
DeVise: a Tool for Visualizing and Validating
Desynchronization Protocols for Multi-hop

Wireless Sensor Networks
Supasate Choochaisri1, Siam Aurburananont, Akekanat Saowwapak-adisak, and Chalermek Intanagonwiwat2

Department of Computer Engineering
Chulalongkorn University

Bangkok, Thailand
{supasate.c,siam.a, akekanat.s}@student.chula.ac.th, chalermek.i@chula.ac.th

Abstract—In recent years, there are several studies on desyn-
chronization for wireless sensor networks. In order to propose
new desynchronization protocols, unavoidably, researchers have
to implement previous desynchronization works to compare with
their own protocols. However, validating the implementations
takes time and effort. In this paper, we propose DeVise, a
visualizer for validating desynchronization protocols on multi-
hop wireless sensor networks. DeVise reads configuration and
trace files, and visualizes the protocol behavior. DeVise provides
sufficient and useful information to help researchers reduce time
and effort in the protocol validation process. We have evaluated
DeVise with several desynchronization protocols. The result
shows that DeVise helps researchers validate the implementations
and effectively helps explore advantages and drawbacks when
comparing different desynchronization protocols.

I. INTRODUCTION

In recent years, there are several studies on desynchro-
nization for wireless sensor networks. Desynchronization is
a process to organize wireless sensor nodes not to work at
the same time without a common notion of time (i.e. no
time synchronization). Figure 1 illustrates a desynchronization
framework which is used in [1]–[4]. The circle represents a
time period. A node i fires a message at a phase φi on the
time circle. The firing time difference between node i−1 and
i denotes as ∆i and the firing time difference between node i
and i+ 1 denotes as ∆i+1. Desynchronization is perfect if, in
a wireless collision domain, all nodes are ∆p time-separated
equivalently.

Typically, wireless sensor nodes desynchronize themselves
distributedly (i.e. self-organizing, no global information, and
no centralized control). Therefore, several distributed protocols
and applications directly gain benefit from desynchronization.
For example, desynchronization can be used as an initialization
protocol to avoid packet collision for other protocols that rely
on exchanging messages at start-up time such as neighbors
information. In Time Division Multiple Access (TDMA) pro-
tocols, desynchronization helps nodes organize their time slots.

1Supported by CU CP Academic Excellence Scholarship from Department
of Computer Engineering, Faculty of Engineering, Chulalongkorn University.

2Corresponding Author

Fig. 1. Desynchronization framework.

In multiple analog-to-digital converters (ADC), desynchro-
nization helps increase the overall sample rate by scheduling
multiple ADCs to sample at different time.

In a past few years, several desynchronization protocols
have been proposed such as DESYNC [1], Lightweight Color-
ing [5], M-DESYNC [6], DESYNC-ORT [3], V-DESYNC [4],
and DWARF [2]. In order to propose new desynchronization
protocols, unavoidably, researchers have to implement such
previous works to compare with their own protocols. How-
ever, validating the implementations takes time and effort.
Traditionally, researchers simulate their protocols on some
network simulators (e.g. ns-2 [7], ns-3 [8], TOSSIM [9],
GloMoSim [10]) and analyze the misbehavior of protocols
from log or trace files. Those simulators do not provide a
visualization tool that is specifically designed for validating
the desynchronization behavior. In addition, when the number
of nodes is high, their log or trace files are large and not easy
to analyze.

In this paper, we propose DeVise, a visualizer for validat-
ing desynchronization protocols on multi-hop wireless sensor
networks. DeVise reads configuration and trace files, and vi-
sualizes the protocol behavior. DeVise provides sufficient and
useful information to help researchers reduce time and effort
in the protocol validation process. We have evaluated DeVise
with several desynchronization protocols such as DESYNC,
and DWARF. The result is that DeVise helps researchers
reduce time and effort in validating the implementations and
effectively helps researchers explore advantages and draw-
backs when comparing such protocols.



NodeID X Y
0 2.0 1.0
1 3.0 1.0
2 0.0 2.0
3 0.0 0.0
4 3.0 2.0
5 3.0 0.0

Fig. 2. Example of a topology input file.

Src Dst gain
0 1 -60.0
1 0 -60.0
0 2 -60.0
2 0 -60.0
0 3 -60.0
3 0 -60.0
1 4 -60.0
4 1 -60.0
1 5 -60.0
5 1 -60.0

Fig. 3. Example of a link gain input file.

Round ID 0 ID 1 ID 2 ID 3 ID 4 ID 5
0 25 547 459 28 34 908
1 950 487 403 817 961 861
...

...
...

...
...

...
...

300 599 803 291 85 315 91
Fig. 4. Example of a phase input file.

Round Mean of ∆ RMSE NRMSE
0 166.66 200.00 1.73
1 166.66 193.13 1.15
...

...
...

...
300 166.66 7.45 0.04

Fig. 5. Example of a statistics input file.

