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ABSTRACT
Wireless Networks of Embedded Systems (WNES) is no-
toriously difficult and tedious to program. The difficulty
is mostly originated from low-level details in system and
network programming. This includes distributedly manag-
ing and accessing resources from a dynamic set of nodes in
hostile and volatile networks. To simplify WNES program-
ming, we propose Declarative Resource Naming (DRN) that
abstracts out the mentioned low-level details by program-
ming a WNES in the large (i.e., macroprogramming). DRN
provides programming simplicity, expressiveness, tunability,
on-the-fly reprogrammability, and in-network data aggrega-
tion for energy savings. None of existing macroprogramming
paradigms supports all of the mentioned features. Further-
more, DRN is an integration of declarative and imperative
programming. The low-level details are declaratively ab-
stracted out but the main algorithm remains procedural.
This allows programming simplicity without an adverse im-
pact on the expressiveness. We have implemented and evalu-
ated DRN on two platforms: Smart Message and Maté. Our
result indicates that DRN enables programmers to develop
energy-efficient applications with the desired flexibility and
quality.

1. INTRODUCTION
WNES (e.g., Wireless Sensor Networks) consists of a mas-

sive number of resource-constrained wireless nodes that are
unattendedly deployed to collect data or to monitor the area
in dynamic, hostile environments. Programming WNES for
such applications is notoriously difficult and tedius because
of the low-level details in system and network program-
ming. These low-level details include distributedly discov-
ering, managing, and accessing remote resources as well as
routing in a dynamic set of nodes while maintaining low
energy consumption and memory usage.

Several programming abstractions have been proposed in
literature to hide these low-level details from the program-
mers. Of particular interest are approaches to program
WNES in the large (i.e., macroprogramming). Unlike other
abstractions, these macroprogramming abstractions allow
programmers to take a centralized view of programming a
distributed system rather than a distributed view. A macro-
compiler is normally required for translating a centralized-
view macro-program into a distributed version for execu-
tion. The macro-compiler is also responsible for automati-
cally generating the mentioned low-level details in the exe-
cutable distributed code.

Macroprogramming abstractions can be divided into two

subclasses: node-independent and node-dependent. In
node-independent subclasses, WNES is declaratively pro-
grammed as a whole or a unit (e.g., a database). Ex-
amples of node-independent abstractions are TinyDB [24],
Cougar [1, 30], and Sense2P [9, 7, 8]. By abstracting a
WNES as a database, WNES programming is reduced to
database querying.

Conversely, in node-dependent subclasses, WNES is pro-
grammed as a collection of nodes. These abstractions en-
able programming tasks that are more complicated than
database-like querying. Examples of node-dependent ab-
stractions include Kairos [13], Split-C [26], SP [2, 17], Reg-
iment [25], Macrolab [16], and EcoCast [27]. Most of these
works (except Regiment and Macrolab) do not support in-
network data aggregation for energy savings. Even though
Regiment and Macrolab do, they do not address the on-the-
fly reprogrammability issue.

In this paper, we propose Declarative Resource Naming
(DRN) 1, a hybrid macroprogramming approach that sup-
ports simple tasks (e.g., database-like querying) and difficult
tasks as well as data aggregation mechanisms for energy sav-
ings. DRN is an integration between declarative and imper-
ative programming. The low-level details are declaratively
abstracted out whereas the core algorithm remains proce-
dural. Our abstraction allows programmers to declaratively
describe a dynamic set of nodes by their run-time proper-
ties and to map this set to a variable. To access the desired
resources on nodes in the set, we can simply refer to the
mapped variable. Therefore, remote resource access is sim-
plified to only variable access that is completely network-
transparent. DRN provides both sequential and parallel ac-
cess to the desired set. Parallel access reduces the total ac-
cess time and energy consumption because it enables data
aggregation in the network. Additionally, we can associate
each set with tuning parameters (e.g., timeout, energy bud-
get) to bound access time or to tune resource consumption.

Given that WNES may be deployed in dynamic, hostile
environments, and also that we may not be able to physi-
cally reach the nodes, it is necessary that we can remotely
program these unattended nodes on the fly. Systems based
on code migration are preferable because programs can be
propagated to target nodes without human intervention or
system rebooting. Examples of such systems include Smart
Messages (SM) [4], SensorWare [5], and Maté [22]. There-
fore, we have implemented our DRN run-time library on
two mobile-agent platforms: SM and Maté. SM can run on
iPAQs equipped with 802.11 radios whereas Maté can run

1An initial design of this work appears in Algosensors [21]



Table 1: WNES Macroprogramming System Characteristics

System Characteristic
Programming Node-dependency Supported In-Network Data On-the-Fly

Model Tasks Aggregation Reprogramming

Cougar Declarative Node Independent Relational Database Yes No
(SQL) Queries

TinyDB Declarative Node Independent Relational Database Yes No
(SQL) Queries

Semantic Declarative
Streams (logic Node Independent Service Queries No No

programming)
Declarative and

Sense2P Imperative Node Independent Deductive Database No Yes
(logic Queries

programming)
Imperative

SP (procedural Node Dependent Space-centric No Yes
programming)

Imperative
Kairos (procedural Node Dependent Remote Variable No No

programming) Access
Imperative

EcoCast (object-oriented Node Dependent Interactive Group No Yes
programming) Access
Declarative

Regiment (functional Node Dependent Spatiotemporal Yes No
programming)

Macrolab Imperative Node Dependent Deployment Specific Yes No
(Matlab-like)

Declarative and
imperative

DRN (procedural Node Dependent Declarative Yes Yes
programming with Resource Access
declarative names)



on motes equipped with 802.15.4 radios.
In addition, we have implemented an object tracking ap-

plication using our DRN runtime library to illustrate the
model’s viability. We have also evaluated our DRN runtime
library and its tuning knob (i.e., resource binding lifetime).
Our result indicates that the tuning knob enables the DRN
application to save up to 55.2% of the bytes sent without
significant accuracy degradation.

