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Abstract. Logic macroprogramming paradigms for wireless sensor networks (WSNs) 

are rule-based abstractions for programming a network as a whole. Programmers only 

focus on the main objective of the network rather than the low-level implementation 

details on each node. Therefore, the low-level details are automatically handled by 

underlying middleware of the paradigms. To be viable, the middleware must efficiently 

handle the underlying issues as well as effectively minimize energy consumption and 

communication overhead. Not surprisingly, one major underlying issue in logic 

macroprogramming systems is deductive-query processing. In this paper, we analyze 

the characteristics of deductive-query processing and identify what have been 

overlooked in those previous approaches. Furthermore, we overview, analyze, and 

compare several recent approaches for deductive-query processing of logic 

macroprograms in WSNs. Our analysis reveals several important aspects that should be 

considered when designing such systems. 
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1. Introduction 
 

Wireless-Sensor-Network (WSN) programming is notoriously tedious and difficult. To simplify WSN 

programming, several novel programming paradigms have been proposed. Many paradigms focus on 

programming the WSN as a whole (i.e., Macroprogramming) [1, 2, 3, 4, 5, 6, 7, 8, 9] instead of multiple 

networked entities. In these macroprogramming paradigms, programmers only focus on the main 

objective of the network rather than the low-level implementation details of each node. 

Some paradigms simplify WSN programming into logic programming [10, 11, 12]. With these 

paradigms, WSNs can be programmed declaratively and imperatively.  

There are two classes of logic programming paradigms for WSNs: node-dependent and node-

independent. In the node-dependent approaches, local node behaviors must be explicitly logic-

programmed [10]. Conversely, WSNs are logic macroprogrammed in the node-independent approaches 

[11, 12]. Logic macroprogrammers can focus on how to use sensed data from the WSN rather than how 

to explicitly specify the low-level details (e.g., local node behaviors, communications, query-processing 

techniques). The low-level details are automatically handled by the underlying middleware. To be 

viable, the middleware must minimize energy consumption and communication overhead due to limited 

resources of each sensor node. 

A logic macroprogram contains facts and rules with at least one sub-goal. Users can query the 

system for answers related to the written rules. Query processing in WSNs is not trivial. To satisfy that 

query, the run-time engine (i.e., middleware) attempts to match the query with a rule or a fact. This may 

result in cascading sub-queries because all sub-goals of the rule must also be matched. Furthermore, 

facts (e.g., current sensor readings) in WSNs are dynamic values. It is unlikely to know priori which 

nodes currently sense values that can match the query. Therefore, communication overhead is 

unavoidably incurred and efficient query processing is undoubtedly required. 

However, traditional query-processing approaches are designed for computers with plenty of power 

supply and processing power. In contrast, a WSN consists of several wireless sensing devices with 

extremely limited resources. As a result, novel query-processing mechanisms are required. Recently, we 

have proposed LogicQ [13], a semi-centralized approach for deductive sub-query processing. Later, 

Gupta et al [7, 14] have presented various fully-distributed approaches. Nevertheless, no prior work 

indicates any design choice by considering the characteristics of logic macroprograms for WSNs. 

Consequently, in this paper, we point out these main characteristics as well as analyze and compare 

each query processing approach. 

The rest of the paper is organized as follows. Section 2 covers the related works about logic 

programming for WSNs. In section 3, we introduce the fundamental concept of logic 

macroprogramming in WSNs. We briefly describe various logic-macroprogramming approaches for 

WSNs in section 4 and our approach in section 5. Then, in section 6, we analyze the cost of each 

approach and evaluate in section 7. We discuss further optimization in section 8. Finally, section 9 

concludes the paper. 

 

2. Related Work 
 

During these past few years, researchers have simplified WSN programming into logic programming. 

Chu et al [10] have proposed Snlog for logic-programming low-level details of each node. Unlike Snlog, 

our work focuses on a global abstraction that conceals low-level details from programmers.  