The rest of the paper is organized as follows. Section II
analyzes the factors to be considered when validating desyn-
chronization protocols. Section III describes our visualization
tool called DeVise. Then, we evaluate our tool in Section IV.
Finally, Section V concludes the paper.

II. VISUALIZING DESYNCHRONIZATION PROTOCOLS

To visualize desynchronization protocols, there are several
factors to be considered. We first focus on visualizing network
topology and node connectivity. Normally, network topology
and connectivity are defined in configuration files. Figure 2
and 3 are examples of topology and connectivity configuration
files used in TOSSIM, a simulator for wireless sensor networks
[9]. Instead of reading configuration files by eyes and using
imagination, a visualization tool should help researchers easily
see the overview of a network and how nodes are connected
together.

Fig. 6. Overview of DeVise: Left pane visualizes a network topology.
Top-right pane visualizes a global phase circle. Bottom-right pane displays
statistics graph.

Second, a visualization tool should help validate the proto-
col behavior. To validate the behavior of a desynchronization
protocol, a visualizer should help researchers trace how nodes
adapt their phases and see how far each node is separated
away from its neighboring nodes. Nodes’ phases are extracted
from a simulation result which consists of phases of all nodes
at every time period. Figure 4 is an example of a log file
containing a simulation result of a network with 6 nodes.
Apart of visualizing phases, if a visualizer displays a statistical
result from the simulation, researchers are able to validate a
protocol by comparing the statistical result with the behavior
of a protocol at any specific point of simulation time. Figure
5 is an example of a statistics file containing values of mean
of ∆ (∆̄), root mean square error (RMSE), and normalized
root mean square error (NRMSE) which are used in [1]–[3].

Third, apart from visualizing network-wide connectivity, a
visualization tool should provide a local connectivity view for
multi-hop networks. Due to the fact that only 2-hop neighbors
can interfere a transmission of a source node (e.g. the hidden
terminal problem), there should be a node’s local view that
shows only neighboring nodes within an interference region
(i.e. within 2-hop connectivity). With the local connectivity
view, researchers can focus only on nodes that their transmis-
sions affect an inspected node.

In the next section, we describe our proposed visualization
tool that is designed based on these factors.

III. DEVISE: A DESYNCHRONIZATION VISUALIZER

In this section, we propose DeVise, a desynchronization
visualizer for multi-hop wireless sensor networks. DeVise
helps researchers visualize and validate an implementation of
a desynchronization protocol.

A. Network Topology and Local Connectivity for Multi-hop
Network

By reading the topology and link gain input files, DeVise
visualizes the topology and connectivity between each node
pair. The left pane of Figure 6 visualizes a mesh topology
whereas Figure 7 visualizes a butterfly topology. Additionally,
DeVise is able to visualize local connectivity of each node
for multi-hop networks by changing the topology view in



(a) Connectivity of node 0 (pink). (b) Connectivity of node 2 (blue).

Fig. 7. Multi-hop topology. One-hop neighbors are connected with solid lines and two-hop neighbors are connected with dash lines.

the top-right pane from FULL-TOPOLOGY to <nodeID>.
Figure 7a shows the local connectivity of node 0 and Figure
7b shows that of node 2. The inspected node is enlarged,
1-hop connectivity links are shown in solid lines, and 2-
hop connectivity are shown in dash lines. The advantage of
local connectivity is that, in desynchronization, only 2-hop
neighbors can interfere the source node’s transmission (e.g.
the hidden terminal problem). With the local connectivity, we
can easily identify which nodes can affect the transmission.

B. Global Phase Circle and Wireless Interference Notification

By reading the phase input files, DeVise visualizes a global
phase circle on the top-right pane (Figure 6, 7, and 8).
The circle represents a time period which is used in the
desynchronization framework as we described in Section I.
Under the circle, there is an animation controller. The ani-
mation controller provides four functions: play, pause, skip
to, and animation speed adjustment. These functions control
the animation to visualize how each node adjusts its phase
over time. The animation of a global phase circle is useful to
validate the behavior of each node in each period. For example,
it is easy to see how far each node adjusts its phase over time
compared to other nodes.

In addition, DeVise colors each node based on its phase on
the circle. If two nodes are at the same phase, they are colored
with the same color. DeVise also colors nodes on the topology
pane. The coloring helps researchers easily identify which
nodes transmit packets at the same time. If two transmitting
nodes are within 2-hop connectivity, they interfere each other.
If they are far than 2-hop connectivity, they can be colored
with the same color and can transmit simultaneously without
interference. Figure 8 illustrates a scenario when node 4 and 5
transmit packets simultaneously. Both nodes are colored with
the same blue color. In the right pane, both nodes are at the
same phase on the circle. In the left pane, DeVise also notifies
the packet collision. The two colliding nodes are emphasized
with circles. The two transmissions are collided at the receiver;
therefore, DeVise notifies with an exclamation mark at the
receiver.