2. RELATED WORK
WNES Macroprogramming has been explored ear-

lier by several research efforts, including TinyDB [24],
COUGAR [1, 30], Semantic-Streams [29], and Sense2P [9, 7,
8]. The above node-independent abstractions propose pro-
gramming WNES as a database. Thus, WNES program-
ming is reduced to database-like querying with declarative
languages. However, declarative languages are designed for
expressing the desired data, but not for expressing the al-
gorithmic details. As a result, they are not appropriate for
complex tasks where the core algorithmic details cannot be
automatically generated. Conversely, DRN is a hybrid be-
tween declarative and imperative languages. Thus, our work
can easily support both types of tasks.

Other macroprogramming research efforts are node-
dependent. These include Kairos [13], SP [2, 17], Regi-
ment [25], Macrolab [16], and EcoCast [27]. Similar to Split-
C [26] for parallel programming, Kairos provides a facility
to sequentially access remote variables for WNES program-
ming. Unlike Split-C and Kairos, DRN can access variables
and other resources at declaratively-named nodes in paral-
lel. Accessing resources in parallel significantly reduces the
total access time and the overall energy consumption (by
enabling data aggregation inside the network).

Our work is mostly influenced by Spatial Programming
(SP). DRN and SP simplify resource access as variable ac-
cess, exposing the space property to the programmers, hid-
ing network details, and supporting imperative program-
ming. However, SP supports only sequential resource ac-
cess, whereas DRN supports both sequential and parallel
access. Additionally, SP is purely imperative programming,
but DRN is partially declarative and mostly imperative.

Parallel access is also supported by other works such
as EcoCast, Regiment, and Macrolab. Surprisingly, even
though EcoCast does access resources in parallel, it does
not support in-network data aggregation.

Regiment is a spatiotemporal macroprogramming system
based on functional reactive programming paradigms (one
form of declarative programming). In Regiment, the whole
program can be treated like a math equation that reacts to
the input changes. Input is data from a set of nodes that
are defined by their location. In this sense, Regiment is
very similar to SP. However, Regiment is not well-designed
for applications with highly dynamic behaviors, non-reactive
applications, short-lived queries, or mobile-agent based ap-
plications. Conversely, DRN does not suffer from the above
limitations.

Macrolab is a Matlab-like macroprogramming framework
that provides deployment-specific code decomposition. In
Macrolab, every deployment change requires re-compilation
and re-installation. This can be troublesome as there is no
explicit support for remote reprogramming the system on
the fly. In contrast, DRN is incorporated with two mobile-
agent platforms. Thus, our work can certainly handle such

changes with ease.
There exist several research efforts on a hybrid of

declarative and imperative programming. Examples of
such research include embedded SQL [11] and constraint-
imperative programming [12]. In embedded SQL, SQL is
mainly used for database access, and imperative program-
ming is used for data processing. In a sense, resources
in DRN are analogous to the database in embedded SQL
where declarative accesses are appropriate. In constraint-
imperative programming, variables are confined with con-
ditions about their eligible value. Given that conditions
are declaratively described, our resource variables are sim-
ilar to their constrained variables. Despite the mentioned
similarity, DRN, embedded SQL, and constraint impera-
tive programming target different problems, platforms, and
environments. Specifically, embedded SQL is designed for
data processing on conventional databases, and constraint-
imperative programming is designed for computing a solu-
tion that matches a particular constraint on traditional sys-
tems. In contrast, DRN targets resource naming on highly
dynamic WNES.

Hybrid macroprogramming systems also exist in Internet
(e.g., XTree [6]). Similar to TinyDB, X-Tree programs the
whole system as a database but X-Tree is designed for wide-
area sensor systems, not hostile dynamic WNES.

Nevertheless, our work has been influenced by directed
diffusion [14, 19, 20] and LEACH [15]. This is seen most
clearly in the energy savings gained by processing data in
the network. Despite this influence on our parallel access,
DRN shares several similarities with diffusion. Given that
diffusion APIs [10] require declarative data description for
publication and subscription, DRN and diffusion are exam-
ples of hybrid programming that effectively hides network-
ing details. However, diffusion programming view can be
somewhat distributed. This is probably why diffusion is not
widely classified as macroprogramming in the community.

We summarize the differences of these macroprogramming
approaches in Table 1.

3. WHAT IS THE RIGHT ABSTRACTION?
Traditionally, there are two programming styles in com-

puter literature: declarative and imperative. Declarative
programming fully abstracts out all algorithmic details.
Programmers only specify what they want rather than how
to algorithmically obtain the results. The translator and
optimizer will then fill in the algorithms. Automatic gen-
eration of algorithmic details can be efficient for simple
and specific tasks (e.g., database), but is questionable for
others. Examples of such an SQL-based approach include
COUGAR and TinyDB. Despite its simplicity, declarative
programming is not applicable for every WNES application.
Imperative programming is more appropriate for complex
tasks where efficient algorithmic details are either not obvi-
ous, or not easy to generate automatically. For example, it
is difficult or even impossible to implement Kalman filters
or maximum likelihood algorithms for estimating object lo-
cations in SQL because SQL is not designed for expressing
algorithmic details.

Declarative and imperative programming function well
within their domain and complement one another. Integra-
tion of declarative constraints and imperative constructs can
form a powerful programming paradigm suitable for both
domains. In this paper, we propose that such integration



is possible if the declarative abstraction is applied only to
some parts of the program.

In general, potential targets for abstraction are: 1) parts
that are unrelated to the core algorithms; 2) common to
applications, and; 3) tedious for programmers. To identify
the abstractable parts, a basic understanding of WNES pro-
grams is required. Typically, programs are collections of op-
erations on variables and resources. Given that variables are
more frequently accessed, programming languages provide a
simpler way to access variables than to access resources.

Not surprisingly, traditional resource access is more te-
dious, especially in networked systems where there exists a
distinction between local and remote resources. Resources
are normally bound to nodes that are known a priori. There-
fore, in order to specify the remote resources that are of in-
terest, node ids are required. If the node ids are not known,
resource discovery is needed. As a result, programmers are
required to work on several programming details (e.g., net-
working, resource discovering, resource accessing).