The Semantic Streams framework [12] is a rule-based macroprogramming scheme with the 

semantic services. Services are described by a service description language whereas queries and rules 

are described by a logic-programming language. However, the Semantic Streams framework focuses on 

a service-oriented approach for wired sensor networks with plenty of power supply. In contrast, our 

work focuses on the deductive-query processing for wireless sensor nodes with extremely limited 

resources. 

Recently, Gupta et al [11, 14] have proposed a deductive framework for logic-macroprogramming 

that shares the same objective with our work. They present distributed approaches for joining related 

facts to produce complete answers for a query. The main focuses of their approaches are load-balancing 

and extending the network lifetime. However, their design choices do not consider some essential 

characteristics of a logic-macroprogram for WSNs. Due to these characteristics, their approaches are 
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unavoidably load-unbalanced and practically power-inefficient. We directly compare our approach with 

various approaches presented in their paper. 

 

3. Fundamental of Logic Macroprogramming 
 

In this section, we describe the terminology of a logic macroprogram and a query-evaluation process. 

Our examples are quite simple but sufficiently general. The concept can be easily extended to more 

realistic complex applications as in [11, 12]. 

 

3.1. Terminology 
 

A logic-macroprogram consists of predicates, facts, rules, and queries. A predicate is a relation of data 

(or a table in the relational-database terminology). For example, a predicate temperature(NodeID, 

TemperatureValue) is a relation named temperature of two variable arguments: NodeID and 

TemperatureValue. 

A fact is a predicate whose arguments are all constants. For example, temperature(3,25) is a fact 

indicating that a node with ID 3 senses a temperature of 25 degree Celsius.  

A rule is a clause that specifies a condition to deduce new facts from existing facts in the system. 

A rule contains head and body parts. For example, the following rule represents a condition to deduce 

overThreshold facts of nodes that sense temperature and humidity over some certain thresholds. 

 

overThreshold(ID) : − temperature(ID,T), 

          humidity(ID,H), 

         T > 50,H < 30.                                                  (1) 

 

A query is a question that a user asks to retrieve data from the system. For example, ?-

overThreshold(X) is a query for retrieving IDs of all nodes that satisfy the overThreshold(ID) rule. A 

query can be classified into two main classes; a query for retrieving all available answers and a query 

for existence checking. For instance, the above query ?-overThreshold(X) requests for all facts or 

deduced facts named overThereshold. Meanwhile, ?-overThreshold(5) only checks whether there exists 

such a fact or a deduced fact overThreshold(5) in the network or not. 

We note that our logic-macroprogram can contain rules that specify global constraints or relations 

of facts across the entire network. Conversely, a Snlog logic-program [10] can contain only rules that 

specify local constraints or relations of facts in the same node. 

 

3.2. Query Processing 
 

Query processing is the crucial procedure of a logic macroprogram run-time engine. When a user sends 

a query into the system, the run-time engine has to process that query and return desirable answers to 

the user. Existing approaches (section 4) do not consider some characteristics of WSN logic-

macroprogramming in their design. Hence, in this section, we explain the general concept of query 

processing and identify such main characteristics that affect the design of query processing mechanisms. 

When the system receives a query, the run-time engine looks for a rule whose head part matches 

with the query. Then, each sub-goal (each predicate in the body part) of that matched rule is evaluated. 

A query is satisfied (has at least one answer) if all sub-goals are satisfied. If there is at least one 

unsatisfied sub-goal, the run-time engine will attempt to match with the next rule that contains the same 

head part (but different body part). If there is no satisfying rule, a false boolean flag is returned to the 

user. Furthermore, if a query is an existence checking query, the run-time engine does not necessarily 

send any satisfying answer to a user. Only a boolean flag (true or false) is sent. 

