OERSPECTIVES
Distributed Architecture

58

Technologies

Robert Peacock

oving from a leg-
acy architecture
to one that uses
distributed ob-
jects has both complexities and
rewards. IT managers who are
planning this move face several
distribution issues that require
them to make crucial choices
involving a wide range of lan-
guages, operating systems, net-
working protocols, and appli-
cations.
Understanding this process
calls for a review of the various
types of architectures.

ONE-TIER
ARCHITECTURES

A one-tier or monoalithic
architecture is a traditional
mainframe environment. As
Figure 1 shows, in this type of
legacy architecture, one physical
machine encompasses all three
fundamental business applica-
tion areas: presentation logic,
business logic, and data logic.

This closed approach offers
companies contrasting benefits
and disadvantages. The benefits
include security, management,
and control through centraliza-
tion. In addition, the architec-

Figure 1. One-tier architecture.

logic

—
Presentation

1, logic

R
«— L,

e

—
Business Data
-

- | .
il logic

In this closed approach, one machine
encompasses all three fundamental business
application areas.

IT Pro May [June 2000

ture can handle a large number
of users without jeopardizing
performance.

One disadvantage is that a
one-tier architecture restricts
companies to using a single ven-
dor-specific processor. In addi-
tion, scaling is costly because the
lack of distinction between fun-
damental applications creates
cross-dependencies. The only
way to resolve this cross-depen-
dency is to separate the inter-
face from the implementation.

CLIENT-SERVER MODEL

Attempts to resolve the cross-
dependency issues inherent in
the monolithic architecture
evoked a host of technological
developments. PCs, LANS, rela-
tional databases, desktop tools,
and applications all contributed
to the development of the two-
tier architecture.

Figure 2 shows how the client-
server model separates the skill
sets into two areas: interface
and implementation. This ap-
proach essentially divides the
existing monolithic architecture
by placing the server in a phys-
ical location separate from the
client. The presentation logic or
graphical user interface (GUI)
is on the client side, and the
implementation or database

Moving to

a distributed
objects
architecture,
requires IT
managers to
make some
crucial choices.

logic is on the server side.
Because this two-tier approach
leaves no distinct area where
the business logic can reside,
this model divides it equally
between the client and server.
Windows-based PCs and Unix
or NT servers often are based
on the client-server model.

The improved applications
and tools in the client-server
model facilitate faster develop-
ment and deployment for the
end user compared with a one-
tier architecture. Another advan-
tage over one-tier architectures
is that Unix servers are smaller
and less expensive than larger
mainframes.

Implementing a two-tier archi-
tecture is simple and it presents
no real distribution issues.
Dividing the business logic
equally between the client and
the server facilitates communi-
cation between the presentation
and business logic on the client
side and between the business
logic and data logic on the server
side.

The two separate business
logic locations communicate by
using technologies such as
MQSeries or Tuxedo to make

1520-9202/00/$10.00 © 2000 IEEE

Figure 2. Two-tier architecture.

Client Server

GUI skill sets Database skill sets
Distributed
technology/

Presentation | Business | EREES > Business Data

logic logic logic logic

‘ Fat client ‘
‘ Fat server ‘

The two-tier client-server model separates the interface (GUI skill sets)
and implementation (database skill sets) components into two distinct

areas.

Figure 3. Three-tier architecture.

Distributed

Presentation | technology

logic

Business
logic

Distributed

technology Data

logic

This model makes a clear distinction between the presentation logic,
business logic, and data logic components.

networking calls. Another option is to
use distributed object technologies to
communicate.

Having centralized assets provides
a high level of security. However,
legacy architectures use available
computing resources poorly because
they require simple presentation logic
and processing to transit the network.

THREE-TIER ARCHITECTURES
A three-tier architecture supports
and improves upon the one-tier and
two-tier models. This type of archi-
tecture overcomes the inconsistencies
associated with the distributed busi-
ness logic location in the two-tier
client-server model. It also resolves
inconsistencies such as overloading,
which causes performance problems.
As Figure 3 shows, the three-tier
architecture clearly progresses to the
next stage by making a distinction
between the presentation logic, busi-
ness logic, and data logic components.

PCs contain the presentation logic
and perform simple validation, the
business logic executes on the busi-
ness servers, and centralized data
stores and legacy functionality reside
on traditional servers. The three sep-
arate logic areas use abstract inter-
faces to communicate. The abstract
interface is either a distributed tech-
nology (DT) or a distributed object
technology (DOT). DOT has advan-
tages over DT because its object prin-
ciples extend further than a single
application’s life cycle.

An object is essentially a structure
that uses a standardized set of opera-
tions and methods to manipulate
data. The object-oriented concepts of
encapsulation and abstraction create
objects that communicate with each
other through standardized abstract
interfaces. These interfaces identify
the operation to be performed and
define the input and output parame-
ters required to perform it.