WNES programming is even more labor-intensive because
the resources of interest are specified by their properties at
run-time rather than node ids. For example, we may want
to access sensors on a particular hill only when the temper-
ature is more than 30 degrees Celsius. In this case, resource
discovery in WNES becomes necessary and common rather
than optional. The resource property is highly dynamic be-
cause the environment – where the temperature can drop
below 30 degrees Celsius at any moment – is hostile and
volatile. Some resource bindings or mappings may have to
be invalidated because the bound resources may no longer
match the desired property. But even if the resource prop-
erty does not change, bound resources may not be accessible
because of network dynamics such as node mobility. WNES
programs are required to handle changes, invalidate bind-
ings, discover equivalent resources, and bind the newly dis-
covered resources. Given that the above events are frequent
in WNES, these resource handlings (e.g., discovering, ac-
cessing, rebinding, and networking) are tedious to program-
mers. Therefore, the resource-related parts of the WNES
program are reasonable choices for our declarative abstrac-
tion.

4. DECLARATIVE RESOURCE NAMING
To simplify the programming tasks for WNES, we propose

a scheme that will program the WNES as a collection of
nodes in a network-transparent manner. As a result, there
is no notion of networking, being remote, or local.

4.1 Resource Variable
WNES programming can be simplified by making a re-

source access as simple as a variable access. In order to do
this, we propose resource variables (i.e., variables that are
mapped and referred to actual nodes). For example, one
can write a program to read a light sensor and to control a
camera as follows.

Resource R, X;
printf("light intensity=%f", R->light);
X->camera=off;

In the above example, we assume that the resource vari-
able R contains a light sensor and the resource variable X

contains a camera. To read the light intensity, we can simply
refer to R− > light. Similarly, the camera can be turned
off by assigning off to X− > camera. There is no need
for algorithmic detail of resource controls and operations.
This example shows that our approach is not only for re-
trieving data and for pushing data to desired nodes but also
for controlling them.

4.2 Declarative Constraint
Understandably, one may wonder to which physical nodes

(or resources) these variables (R and X) are precisely bound
and how programmers know about the individual sensor
types. Rather than specify the node ids for binding, a target
resource’s desired property can be declaratively indicated
with a boolean expression or a predicate. For example, we
can specify that R will be bound to light-sensor nodes within
the forest with temperatures greater than 30 degrees Celsius.

Resource R = <within(location, forest) &&
temperature > 30 &&
exist(light)>

Resource X = <a(b,c)!=0 && exist(camera)>

Given that more than one nodes can match a specified ex-
pression, a resource variable is referred to as a set of match-
ing nodes rather than a single one. Location and temper-
ature are local properties (of a node) that are used to de-
termine the node’s membership in the set R. Furthermore,
we also allow user-defined boolean functions (e.g., function
a()) in our expression. Such a flexible expression is generally
powerful and sufficient for various complex conditions.

4.3 Resource Access
In this section, we illustrate the need for various types of

DRN resource access that can be used in different situations.
Their advantages and disadvantages are also provided as a
guideline for selecting the resource access type that is most
suitable for a particular task. We propose two approaches
for accessing multiple matching nodes: sequential and par-
allel.

• Sequential Access. Each element in a set can be
referred to using an iterator (similar to an iterator in
C++ standard template library). The iterator enables
sequential and selective access of resources. For exam-
ple, one can sequentially read the light intensity of each
resource in the set R as follows.

Resource R;
Iterator i;

foreach i in R {
printf("light intensity = %f\n", i->light);
}

However, the sequential readings cannot represent a
snapshot of the desired target because the delay in
accessing the whole set sequentially can be significant.
In particular, the total delay is essentially the summa-
tion of all individual access time. Nevertheless, this
individual approach is still useful, especially when
only some elements in the set are accessed.



• Parallel Access. Conversely, in this approach, all
resources in the set are simultaneously accessed. This
parallel access can be specified using a direct reference
to the resource variable as follows.

Resource R;
printf("light intensity=%f", R->light);

In the above example, the program prints out the light
intensity of all nodes in R. The total delay using this
parallel approach is reduced to the longest delay of an
access. The parallel approach not only reduces the to-
tal access time but also provides a much better snap-
shot of the desired target. Additionally, unlike the
sequential approach, this parallel approach exposes an
opportunity for the underlying system to perform in-
network processing (e.g., data aggregation) that can
significantly reduce a system’s overall energy consump-
tion [14, 18, 19, 20, 23]. An example of data ag-
gregation functions is max(A) whereby the maximum
element in A is returned.

Resource R;
printf("max light intensity = %f",

max(R->light));

Ideally, the system expends energy only on delivering
that max element, not on the others. This delivery
can be practically approximated by in-network sup-
pression of the elements whose values are less than
that of the previously seen elements of the same ac-
cess. Suppression will be ineffective or even impossible
if the resources are accessed in sequence rather than
in parallel.

4.4 Resource Binding
Our model supports two binding types: dynamic and

static.

• Dynamic Binding. In our paradigm, code does not
need to be written to maintain binding between the
physical resources and resource variables. Given that
the resource property is constantly changing, rebinding
the set of matching nodes is laborious. For example,
the set of resources R at time t1 can be completely
different from the set of resources R at time t2.

Resource R = <expression1>
Time t1 = get_time();
x=Count(R);
...
Time t2 = get_time();
y=Count(R);

/* Normally, x != y */

Rather, it is desirable to simply provide the declarative
expression that is associated with the resource variable
to describe the resources of interest. In general, a ref-
erence to a resource variable implies a resource access.
Our semantic of a resource-variable access is rather
strict in a sense that the access is only performed on

the resource that matches the declarative expression
at the time of access. Furthermore, changes in the set
of matching nodes do not require attention from pro-
grammers.2 As a result, to conform with this strict
semantic, the underlying system may need to spend
significant overhead and excessive energy consumption
for ensuring that this reactive binding is up to date.
Therefore, we propose options or tuning knobs for less-
ening the semantic in order to save energy. For exam-
ple, programmers can lessen the semantic by allowing
access if the resource is bound in the last t seconds.