In each rule, some variable arguments of one sub-goal may be bound in some previous sub-goals 

(two sub-goals share at least one identical variable argument). Consequently, some facts that seems to 

match a later sub-goal will not be eligible unless the shared argument is bound with the identical value 

as in the previous sub-goal. For example, from the above overThreshold(ID) rule, a fact humidity(5, 20) 

will not satisfy the second sub-goal if there is no fact temperature(5, _) whereby an underscore 

represents an arbitrary value. This process can be seen as joining of each sub-goal’s predicate like 
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joining each table in a relational database. This observation leads to a system characteristic that some 

facts of the later evaluated sub-goals may not be useful and not necessary to send toward the query 

processing engine. 

Last but not least, after sending a query, a user generally waits for a reply from the system. 

Therefore, any answer must be sent back to a station where a user or a sub-process waits for a reply. 

This characteristic differentiates the query processing algorithm for logic-macroprograms from some 

algorithms in WSNs. Those algorithms (e.g., time synchronization, localization) are understandably 

better when being fully distributed. However, the query processing for logic-macroprograms is not 

necessary to be fully distributed, given that all answers are routed toward the same node. 

In the next section, we describe each query processing approach and we raise some design issues 

related to the mentioned characteristics of logic-macroprograms for WSNs. 

 

4. Existing Approaches 
 

There are several approaches to process the query of logic macroprograms for WSNs. We classify them 

as follows. 

 

4.1. Centralized Processing Scheme 
 

The centralized approach has been mentioned in [13, 14] as a simple but inefficient approach. This 

approach is straightforward; all facts in the network must be periodically sent to the base station. Then, 

the run-time engine (at the base station) uses all collected facts to process each query. Alternatively, the 

run-time engine collects facts only when a query is sent into the system. Only facts that match with 

each sub-goal’s predicate are collected. Figure 1 illustrates this scheme. 

These fully centralized approaches are not appropriate for resource-limited WSNs because a vast 

amount of unrelated facts are sent to the base station. However, based on the observed characteristics of 

query processing, we can certainly improve this centralized approach into a much more energy-efficient 

one. We explain in details later (see section 5). 

 

 
Fig. 1. Centralized Processing Scheme. Nodes route all facts to the base station. 

 

 

4.2. Distributed Processing Scheme 
 

Various distributed approaches have been concluded and presented in [14]. The main concept of prior 

presented approaches is to join all sub-goals of a rule in the network without helping from the base 

station. 

A naive-broadcast approach (Fig. 2) is a simple distributed approach whereby each node floods 

every fact to the entire network. Later, the join process can be performed at any arbitrary node. This 
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approach is undoubtedly infeasible for WSNs because a vast amount of memory is needed to store all 

facts. Furthermore, an excessive amount of energy is also wasted in flooding those facts. 

 

 
Fig. 2. Distributed Processing Scheme – Naïve Broadcast Approach. Nodes broadcast all facts 

throughout a network. Each node has a complete set of all facts. 

 
 

In a Centroid Approach (CA), several centroid regions are constructed. Each centroid area only 

collects facts of only one sub-goal. Figure 3a demonstrates that each node routes its facts to 

corresponding centroid areas and a center node of each centroid area routes facts to collect at storage 

nodes in its centroid area. When performing a query evaluation, the process begins at the centroid area 

that collects facts of the first sub-goal. Then, partial results are sent to the second centroid area. These 

partial results are joined with collected facts of the second sub-goal to generate new partial results. 

Generated partial results are sent to the next area and so on. The complete results are generated at the 

last centroid area. Figure 3b demonstrates this process. In this approach, nodes around each centroid 

area unavoidably run out of energy early. 

