestion
control

Transport Layer 3-84



Principles of Congestion Control

Congestion:

informally: "foo many sources sending too much
data too fast for network to handle”

different from flow control!
manifestations:
lost packets (buffer overflow at routers)
long delays (queueing in router buffers)
a top-10 problem!

Transport Layer 3-85



Causes/costs of congestion: scenario 1

Cl2+

7Lou’r

Host A A
A, : original data out

two senders, two
receivers

ohe router,
infinite buffers

no retransmission

unlimited shared
output link buffers

large delays
when congested

maximum

delay

achievable
throughput

Transport Layer 3-86



Causes/costs of congestion: scenario 2

one router, finite buffers

sender retransmission of lost packet

Host B

Host A

A, . original

data

A',, - original data, plus
retransmitted data

finite shared output
link buffers

Transport Layer 3-87



Aout

Causes/costs of congestion: scenario 2

always: \ = )\out (goodpurt)
in
“perfect” retransmission only when loss: )\’ > \

out

In ’
retransmission of delayed (not lost) packet makes )\in larger

(than perfect case) for same )\O

R/2 f--=mmmmmmmommmnooo o .

Aout

. R/2
)‘in

a.
“costs” of congestion:

R/2

R/3

ut

R/2

R/2

3
2 R4

more work (retrans) for given "goodput”
unneeded retransmissions: link carries multiple copies of pkt

R/2

Transport Layer 3-88



Causes/costs of congestion: scenario 3

four senders Q: what happens asA_
multihop paths and )\’ increase ?
timeout/retransmit

MostA A, original data Pout

A',, - original data, plus
retransmitted data

finite shared output
link buffers

Host B

N
==

Transport Layer 3-89



Causes/costs of congestion: scenario 3

C/2

3 o
<

k!
N
Another "cost” of congestion:

when packet dropped, any “upstream transmission
capacity used for that packet was wasted!

Transport Layer 3-90



Approaches towards congestion control

Two broad approaches towards congestion control:

End-end congestion Network-assisted
control: congestion control:
no explicit feedback from routers provide feedback
network to end systems
congestion inferred from single bit indicating
end-system observed loss, congestion (SNA,
delay DECbit, TCP/IP ECN,
approach taken by TCP ATM)

explicit rate sender
should send at

Transport Layer 3-91



Case study: ATM ABR congestion control

ABR: available bit rate: RM (resource management)
“elastic service" cells:
if sender’s path sent by sender, interspersed
“underloaded": with data cells
sender should use bits in RM cell set by switches
available bandwidth ("network-assisted”)
if sender’s path NI bit: no increase in rate
congested: (mild congestion)
sender throttled to CT bit: congestion
minimum guaranteed indication
rate RM cells returned to sender by

receiver, with bits intact

Transport Layer 3-92



Case study: ATM ABR congestion control

I RM cells
source |:| data cells destination

Switch Switch

L el

two-byte ER (explicit rate) field in RM cell

congested switch may lower ER value in cell
sender’ send rate thus maximum supportable rate on path

EFCI bit in data cells: set to 1 in congested switch

if data cell preceding RM cell has EFCT set, sender sets CI
bit in returned RM cell

Al

Transport Layer 3-93



Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of
reliable data transfer

3.5 Connection-oriented
transport: TCP
segment structure
reliable data transfer
flow control
connection management

3.6 Principles of
congestion control

3.7 TCP congestion
control

Transport Layer 3-94



TCP congestion control: additive increase,
multiplicative decrease
Approach:increase transmission rate (window size),
probing for usable bandwidth, until loss occurs

additive increase. increase CongWin by 1 MSS
every RTT until loss detected

multiplicative decrease. cut CongWin in half after
loss

24 Kbytes —

Saw tooth
behavior: probing
for bandwidth

16 Kbytes —

8 Kbytes —

congestion window size

time

Transport Layer 3-95



TCP Congestion Control: details

sender limits transmission: How does sender
Last Byt eSent - Last Byt eAcked perceive congestion?
< CongWn loss event = timeout or
Roughly, 3 duplicate acks
_ CongWin TCP sender reduces
rate = RTT  bytes/sec rate (CongW n) after
CongW n is dynamic, function loss event |
of perceived network three mechanisms:
congestion AIMD
slow start

conservative after
timeout events

Transport Layer 3-96



TCP Slow Start

When connection begins,
CongW n =1 MSS
Example: MSS = 500
bytes & RTT = 200 msec
initial rate = 20 kbps
available bandwidth may
be >> MSS/RTT

desirable to quickly ramp
up to respectable rate

When connection begins,
increase rate
exponentially fast until
first loss event

Transport Layer 3-97



TCP Slow Start (more)