Resource R = <expression,
last_bound_time > now-t>

Furthermore, programmers can even specify an energy
budget to bound the energy consumption of a resource
access.

Resource R = <expression,
energy_budget = 100>

Other tuning knobs are currently under investigation.

• Static Binding. Although the above dynamic
binding of resources seems reasonable, one may notice
that there are situations where dynamic bindings
may not be appropriate. Specifically, we may want to
access the previously matched resources that are no
longer matched. For example, we may have turned on
cameras in area A. However, after a period of time,
we may want to turn them off, but some cameras
have since been moved out of the area. If area A is
included in our declarative expression, those cameras
that have since been transferred will no longer match
the expression. As a result, we may be unable to turn
off the relocated cameras directly using the resource
variable.

One solution to the above problem is to rely on the
underlying system. For example, we could declare a
new resource variable using a usual expression with an
additional timing condition.

Resource R = <expression1>;
Time t1 = get_time();
....
Resource X = <expression1 && time == t1>;

As long as we know the time of the matching, we can
describe the desired resources. A similar solution is to
provide the function last() that returns the previous
set of matching nodes to the caller. Therefore, we can
operate on the desired set even though it no longer
matches the expression.

2This is the main difference between our approach and the
traditional approach that relies on node ids and OIDs of
SNMP.



Resource R = <expression1>;
Resource X = last(R);

However, both solutions incur excessive overhead as
the system is required to maintain all changes of a set
at all times.

An alternative solution is to provide explicit instruc-
tions for memorizing matching nodes. We propose
two explicit mechanisms: the static resource and the
iterator.

Using the static resource variable, we can specify which
resources are statically bound. The static resource
variable will not be rebound in any circumstances.
Therefore, we can maintain any set of resources even
though they are no longer matched to the expression.

Resource R1;
Static Resource R2=R1;
/* R1 changes over time but R2 does not*/

This explicit instruction is cheaper to implement than
last() because the system no longer has to keep all pre-
vious values of every resource variable.3 Furthermore,
the static resource is intended for memorizing the en-
tire set of matching nodes. To memorize only one re-
source, an iterator is more appropriate. The value of
an iterator does not automatically change without an
explicit assignment.

Iterator i1 = R1->first_element;

4.5 Access Timeout
Regardless of binding type, there is no guarantee that

every WNES resource access will succeed. Unfortunately,
WNES resource access time is unbound, and access fail-
ures are usually unavoidable because of network dynamics.
Given that there is no response after unbound access time
and failures, they cannot be easily differentiated. 4 Timeout
is usually a common technique for handling such problems.
Therefore, we propose associating a resource variable with
an access timeout. In this model, the access time is mon-
itored for each access. Once an access has timed out, an
exception is raised (similar to Java exceptions). It is nec-
essary that the method for handling a time-out is explicitly
specified in the catch statement.

Resource R = <expression1, timeout = 10>
Iterator i = R->first_element;

try {
printf("light intensity = %f", i->light);
} catch(TimeoutException) {
printf("can’t access the light sensor");
}

3Programmers might write “last(last(last(...last(R)...)))”.
4This problem is similar to that of TCP. Packet loss and
unbound acknowledgment delay are handled using timeout.

5. IMPLEMENTATION
There are currently two implementations (of all or part)

of this abstraction: DRN on SM and TinyDRN on Maté.
DRN on SM provides full features described in this paper.
SM is a mobile-agent-based reprogramming middleware that
runs on IPAQs equipped with 802.11 radios. We have also
implemented TinyDRN, a bare subset of this abstraction
on Maté. Maté is also a mobile-agent-based reprogramming
middleware but it runs on motes equipped with 802.15.4
radios. DRN and TinyDRN are implemented as libraries.
Thus, there is no need for macro-compilers. In this section,
we briefly overview the SM architecture and its advantages
before we explain the detail of our implementation on SM
and Maté.

5.1 Smart Message Architecture
Smart Messages (SM) are mobile agents for wireless net-

works of embedded systems. They consist of code and data
sections (called bricks), and a lightweight execution state.
Unlike request/reply paradigms, SM applications need to
migrate to nodes of interest and execute there. To do this,
SMs execute a routing algorithm, carried as a code brick,
for determining the next hop toward a node of interest. The
code bricks are cached by nodes along the way to reduce
the cost of transferring the same code in the future. Over
time, this cost is amortized because of temporal and spatial
locality of SM applications.

SM architecture consists of Smart Message Virtual Ma-
chine (SMVM) and Tag Space. SMVM is basically Sun’s
K Virtual Machine (KVM) that is modified to support Tag
Space and program migration. SMVM is suitable for mobile
devices with resource constraints and with as little as 160KB
of memory [3]. Tag Space is a name-based memory region
that unifies an interface to I/O and memory on SMVM. I/O
and memory can only be accessed through an object called
a tag. Direct-access instructions will not be recognized by
SMVM.

Given that there is no Java thread or pre-emption in SM,
the SM execution model is quite simple. Only one SM is
active at a time on a SMVM while the other SMs wait in the
queue until the active SM terminates, migrates, or suspends
itself.

There are several advantages using SM as our target plat-
form. One significant advantage is on-the-fly reprogramma-
bility. New aggregation functions and predicates can be de-
ployed on the fly. Another advantage is the SM tag, the uni-
fied interface to memory and I/O. This feature tremendously
simplifies our implementation, especially our variable-like
access to resource.

5.2 DRN Implementation using SM
DRN is implemented as SM run-time libraries. Given

that we only use regular SM commands to implement our
libraries, we do not have to modify the SM Virtual Machine
(SMVM) and do not have to implement a DRN macro-
compiler. In the SM platform, each node is a pocket PC
running an SMVM. Therefore, each node has interfaces to
interact directly with a user. Consequently, we can use any
node in the system as a user node.