 

 
(a) 

 
(b) 

 

Fig. 3. Distributed Processing Scheme – Centroid Approach. Dash circles represent centroids 

corresponding to fact types. Thick dash lines represent logical routing from one node/centroid area to 

another node/centroid area. Thin solid lines represent that center nodes c1, c2, and c3 route facts to 

collect at storage nodes s1, s2, and s3 in their centroid areas. (a) Facts are collected at corresponding 

centroids. (b) Facts are routed to join with others from a centroid to another centroid. 
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The Perpendicular Approach (PA) has been proposed as a load-balanced and communication-

efficient approach for WSNs [14]. PA consists of two phases: Storage Phase and Join-computation 

Phase. In the Storage Phase, every node in the network broadcasts all local facts to be stored on each 

node along the virtual horizontal grid line. After that, in the Join-computation Phase, each fact of the 

first sub-goal is disseminated along the vertical grid line to one end. That fact is later disseminated to 

another end to join with every related fact stored on the vertical grid line. 

PA has two join computation schemes: One-Pass Join Computation (OP) and Multi-Pass Join 

Computation (MP). In OP, nodes (along the vertical grid line) produce all possible partial results 

although some partial results do not satisfy the query-evaluation process. However, when that fact 

reaches another end, all complete results (generated by that fact) are stored along that vertical line in 

one turn. In the other hand, MP routes partial results from one end to another end in multiple turns. In 

the first turn, only one fact of the first sub-goal is routed to one end. Then, in the second turn, only 

partial results that are generated by joining that fact with facts of the second sub-goal are routed to other 

end. Finally, in the final turn, all complete results are generated. Figure 4 illustrates the PA approach. 

 

 
Fig. 4. Distributed Processing Scheme – Perpendicular Approach. Each node route its facts to store in 

every node along a horizontal line. Then, a node performs evaluation along a vertical line with one-pass 

or multi-pass. 
 

 

The PA approach seems to be load-balanced and energy-efficient. However, all generated 

complete results must also be sent back to the base station. To send all completed results (stored around 

the network) consumes much energy. Therefore, nodes around the base station also run out of battery 

early as in the centralized approach. Furthermore, even without an involvement in the query evaluation 

process, a node may still run out of energy faster than in the centralized approach. The reason is that all 

nodes have to broadcast several facts from other nodes along the horizontal grid line. 

 

5. Selective On-Demand Processing 
 

The pitfalls of both centralized and distributed schemes presented above are due to no consideration of 

the mentioned query-processing characteristics in their design.  

Given that all answers must be sent to the user at the base station, the design that only creates all 

complete results distributively stored in the network is not sufficient. Meanwhile, to naively collect all 

facts to be processed at the base station is not such a good design either. 
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Recently, our initial work LogicQ [13] is designed as a globally deductive database system for 

WSNs. The LogicQ system allows a user to write a logic macroprogram and to send a query for 

answers. The simulation result of LogicQ in TOSSIM is encouraging but out of scope for this paper 

(see [13] for more details). The query processing approach of LogicQ is Selective On-Demand 

Processing Approach (SA). 

SA processes a query at a central base station as in the centralized processing scheme. However, 

facts that cannot satisfy a current sub-goal are not selected or sent. The selection can be done by 

binding variable arguments of a current sub-goal with instantiated arguments. Then, an argument-bound 

sub-query is sent into the network. 

For example, from the rule (1), if a user sends a query ?-overThreshold(2) to the system, the run-

time engine will attempt to bind the constant value with all corresponding arguments in the body part. 

Consequently, the body part becomes temperature(2,T), humidity(2,H), T > 50, H < 30. Then, the run-

time engine sends sub-queries ?-temperature(2,T) and ?-humidity(2,H) into the network. The 

temperature and humidity facts are sent back to the base station only when the first argument is 2. 

Meanwhile, all other facts (e.g., temperature(5,30), humidity(4,20)) are not sent because those facts do 

not possibly satisfy the query (according to the mentioned characteristic of query processing). Thus, this 

processing approach minimizes unnecessary spent energy. 