Objects use the abstract interfaces
to amalgamate into an integrated
application system. Abstract inter-
faces hide the application logic func-
tionality within the application object.
In essence, each object is a separate
black box that you can adjust or
replace without interfering with the
other objects that communicate with
it. Any changes to the input and out-
put agents require adjustments to the
other components.

The benefits of using objects include
versatility, ease of maintenance, and
reusability.

COMPONENT TECHNOLOGIES
AND OBJECTS

Component-based development and
object-oriented development have a
number of similarities. On a descrip-
tive level, a component is a physical
entity. A component has inherent
behavior and attributes, and it answers
specific questions: What do | know?
What can | do? What is my purpose?
Obijects also have these traits. One dis-
tinction is that a component is a code
unit—for example, an .exe or .dll (dy-
namic link library) file. In contrast, we
develop objects individually in a logi-
cal fashion, even though we may pack-
age them together to produce compo-
nents.

Developers use traditional lan-
guages such as C, assembler, Fortran,
and Cobol to write components; they
use OO languages such as C++, Java,
or Smalltalk to create objects or appli-
cations. As a general rule,components
have more methods than objects
because they are a collection of
objects, even though they don’t need
to export (make visible) all of their
methods. By definition, a component
is part of something else; unlike an
application, it isn’t freestanding or
capable of its own functionality.
However, components are pluggable,
so they can provide a sort of stand-
alone functionality.

Components solve low-level design
needs, then programmers analyze the
components to define additional
requirements. Conversely, objects

May [June 2000 IT Pro

59

60

solve high-level design needs. Objects
require OO technologies, a life-cycle
approach, and testing. Objects sup-
port use cases that are integral to the
life-cycle approach.

DISTRIBUTED OBJECT
ARCHITECTURE

A three-tier distributed object archi-
tecture shown in Figure 4 uses mid-
dleware to communicate between
program objects. The object-based
middleware can combine the various
enabling technologies to mediate any
platform-specific and network trans-
lation issues so that programs devel-
oped by different vendors can com-
municate in a network. The “Object-
Based Middleware Technologies”
sidebar lists various types of middle-
ware specifications that DOT archi-
tectures use.

A three-tier architecture has many
benefits compared with one-tier and
two-tier architectures. The distributed
object technology offers the benefits
of increased security, reliability, scala-
bility, and availability. Object reuse
and sharing substantially increase
developer productivity because they
minimize the time required for recod-
ing. Abstract interfaces provide more
flexibility. With DOT, you can use data
and networks more effectively, and
the systems are easier to maintain.

distributed object architecture
A facilitates communication be-

tween different programs in a
network. But implementing systems
on distributed object middleware can
be complex. While middleware pro-
vides access, developers still need to
implement application services. And
on top of today’s demands that orga-
nizations operate in the e-business
arena, I'T managers still face the chal-
lenge of Web-enabling these applica-
tions. m

Robert Peacock is director of e-busi-
ness services at Semaphore, a Massa-
chusetts-based e-business systems
integrator. Contact him at rpeacock@
semadusa.com.

IT Pro May [June 2000

Figure 4. Three-tier distributed object
architecture.

(2] [%2]
(%] (%]
- [OINE] . L ©
Presentation | € 5 |4 > Business ¢ » £ Data
logic 208 1 logi 29 |ogi
5 gic S =2 ogic
[a] m

Middleware objects mediate platform-specific and network translation
issues so that programs developed by different vendors can communicate

in

a network.

Object-Based Middleware

Technologies

Three-tier distributed object architectures use these object-based mid-

dleware specifications to mediate platform-specific and network transla-
tion issues. In this way, programs developed by different vendors can
communicate in a network.

O

CORBA: The Object Management Group defines and manages the
Common Object Request Broker Architecture middleware specifica-
tion. Founded in April 1989 by 11 companies, OMG has grown to
become a consortium of more than 800 organizations. CORBA, a core
part of the Object Management Architecture, provides a method invo-
cation mechanism with location and implementation transparency.
The OMG’s Object Request Broker Task Force has approved the
CORBA Component Model specification, with final adoption
expected in November 2000.

COM: The Component Object Model is a set of technologies for build-
ing reusable components. Applications use the COM object-based
programming model as a framework they can build upon and extend.
Designed to promote software interoperability, COM makes the
ActiveX object-oriented program technologies and tools possible.

DCOM: Distributed COM is COM extended over the network. Clients
use DCOM to interact with components on other hosts. DCOM also
extends COM’s location transparency to remote processes. This means
that clients don’t need recoding to access objects on other systems—
“it just works.” Further, DCOM supports multiple security mecha-
nisms and transport protocols.

Java RMI: Java remote method invocation is built into the Java frame-
work. This framework can distribute any Java object that implements
the java.rmi.remote interface.

ODBC/JDBC: Open database connectivity/Java database connectivity
provides an object-oriented encapsulation of basic structured query lan-
guage (SQL) functionality. Justas CORBA, DCOM, and RMI hide the
details of networks and transport protocols, so ODBC/JDBC hides the
details of a particular database management system.