Our macroprogram is implemented as a Smart Message
that is injected at the user node. Generally, a SM program
can migrate and execute at any node but, in our implemen-
tation, the main SM macroprogram do not migrate. To ac-



quire data from other nodes, this main SM will create child
SMs that migrate to those nodes and bring the data back.

When a resource variable is declared with a predicate and
a binding lifetime, the main SM does not immediately bind
the variable. Instead, the resource variable will be bound
on demand when the variable is referred. Given that the set
of matching nodes changes over time, binding the variable
too early may not be useful. The variable is likely to be
rebound at the time of access and overhead in early binding
is wasted. This concept is similar to on-demand routing in
wireless ad hoc networks.

To bind the variable, nodes that match the predicate have
to be discovered (see Algorithm 1). The main SM creates
a Discovery SM that contains the given predicate to dis-
cover nodes and their routes. The default target region is
the whole network. If no target region is specified in the
predicate, the Discovery SM floods the network by dupli-
cating itself and migrating to all neighbors of the current
node until all nodes are visited.

Algorithm 1 Resource Discovery

1: while not in the target region do

2: create marking tag
3: migrate to the neighbor closest to the region
4: create route-to-user tag point to previous node
5: end while

6: call Flood Migration

If there is geographical information about the target re-
gion in the predicate, the Discovery SM will migrate to only
the neighbor that is closest to the target (Line 1-5). Upon
reaching the region, the Discovery SM floods all nodes in
the region to check if those nodes match the predicate (see
Algorithm 2).

On each visited node, the Discovery SM creates a mark-
ing tag for differentiating visited nodes from others (Line
4). The Discovery SM will terminate if it arrives on a node
with the marking tag (Line 1-3). In addition to the mark-
ing tag, the Discovery SM also creates a route-to-user tag
on the current node for memorizing the previous hop (Line
5). Therefore, this route-to-user tag contains the next hop
toward the user node. These route-to-user tags on all nodes
form an aggregation tree for gathering data from all match-
ing nodes.

Once a matching node is found, the Discovery SM mi-
grates back along the aggregation tree to notify the main
SM (Line 14-17). On the way back to the user node, the Dis-
covery SM creates a route-to-id tag and a route-to-resource
tag on the current node for memorizing the previous hop.
Route-to-id tags form a path toward a matching node for
sequential access whereas route-to-resource tags form a mul-
ticast tree for sending access request to matching nodes in
parallel.

Upon reaching the user node, the Discovery SM notifies
the main SM about the matching node. The main SM then
adds the reported node into the set that is bound to the re-
source variable. Additionally, the main SM resets the bind-
ing timer of the resource variable to its lifetime.

In this implementation, an iterator access (i.e., sequen-
tial access) does not cause resource discovery. The main
SM creates an Access SM that migrates toward the bound
node using the corresponding route-to-id tags. Conversely,
a resource-variable access causes resource discovery if the

Algorithm 2 Flood Migration

1: if marking tag exist then

2: exit
3: end if

4: create marking tag
5: create route-to-user tag point to previous node
6: for each neighbor in the target region do

7: create child Discovery SM with given predicate
8: if this SM is the created child Discovery SM then

9: migrate to the neighbor node
10: call Flood Migration
11: exit
12: end if

13: end for

14: if this node matches the predicate then

15: migrate back to user node
(also create route-to-id and route-to-resource tag
to previous node along the way)

16: add this node in a set of bound node
17: end if

Algorithm 3 Resource Access

1: if binding expired or not bound then

2: call Resource Discovery
3: restart binding timer
4: end if

5: call Access Migration

binding timer expires or the variable is not bound (see Al-
gorithm 3). Once the variable is bound, the main SM creates
Access SMs that migrate toward the bound nodes along the
multicast tree in parallel (see Algorithm 4). Upon reaching
the bound nodes, the Access SMs perform instructed op-
erations and carry the results back to the user node (Line
1-8).

Accessing resources in parallel enables data aggregation
that results in energy savings. Therefore, on each branching
node along the aggregation tree, the Access SM waits for
other SMs until SMs from all branches arrive or the waiting
timer expires (Line 18). All arriving SMs are merged into
one and only the resulting SM migrates to the user node
(Line 19-23). Our waiting timer in this implementation is
fixed and quite naive. A better implementation is to use the
depth of the branching node to proportionally set its waiting
timer. Undoubtedly, the deeper node requires the longer
timer. The depth of the branching node can be computed
when Discovery SMs migrate back to the user node. Given
that a matching node is a leaf of our aggregation tree, its
depth is zero. Each Discovery SM carries this depth counter
and increments it by one for each hop that the SM migrates.
The Discovery SM will also creates a depth tag on each node
along the way for maintaining the current depth of the node
if there is no such tag yet. Both the depth tag (on the current
node) and the depth counter (on the SM) are compared and
set to the greater value between them.

Furthermore, this implementation can also be improved
by merging the Discovery SM and the Access SM into a Dis-
covery&Access SM. This new SM behaves like the Discovery
SM but, once it finds a matching node, it immediately ac-
cesses the resource on the node and migrates back to notify
the main SM about the matching node as well as the access



Algorithm 4 Access Migration

1: if on a bound node then

2: access the specified object
3: end if

4: if on a leaf node and exist parent node then

5: migrate back to the parent node
6: notify the parent SM
7: return
8: end if

9: for each child on multicast tree do

10: create child Access SM
11: if this SM is the created child Access SM then

12: remember this node as parent
13: migrate to the child node
14: call Access Migration
15: exit
16: end if

17: end for

18: wait for results from all child Access SMs
19: merge the results
20: if exist parent node then

21: migrate back to the parent node
22: notify the parent SM
23: end if

result in one step. This merging can improve energy savings
and reduce delay of our system. We plan to implement this
merging and depth computing in our future work.