Additionally, we can use another distinguished characteristic about sub-queries to further improve 

the energy efficiency of the system. As mentioned before, sub-queries can be classified into two types: 

fact-existence checking and all-answers retrieving. Understandably, we need to disseminate all-answers 

retrieving queries to the entire network. Conversely, it will not be necessary for a node to further 

disseminate the fact-existence checking sub-query if that node has a fact to satisfy the sub-query. This 

sub-query can be suppressed because one fact is sufficient to confirm the existence. Therefore, only one 

answer is sent back to notify that the fact exists. Finally, only selected facts are processed by the base 

station. Figure 5 demonstrates this scheme with fact-existence checking. 

 

 
Fig. 5. Selective On-demand Processing Scheme. In fact existence checking, sub-queries do not 

necessary to reach all nodes and can be suppressed. 

 

 

This query processing mechanism is simple but efficient. We compare this approach with others in 

the next section.  

 

6. Cost Analysis 
 

In this section, we analyze the communication cost of three processing schemes: centralized, distributed, 

and selective on-demand schemes. In all cases, we assume uniform distribution of facts in the network 
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of size M nodes. iG  represents the number of all available facts of the thi  sub-goal. 
21ii  is a 

selectivity factor that is a fraction of the number of joined results to the number of all possible 

combinations between facts of the thi1
 sub-goal and facts of the  thi2

 sub-goal. 

 

6.1. Cost of Centralized Processing Scheme 
 

Understandably, in centralized scheme, every fact in the network must be collected at the central base 

station. Therefore, the total communication cost is  

 

,||
1





n

i

iCP GDMC                                                          (2) 

 

where M is the cost of query broadcasting which is equal to the number of nodes in the network and 

D  is an average distance from arbitrary node to the base station. 

 

6.2. Cost of Distributed Processing Scheme 
 

In this scheme, we refer to [14] for all base equations but we use iG  instead of iR  to represent the 

number of available facts of the thi  sub-goal to comply with our terminology for comparison purpose. 

However, those equations in [14] are about the cost of producing answers from only one tuple of the 

first sub-goal. Their equations do not include the cost of sending all answers back to the base station. 

Therefore, we have completed their equations as follow. 

 

6.2.1. Cost of Naïve Broadcast Approach 
 

Although, the naïve broadcast approach is infeasible in practice for WSNs, it can be a base case for 

comparison. 

 

,||
1





n

i

iNB GMC                                                           (3) 

 

In the naïve broadcast approach, all facts are flooded throughout the network. Hence, the cost of 

this approach is roughly a product of the network size and the total number of facts. 

 

6.2.2. Cost of Centroid Approach 
 

The cost of the centroid approach presented in [14] is only the cost of finding answers generated from 

only one fact from the first sub-goal. They do not include the cost of routing the facts to store on 

centroid storage areas of other sub-goals.  

Let iD  be the average distance of each fact of the thi  sub-goal to the center node of that sub-goal’s 

centroid area. r is memory capacity of each node. The cost of routing the facts to store on the centroid 

storage areas is   


n

i iiiStoreCA rGDGC
1_ /21 , where rGi / is the minimum number of nodes 

required to store iG  facts. A number of facts of a sub-goal iG  is routed to the center node with the 

average distance iD .  rGi /21  is the cost of searching for nodes with enough memory within the 

centroid area. The searching procedure is that the searching node broadcasts one storage-request 

message to neighbors, there are at least  rGi /  nodes response with sufficient-storage messages. Then 

the searching nodes routes rGi /   messages to  rGi /  nodes to store facts which are aggregately 
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included in each message. Thus, the total cost of searching is at least  rGi /21  . Afterwards, each 

joined partial result is routed from the current sub-goal centroid area to the next sub-goal centroid area 

on an average of d hops away. Then, the final complete results are sent back to the base station. 