When connection
begins, increase rate
exponentially until
first loss event:

double CongW n every %’

RTT

done by incrementing
CongW n for every ACK Ur segments

received
Summary: initial rate
is slow but ramps up

exponentially fast ’riine

Transport Layer 3-98



Refinement: inferring loss

After 3 dup ACKs:
CongW n is cut in half

—— Philosophy:
window then grows
linearly 0 3 dup ACKs indicates
network capable of

But after timeout event: worl
delivering some segments

CongW n instead set to O timeout indicates a

LMSS: “more alarming”

window Then grows congestion scenario
exponentially

to a threshold, then
grows linearly

Transport Layer 3-99



Refinement

Q: When should the
exponential
increase switch to 149 TCP Series 2 Reno
linear?

A: When CongW n
gets to 1/2 of its
value before
timeout. 2-

0 1111 1 1T 17T T 1T T 1T T T1
01 2 3 4 5 6 7 8 9 10111213 14 15

ImplemenTGTlon: Transrrission round
Variable Threshold

At loss event, Threshold is
set to 1/2 of CongWin just
before loss event

_| Threshold

Threshold

Transmission round

TCP Series 1 Tahoe

Transport Layer 3-100



Summary: TCP Congestion Control

When CongW n is below Thr eshol d, sender in
slow-start phase, window grows exponentially.

When CongW n is above Thr eshol d, sender is in
congestion-avoidance phase, window grows linearly.

When a triple duplicate ACK occurs, Thr eshol d
set to CongW n/ 2 and CongW n set to
Thr eshol d.

When timeout occurs, Thr eshol d set to
CongW n/ 2 and CongW n is set to 1 MSS.

Transport Layer 3-101



TCP sender congestion control

State Event TCP Sender Action Commentary
Slow Start ACK receipt | CongWin = CongWin + MSS, Resulting in a doubling of
(SS) for previously | If (CongWin > Threshold) CongWin every RTT
unacked set state to “Congestion
data Avoidance”
Congestion ACK receipt | CongWin = CongWin+MSS * Additive increase, resulting
Avoidance for previously | (MSS/CongWin) in increase of CongWin by
(CA) unacked 1 MSS every RTT
data
SS or CA Loss event Threshold = CongWin/2, Fast recovery,
detected by CongWin = Threshold, implementing multiplicative
triple Set state to “Congestion decrease. CongWin will not
duplicate Avoidance” drop below 1 MSS.
ACK
SSorCA Timeout Threshold = CongWin/2, Enter slow start
CongWin =1 MSS,
Set state to “Slow Start”
SSorCA Duplicate Increment duplicate ACK count | CongWin and Threshold not
ACK for segment being acked changed

Transport Layer 3-102



TCP throughput

What's the average throughout of TCP as a
function of window size and RTT?

Ignore slow start
Let W be the window size when loss occurs.
When window is W, throughput is W/RTT

Just after loss, window drops to W/2,
throughput to W/2RTT.

Average throughout: .75 W/RTT

Transport Layer 3-103



TCP Futures: TCP over “long, fat pipes”

Example: 1500 byte segments, 100ms RTT, want 10
Gbps throughput

Requires window size W = 83,333 in-flight
segments

Throughput in terms of loss rate:
1.22-MSS
RTT/L

- L =210 Wow
New versions of TCP for high-speed

Transport Layer 3-104



TCP Fairness

Fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

bottleneck
router
capacity R

conhnection 2

Transport Layer 3-105



Why is TCP fair?

Two competing sessions:
Additive increase gives slope of 1, as throughout increases
multiplicative decrease decreases throughput proportionally

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 2 throughput o

Connection 1 throughput R

Transport Layer 3-106



Fairness (more)

Fairness and UDP Fairness and parallel TCP

Multimedia apps often ~ connections

do not use TCP hothing prevents app from
do not want rate opening parallel
throttled by congestion connections between 2
control hosts.

Instead use UDP: Web browsers do this
pump audio/ Videol at Example: link of rate R
;ggi;ﬁ”,ggm' folerate supporting 9 connections;

Research area: TCP L‘z,‘r"’eag}’ISSks for 1 TCP, gets

friendly new app asks for 11 TCPs,

gets R/2 |

Transport Layer 3-107



Chapter 3: Summary

principles behind transport
layer services:

multiplexing,
demultiplexing

reliable data transfer

flow control Next:

congestion control leaving the network
instantiation and “edge” (application,
implementation in the transport layers)
Internef into the network

UDP “core”

TCP

Transport Layer 3-108