5.3 TinyDRN
TinyDRN is a subset of our abstraction, retaining only

resource variables and static binding features. TinyDRN is
implemented as new bytecode instructions on Maté, a tiny
virtual machine for sensor networks. In the Maté platform,
each node is a mote running a Maté virtual machine. Given
no user interface on motes, we need a PC as our user node
that connects to a gateway mote for relaying our commands.
Each sensor node or mote has upto 128KB ROM for instruc-
tion memory and upto 4KB RAM for data whereas the K
Virtual Machine (used in SM) targets devices with a mem-
ory budget of at least 160KB. As a virtual machine, Maté is
a bytecode interpreter implemented as a component in Tiny
OS (an operating system of motes).

In a sense, a Maté program is simply a script consisting
of Maté commands that are recognized, interpreted, and ex-
ecuted by a Maté VM. To implement TinyDRN, we need to
modify the Maté VM so that the virtual machine knows how
to interpret and to execute our new bytecode instructions.

We have also developed an application using TinyDRN to
test our TinyDRN implementation. Our testing application
turns on the LED of nodes in the area that is brighter than
400 units. To understand the overhead of our implementa-
tion, we have written the same application using the orig-
inal Maté (without TinyDRN instructions). Based on our
measurement, this application with the original Maté takes
42,976 bytes of ROM and 3,134 bytes of RAM. In contrast,
this application with the TinyDRN-added Maté takes 44,586
bytes of ROM and 3,289 bytes of RAM. The result indicates
that the TinyDRN version takes only 3.75% additional bytes
of ROM and 4.95% additional bytes of RAM.

Even with the slightly bigger memory usage, the Tiny-
DRN version surprisingly runs faster and sends fewer mes-

1: Space sp=UNIVERSE;
2: Resource R1=< (within(Sp)==TRUE)&(motion>0) >;
3: Location AverageLoc;
4:
5: for (int i=1; i<= 25; i++) {
6: AverageLoc = average(R1->Location);
7: if (AverageLoc != NULL) {
8: System.out.println(
9: "Average("+i+")="+AverageLoc);
10: sp.updateRegion(AverageLoc, 10);
11: } else {
12: System.out.println(
13: "Average("+i+")=NOT FOUND");
14: sp = UNIVERSE;
15: }
16: sleep(4000);
17: }

Figure 1: Pseudo-code for our object-tracking ap-

plication.

sages than the non-TinyDRN one does. This is due to the
smaller script size (a benefit of new bytecode instructions).
Although the modified virtual machine is bigger, the appli-
cation itself is smaller to propagate. This results in fewer
messages and bytes to send over the network. Consequently,
the code is propagated faster and the energy is consumed
less. It is a classic example of using energy wisely on com-
putation rather than on communication.

6. EVALUATION
In this section, we conduct an experiment to evaluate a

DRN application executed over our DRN runtime system.
This section describes our methodology and considers the
impact of a DRN tuning parameter on the application’s per-
formance.

However, only DRN is used in this evaluation because we
intend to test the full feature of our abstraction. Our test
on TinyDRN can be found in Section 5.3.

6.1 Goals, Metrics, and Methodology
We have implemented our object-tracking application

(Section 6.2) using DRN. This application is evaluated on a
network of 20 nodes. Each node is emulated using a Smart
Message Virtual Machine (SMVM) that runs on a different
port of a physical machine. (Given that the SMVM can run
directly on an HP iPAQ [4], our DRN code can also run on
the iPAQ without any modification.)

Our goals in conducting this evaluation study are twofold.
First, it is necessary to verify the viability of the DRN model
for macroprogramming WNES. Second, we would also like
to understand the impact of resource-binding lifetime on the
DRN application.

We choose two metrics to analyze the performance of our
DRN application: the number of application bytes sent and
average distance error. The number of application bytes
that are sent measures the total bytes sent across the net-
work. The metric roughly indicates the dissipated energy
and implies the overall lifetime of WNES. Average distance
error measures the distance between the actual object lo-
cation and the reported location. This metric implies the



1: public class TrackingApp extends SmWrapper{
2:
3: private final static int timeout = 24000; // Binding lifetime
4: private Space sp;
5: private TrackingExpression tExp;
6: private Resource resource;
7: private LocationAverage agg;
8:
9: public TrackingApp(){
10: super("TrackingApp");
11: }
12:
13: public void run() {
14: try {
15: sp = new Space(null,-1); // sp = UNIVERSE
16: tExp = new TrackingExpression(sp, "motion");
17: resource = new Resource(tExp, timeout);
18: agg = new LocationAverage();
19: for (int i=1; i<= 25; i++) {
20: agg = (LocationAverage)resource.access(agg, 4000);
21: System.out.println("agg = "+agg);
22: Location average = (Location)agg.evaluator();
23: if (average != null) {
24: System.out.println("Average("+i+") = "+average);
25: sp.updateRegion(average, 10);
26: } else {
27: System.out.println("Average("+i+") = NOT FOUND");
28: sp.updateRegion(null, -1); // sp = UNIVERSE
29: }
30: sleep(4000);
31: }
32: } catch(Exception e) {}
33: }
34:
35: public static void main(String []args) {
36: TrackingApp trackingApp = new TrackingApp();
37: String []types;
38: types = new String[3];
39: types[0] = "TrackingApp";
40: types[1] = "TrackingExpression";
41: types[2] = "LocationAverage";
42: trackingApp.initSM(types, trackingApp);
43: trackingApp.run();
44: }
45: }

Figure 2: Real Java code for our object-tracking application.

accuracy of the tracking application; similar metrics were
used in earlier work [28]. We study these metrics as a func-
tion of the resource binding’s lifetime.

In our experiment, we study a multi-hop sensor field (of
20 nodes) that is generated by randomly placing the nodes
in a 20m by 40m rectangle. Each node has a radio range
of 10m and a sensing range of 5m. Such ranges enable a
direct communication between two nodes that detect the
same object. The transmission range also defines neighbors
of each node (SMVM) in this emulation.