Therefore, the overall cost of the centroid approach is 

 

    ,/ _

1,1

1

1 ,1

111

21

21

21

21 StoreCAf

n

i

i

nii

ii

n

i iii

iiiiCA CnDGGGirGdGC 




























  





 

        (4) 

 

fD  is the distance in hop(s) from the centroid area of the last sub-goal to the base station. 1G  is a 

multiplier to include every possible answer of the first sub-goal. 

 

6.2.3. Cost of Perpendicular Approach 
 

In the perpendicular approach, each fact must be routed to store on nodes along the horizontal line. 

hL  is an average hop length of the horizontal line. Thus, the cost of storage is  


n

i ihStorePA GLC
1_ . 

For both one-pass and multi-pass perpendicular approaches, all complete results are scattered around 

the network. Therefore, the cost of routing all complete results to the base station is 

  


n

i inii iisultPA GDC
1,1Re_

21 21
 , where D  is an average distance in hop(s) from arbitrary 

node to the base station. 

a) One-Pass Perpendicular Approach 

For the one-pass perpendicular approach, each fact of the first sub-goal is routed to one end as a 

starting point. Then, it is routed L hops along the vertical line. All generated partial results except 

complete results are also routed along the vertical line from their origin nodes to another end. Therefore, 

the overall cost of the one-pass perpendicular approach is  

 

    ./ _Re_

1

2 21

1 StorePAsultPAi

n

n

n

i

i

l

L

l

OP CClGnNlLnGC 







 



 

                        (5) 

 

 nN i

l  is the number of partial results generated at a node that is l hop(s) away from the starting 

node at one end.  

n  is the size of a partial result. For example, if a partial result is generated from only two first sub-

goals, n  is two. 

 
b) Multi-pass Perpendicular Approach 

For the multi-pass perpendicular approach, in the 
thi  round, partial results of size i are routed in L 

hops along the vertical line from one end to another end and new generated partial results of size i + 1 

are routed in average L/2 hops from their origin nodes to another end to prepare for the next round. 

Thus, the overall cost of multi-pass perpendicular approach is 

 

  StorePAsultPA

n

i iii

iiiMP CCLGGGiLGC _Re_

1

2 ,1

321

21

21
5.1 





























  



 

 .                   (6)  

 

In both one-pass and multi-pass perpendicular approaches, 1G  is also a multiplier to include every 

possible answer of the first sub-goal like in the centroid approach. 
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6.3. Cost of Selective On-Demand  Processing Scheme 
 

In our Selective On-Demand scheme, we perform the join-computation process at the central base 

station and distributively collect only needed facts from the network. 

In retrieving all satisfying answers, our scheme incurs broadcasting a sub-query for each sub-goal. 

However, only the selected facts (that satisfy the constraints caused by all previous sub-goals) for that 

sub-query are sent back to the base station. In other words, previous satisfied sub-goals can suppress 

many unrelated facts in the network. 

 

.
1 ,1 21

21 
 
















n

i

i

iii

iiSA GDnMC                                                     (7)  

 

Noticeably, our approach already includes the cost of producing all answers and the cost of sending 

all answers to the base station.  

In [13], we have proposed two optimization techniques: superset caching and look-ahead data 

filtering. For superset caching, if a query requests for answers that are a subset of previous cached 

answers, the runtime engine is able to response with answers immediately without cost of searching in a 

network. For look ahead-data filtering, if a sub-goal can be bound with a constraint or a constant 

argument, they can be broadcasted together to filter out unnecessary answers. We refer readers to [13] 

for more details.   

If we take these optimization techniques into account, the cost in the equation (7) will be reduced to  

 




























  

 

.
1 ,1 21

21

n

i

iij

iii

iitOSA GDnMpC  ,                                          (8)  

 

where nji  , from the look-ahead data filtering, ij  is the probability that a variable argument 

of the 
thi  sub-goal can be bound with a constant argument of the 

thj  sub-goal. From the superset 

caching, tp  is 0 if a query is in the superset cache before flushing.  Otherwise, tp is 1. The value of the 

probability ij  depends on queries and facts in an environment. Therefore, this probability value can be 

computed by statistical analysis. One feasible solution is analyzing the expected value in advance. 

Another feasible solution is collecting data for a while and deriving such a value with statistics from 

collected information.  

 

7. Evaluation 
 

Our Selective On-Demand Approach (SA) certainly performs better than the centralized and the naïve 

broadcast approaches do. Meanwhile, the Multi-Pass Perpendicular Approach outperforms the Centroid 

Approach and the One-Pass Perpendicular Approach when the selectivity factor is not too high [14]. 

Therefore, to find the best approach, we can simply compare our approach (SA) with MP. 

We begin by analytically comparing SA and MP in section 7.1. Then, we conduct a sensitivity 

analysis to both approaches in section 7.2 – 7.4 to show how a parameter variation affects the 

performance. In each analysis, we set up an experiment with 25 nodes, 3 sub-goals, and 0.1 selectivity 

factor. We vary one parameter in each analysis to inspect the effect.   

 

7.1. Analytical Comparison  
 

In this section, we prove that SA performs better than MP in most cases. Formally, MPSA CC   

when iGL   and LD   where L is the number of hops along the vertical line, iG  is the number of 

available facts of the thi  sub- goal, and D  is an average distance from arbitrary node to the base station. 
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Proof. We assume 1
1

 

n

i iG  (there is at least one combination of facts in the network). We 

note that if the 
thi  sub-goal has no related fact, we assign 1iG  to prevent a zero production. From 

the MPC  equation (6), we expand sultPAC Re_  and StorePAC _  to the equation (9). Then, the equation is 

rearranged into the three-term equation (10) for comparison.  
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From the equation (7), M in SA equals to hLL  in MP. Thus, we obtain the following equation (11). 
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We assume iGLi  : . This assumption is always valid in a homogeneous sensor network 

and valid in most cases of a heterogeneous sensor network. Therefore, we obtain the equation (12) and 

derive it into the three-terms equation (13) for comparison. 
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Finally, we compare the equation (10) with (13). If LD   (a general case in WSNs), each term in 

(13) is less than its corresponding term in (10), respectively. Therefore, we conclude that 

 

 MPSA CC                                                                  □ 

 

We note that even when iGL   or LD   (the assumptions are broken), SAC  is still mostly 

lower than MPC . SAC  is greater than MPC  only when iG  is much lower than the number of nodes in a 

network. In other words, SAC  is greater than MPC  only when there are a few (satisfiable and 

unsatisfiable) facts in a network. In Fig. 6, these assumptions are invalid with different network sizes 

(5x10, 13x6, and 9x11 nodes) where n = 3 and selectivity factors = 0.1. We also notice that, when SAC  

is greater than MPC , the cost difference is not significant. 
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Fig. 6. Cost when assumptions are invalid. 

 

 

7.2. Effect of Network Size  
 

The effect of the network size indicates how scalable an approach is. We vary the network size and 

calculate the number of all transmitted messages. In Fig. 7, SA’s cost scales linearly because there are 

only new transmissions from added nodes. Conversely, MP’s cost exponentially grows. When the 

number of nodes increases, there are more possible answers. Therefore, partial results in MP also 

increase. MP has to send these partial results multiple turns until the complete results are constructed. 

These increased partial results will also be routed in more hops as the network size increases. 

Consequently, transmitted messages exponentially grow with the network size. 

 

 
Fig. 7. Effect of network size. 
 

 

 

7.3. Effect of Selectivity Factors 
 

In Fig. 8, the higher selectivity factors result in more partial results generated. Similar to the effect of 

the network size, MP grows exponentially whereas SA is linearly affected. MP is exponentially affected 

by an increasing number of partial results. However, in SA, the increasing number of partial results can 

be viewed as there are additional nodes in the network. 