The DRN application tracks an object that moves at a
rate of 0.25m/s. The object moves clockwise along the edge
of a 10m by 30m rectangle located in the middle of the sen-
sor fields. This clockwise movement causes nodes in different
regions to detect and track the object. The application es-
timated the object location on 25 different occasions during
our experiment, or once every 4 seconds.

6.2 Object Tracking Application
Figure 1 shows the simple DRN pseudo-code that accom-

panies our object tracking application. Essentially, the ap-
plication tracks an object by acquiring the location of de-
vices (i.e., resources) that detect motion within a region of
interest. The average location of such devices is an estima-
tion of the object location. At the beginning, there is no
estimation of object location. The application first searches
for the object throughout the sensor field. Once an object
location is found, the region of interest for the next search
is set to an area within 10m of the estimated location. This
approach limits the searching space, and results in better
energy efficiency, especially when the geographical routing
is used in the underlying system. Later, if the object can-
not be found in this dynamic circular region, the region of
interest is reset to the whole sensor field.

The actual Java code for this application (Figure 2) is
very similar to the simple DRN pseudo-code in Figure 1; it



1: public class TrackingExpression extends Expression{
2:
3: private Space sp_;
4: private String moTag_;
5:
6: public TrackingExpression(Space sp, String moTag) throws BadSMApiUsageException {
7: sp_=sp;
8: moTag_=moTag;
9: }
10:
11: public boolean evaluate() {
12: try{
13: Integer moInt = (Integer)TagSpace.readTag(moTag_);
14: GPSData gps = (GPSData)TagSpace.readTag("gps");
15: if (!sp_.outside(new Location(gps.latitude, gps.longitude)) && (moInt.intValue()>0) ) {
16: return true;
17: }
18: }catch(Exception e) {}
19: return false;
20: }
21: }

Figure 3: TrackingExpression class for matching resources.

is possible to achieve a one-to-one translation from simple
DRN pseudo-code to real Java code. In this Java code, our
TrackingApp simply extends the SmWrapper that hides SM-
related details from programmers. To conform with the Java
syntax, we implement the resource expression (TrackingEx-
pression) as a class (Figure 3). (Automatic generation of
this expression class from DRN pseudo-code is part of our
future work.) Each expression class contains an evaluate()
method that needs to be executed on the device to determine
if the device property is matched with the expression.

In this application code, resources are accessed in paral-
lel. Parallel access provides an opportunity for in-network
processing (e.g., data aggregation) that can significantly re-
duce the system’s overall energy consumption [14, 18, 19,
20, 23]. Typically, in other systems, the code for in-network
aggregation cannot be dynamically installed after network
deployment. In some systems, an API may not be provided
for writing a new in-network aggregation code. For example,
it is not obvious how a new aggregation algorithm can be ex-
pressed in TAG using SQL, given that SQL is not designed
for expressing algorithmic details. Furthermore, TAG is not
a reprogrammable platform. Therefore, it is not clear how
a new aggregation code can be deployed on the fly. Unlike
other WNES programming approaches, DRN provides an
Aggregation class that can be extended to implement a new
dynamically-deployable aggregation technique.

Generally, a data aggregation technique is implemented
using three functions: initializer i(), merger m(), and eval-
uator e(). The initializer i() specifies how to instantiate a
data state record for a single sensor value. DRN will call
this function on devices whose properties are matched with
the declarative expression. This data state record will then
be sent back toward the user node. During the return trip,
this data state may meet other data states from the same
set of desired resources. DRN will call the merger m() to
aggregate these data states into one. Once the data state
reaches the user node, the evaluator e() will compute the
actual value of the aggregate.

In our application, we have shown how to implement
a new aggregation technique called LocationAverage (Fig-
ure 4) in DRN. To do this, we simply extend the Aggrega-
tion class and overload the three-mentioned functions. We
use < sum x, count x, sum y, count y > as our data state.
Suppose the matching device is located at (x1, y1). The
initializer sets the data state record to < x1, 1, y1, 1 >.
The merger combines the state < x1, cx1, y1, cy1 > and
the state < x2, cx2, y2, cy2 > into a single state < x1 +
x2, cx1 + cx2, y1 + y2, cy1 + cy2 >. The evaluator returns
< sum x/count x, sum y/count y > as the average loca-
tion.

6.3 Tuning Knob
Semantically, in our model, resource access is strictly per-

formed on resources that match the declarative expression
at the time of access. Changes in the set of matching nodes
do not require attention from the programmers. Therefore,
DRN must rebind resources transparently and dynamically.
This strict semantic could incur significant overhead and ex-
cessive energy consumption for ensuring that this reactive
binding is up to date. Not surprisingly, we propose tuning
knobs for balancing strong semantics with energy savings.
One of these tuning knobs is the resource binding lifetime.
For example, using a binding lifetime of t, programmers can
slightly lessen the semantic and allow access if the resource
is bound in the last t seconds.

In this experiment, we study an impact of binding lifetime
on energy consumption and tracking accuracy of an unop-
timized version of our application. Specifically, Line 25 in
Figure 2 is removed. Therefore, searches for the object are
always performed throughout the sensor field. An additional
objective of this experiment is to show that, even though the
declarative expression and related variables are not changed,
the resource is dynamically and deservedly rebound.

Figure 5(a) plots the number of bytes sent as a function
of the resource binding lifetime. As expected, the num-
ber of bytes sent is reduced (the line with black rectan-
gles) as we increase the binding lifetime (i.e., reduce the



1: public class LocationAverage extends Aggregate{
2:
3: private GPSData gps;
4: double sum_x, sum_y;
5: int count_x, count_y;
6:
7: public void initializer() {
8: try {
9: gps = (GPSData)TagSpace.readTag("gps");
10: sum_x = gps.latitude;
11: sum_y = gps.longitude;
12: count_x = 1;
13: count_y = 1;
14: } catch (Exception e) {}
15: }
16:
17: public void merger(Aggregate agg) {
18: sum_x = sum_x+agg.sum_x;
19: sum_y = sum_y+agg.sum_y;
20: count_x = count_x+agg.count_x;
21: count_y = count_y+agg.count_y;
22: }
23:
24: public Object evaluator() {
25: try {
26: return new Location(sum_x/count_x, sum_y/count_y);
27: } catch (Exception e) {
28: return null;
29: }
30: }
31: }

Figure 4: LocationAverage class for in-network processing.

number of resource discovery). Results indicate that it is
possible to achieve meaningful energy savings without a sig-
nificant degradation in tracking accuracy. Specifically, we
can achieve a 51.5% savings in bytes sent with only small
accuracy degration when we increase the binding lifetime
from 4 to 16 seconds. The total number of bytes sent in-
cludes the overhead for installing this mobile-agent program
on the fly (the line with white rectangles). When we factor
out the bytes sent for injecting the application code into the
network, the savings improves to 55.2%.

The average tracking error does not significantly increase
until the binding lifetime is more than 16 seconds (Fig-
ure 5(b)). The result is intuitive. If the object moves away
from a bound sensor at the speed of 0.25m/s, it will take at
most 20 seconds to move beyond the bound node’s sensing
range. Conversely, if the object moves toward the bound
sensor without changing its direction, it will take at most
40 seconds to pass out of range. Given the moving pattern
in this experiment, we do not need to rediscover the re-
sources within 20 seconds to achieve a reasonable accuracy.
However, after 20 seconds, the accuracy will be significantly
degraded. If we do not rediscover the resources after 40
seconds, we will no longer be able to track the object.

Tracking accuracy depends on several factors: estimation
techniques, network density, and sensing range. The esti-
mation error of 2-3m in this experiment is considered rea-
sonable, given our simple estimation technique, low-density
network, and 5m sensing range.

6.4 Space Scoping for Optimization

Like other programming paradigms, writing an efficient
program requires understanding of the underlying system.
For example, in virtual memory systems, programs should
be written such that the number of page faults is minimized.
To operate on an entire two-dimensional array in those mem-
ory systems, elements in the array should be accessed row-
by-row rather than column-by-column. Similarly, our track-
ing application is more efficient when the searching space is
specified because our run-time library supports geographic
routing. Given a specified space, resource-discovery request
is geographically routed to the space instead of flooding
throughout the network.

To study the impact of space scoping on our tracking ap-
plication, we conduct an experiment similar to that of the
previous section. The difference is that Line 25 in Figure 2
is now included.

As the binding lifetime is increased, the savings is de-
creased due to the reduced number of resource discovery.
Additionally, the tracking accuracy is not significantly de-
graded by space scoping (Figure 6(b)).

Our results indicate that we can achieve 42.5% savings on
the number of bytes sent when we dynamically specify the
target space (Figure 6(a)). Although this savings is signifi-
cant, one may expect more savings because geographic rout-
ing is much more efficient than flooding. However, once the
resource-discovery request is geographically routed to the
specified space, the request is flooded within the space in or-
der to discover all matching nodes. This scoped flooding in-
curs additional overhead and results in fewer-than-expected
savings.
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Figure 5: Impact of resource binding lifetime on our object-tracking application.
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Figure 6: Impact of space scoping on our object-

tracking application.

7. DISCUSSION
In Section 6, our tracking example is intentionally sim-

ple. Undoubtedly, one can easily write a more sophisticated
tracking application using DRN. One possible improvement
is to estimate the object speed using exponential weighted
average. This estimated speed can be used to predict the
object location or the center of the space for the next access.

To simplify our evaluation, we have used fixed sensing
and radio ranges. In practices, these ranges are not fixed.
With realistic ranges, we can obtain more realistic accuracy
results. However, these ranges have no impact on the via-
bility of our abstraction.

While DRN works well for tracking, some may wonder if it
applies well to other applications, especially data-collection
applications. It is necessary to emphasize that DRN is not
only useful for retrieving data but also for pushing data to
declaratively named nodes. We can install a new function
to all nodes in the network. This new function then reads
and pushes data periodically or reactively toward the user
node. Therefore, data-collection applications should be eas-
ily implemented by using DRN in this manner.

In this paper, we propose only two tuning knobs: binding
lifetime and access timeout. There are still several other
tuning knobs that should be exposed to programmers. For
example, one might want to dynamically change the num-
ber of nodes that participate in aggregation based on en-
ergy goals. Such a tuning knob would be useful for limiting
energy consumption during resource access. We plan to ex-
plore other tuning knobs in our future work.

Furthermore, one may wonder what the right binding life-
time is for each application. As long as the result is still
acceptable, higher binding lifetime is generally better. A
possible solution without trial-and-error is to dynamically
adjust the binding lifetime based on the quality of the re-
sult and the resource consumption.

8. CONCLUSIONS
We believe that, to efficiently develop WNES applica-

tions, appropriate programming abstractions are necessary.
DRN is one such abstraction that integrates declarative
constraints with imperative constructs to form a power-
ful programming paradigm suitable for macroprogramming



WNES.
We have implemented DRN on two platforms: SM and

Maté. SM can run on iPAQs with 802.11 radios whereas
Maté can run on motes with 802.15.4 radios. Furthermore,
given network transparency, our approach should be appli-
cable for macroprogramming over wired or wireless networks
as well. However, this network transparency feature of DRN
implies that DRN is not for low-level programming or imple-
menting a protocol that requires a distinct notion between
being remote and local.

In addition, we have implemented an object-tracking ap-
plication using our DRN runtime library to show the model
viability. We have also evaluated our DRN runtime library
and its tuning knob (i.e., resource binding lifetime). Our
tuning knob enables the DRN application to save up to
55.2% of bytes sent without significant accuracy degradation
when the application code is already cached or installed in
the network.

In the future, we intend to further explore the design space
of DRN such as other tuning knobs. Additionally, we plan
to implement other applications using DRN and to conduct
more extensive evaluation in order to better realize DRN’s
full potential.
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