DOI:10.4186/ej.2011.vol.issue.pp 

ENGINEERING JOURNAL Volume # Issue #, ISSN 0125-8281 (http://www.ej.eng.chula.ac.th/eng/)                                          13 

 

  
Fig. 8. Effect of selectivity factor. 

 
7.4. Effect of the Number of Sub-goals 
 

Finally, in Fig. 9, we vary the number of sub-goals to evaluate how the complexity of a rule affects the 

performance. SA grows linearly after the first sub-goal. In SA, all nodes send their facts for the first 

sub-goal whereas only some nodes send their facts for the later sub-goals. In the other hand, MP grows 

exponentially for the first three sub-goals due to the increasing number of partial results. After the third 

sub-goal, the exponential cost component starts to disappear and the cost becomes linear. The reason is 

that, with 0.1 selectivity factors, later sub-goals have very low probabilities to produce next partial 

results that are also constrained by previous sub-goals’ values. 

 

  
Fig. 9. Effect of the number of sub-goals.  
 

8. Discussion on Optimization 
 

In our Selective On-Demand Approach, we propose how to process a query by considering the 

characteristics of logic-macroprograms for WSNs. However, it is of a particular interest to explore how 

this approach can be further optimized. For instance, several rules usually contain a sub-goal to 

constrain a variable argument with a certain range of values. An example body of such a rule is 



DOI:10.4186/ej.2011.vol.issue.pp 

14                                         ENGINEERING JOURNAL Volume # Issue #, ISSN 0125-8281 (http://www.ej.eng.chula.ac.th/eng/) 

subgoal1(X, Y), subgoal2(Y,Z), Y < 50. In this situation, we can simply send the constraint Y < 50 along 

with the sub-query subgoal1(X, Y). Only facts subgoal1 with the second argument that is smaller than 

50 are selected to be sent as answers. Others are suppressed. This optimization technique is certainly 

applicable to most approaches.  

As mentioned before, in SA, an existence-checking query can be suppressed by a node that already 

contains a satisfying fact. This suppressing node does not need to further disseminate the query to nodes 

under its sub-tree. The cost saving of this optimization technique is essentially the number of 

suppressed messages (or the number of nodes under the sub-tree rooted at the suppressing node). Let 
d

iC  be the number of nodes in the sub-tree whose root node i is on the 
thd  level depth. Thus, the cost 

saving can be formally expressed as  
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We believe that there are open research areas in optimizing either centralized or distributed 

approaches. However, in this paper, we learn that neither a distributed nor a centralized approach 

overcomes the other without considering the characteristics of logic macroprograms for WSNs (as seen 

in the previous section). Regardless of the approaches, the complete results must be sent back to a 

waiting user at the base station. This results in heavy loads on nodes around the base station. To avoid 

the heavy loads and to improve the performance, the load-balanced tree protocol [15] can be applied. 

 

9. Conclusion 
 

In this paper, we examine various query processing schemes in logic macroprograms for WSNs. Prior 

works are fully distributed to avoid drawbacks of the centralized approach. However, we notice that all 

complete results produced by those distributed approaches are still scattered in the network. Eventually, 

those results must be sent back to a sink node or a base station. Hence, being fully distributed may not 

be advantageous as normally perceived.  

We present the Selective On-Demand Processing scheme that combines benefits of centralized and 

distributed approaches. We also analyze and compare the communication cost of our approach with that 

of previous approaches. Our analysis reveals several important aspects that should be considered when 

designing a logic-macroprogramming system for WSNs. There is room to optimize the query 

processing for a logic-macroprogramming system to further reduce the communication cost and to 

balance the network load. We believe that a further deeper analysis with recursive queries can be 

extended from this work. A recursive rule can be expanded to a long-tail non-recursive query that 

consists of several repeated predicates. However, the exact numbers of predicates is now known a priori 

and depends on environmental data to be collected. The stochastic analysis can be one of feasible 

solutions for further deeper analysis. 
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