C. Statistics View

The metrics to measure the performance of desynchroniza-
tion protocols are root mean square error (RMSE) over time
and normalized root mean square error (NRMSE) over time

Fig. 8. Collision inspection.

(see [2] for details). Therefore, DeVise displays such data un-
der the global phase circle (see the bottom-right pane in Figure
6). With this view, researchers can link the RMSE/NRMSE
value at a specific point of time with a snapshot of the global
phase circle. Additionally, the value of ∆̄ is used for cross-
checking the validity of the statistics input (the time period
must equal to ∆̄ times the number of nodes).

D. Local View and Phase Graph

As we mentioned earlier, nodes that are far beyond 2-hop
connectivity do not interfere a source node. Therefore, DeVise
provides a local view for each node by right-clicking on a
node to be inspected. In the local view, only 1-hop and 2-hop
neighbors are displayed relatively to the inspected node on
the phase circle. Other nodes are filtered out to let researchers
focus on only nodes that can cause interference.

Additionally, in the local view, DeVise illustrates the phase
graph of nodes in 1-hop or 2-hop connectivity. This phase
graph helps researchers identify phases of nodes in quantitative
values and see how phases are adapted over time.

Figure 9 illustrates the local view of node 4 where Figure
9a shows 1-hop connectivity and Figure 9b shows 2-hop
connectivity. 2-hop neighbors are displayed on an outer circle.

E. Topology Reformation

In some case, there are the large number of nodes and the
topology is too complicated to find 1-hop and 2-hop neighbors.
DeVise provides topology reformation by double clicking at
a node to be inspected. The topology is reformed to several
partial circles. Nodes forming the innermost circle are 1-hop
neighbors of a node at the center point. Nodes forming the
next outer circle are 2-hop neighbors and so on. Figure 10
illustrates the topology reformation when inspecting node 20



(a) 1-hop neighbors local view of node 4. (b) 2-hop neighbors local view of node 4.

Fig. 9. Phase graph and local view.

Fig. 10. Topology Reformation.

in a 130-node network. We can easily distinguish which nodes
are 1-hop, 2-hop, and 3-hop neigbors of node 20.

IV. EXPERIMENTAL EVALUATION

We have evaluated DeVise with two desynchronization pro-
tocols: DESYNC [1] and DWARF [2] with multi-hop support.
We have implemented DESYNC and DWARF with TinyOS
[11] and simulated with TOSSIM [9]. Then, DeVise parsed
simulation logs to visualize and animated the behavior of
each protocol. Figure 6 is captured from running DeVise with
DESYNC whereas Figure 7 - 9 are captured from running
DeVise with DWARF. Due to limited space, other screen
captures are not shown.

We have found that DeVise usefully helps visualize and
inspect the behavior of desynchronization protocols. We have
pictorially seen the misbehavior of DESYNC when it worked
on a multi-hop network. Additionally, by inspecting the phase
graph and the local view, we have seen that even DWARF
works very well on a multi-hop network but there are some
cases that they do not fully utilize the network channel. Even
some nodes are far beyond 2-hop connectivity but they do
not use the same phase. The local phase circle shows that, in
such cases, forces are well-balanced and nodes do not adjust
their phases (see [2] for details of the algorithm) as illustrated
in Figure 9b. Additionally, we have found that, for both
DESYNC and DWARF, even in the perfect desynchrony state,
nodes’ phases are gradually increased as shown in Figure 9.
This result from the phase graph leads us to further investigate

and found that this behavior is caused by transmissoin delay.
However, the relative phases are stable which is preferable
because the goal of desynchronization is to separate nodes
away equivalently in a time domain.

V. CONCLUSION

This paper has presented DeVise: a visualization tool that
helps researchers explore and validate desynchronization pro-
tocols for multi-hop wireless sensor networks. DeVise pro-
vides several functionalities to visualize network topology
and node connectivity, and to reduce time to validate a
desynchronization protocol implementation. We believe that
DeVise will benefit to researchers who work on developing
desynchronization protocols.

REFERENCES

[1] J. Degesys, I. Rose, A. Patel, and R. Nagpal, “Desync: Self-organizing
desynchronization and tdma on wireless sensor networks,” in Informa-
tion Processing in Sensor Networks, 2007. IPSN 2007. 6th International
Symposium on, 2007, pp. 11–20.

[2] S. Choochaisri, K. Apicharttrisorn, K. Korprasertthaworn,
P. Taechalertpaisarn, and C. Intanagonwiwat, “Desynchronization
with an artificial force field for wireless networks.” ACM SIGCOMM
Comput. Commun. Rev. 42, 2 (April 2012) (to appear).

[3] P. Taechalertpaisarn, S. Choochaisri, and C. Intanagonwiwat, “An
orthodontics-inspired desynchronization algorithm for wireless sensor
networks,” in IEEE International Conference on Communication Tech-
nology, 2009.

[4] T. Settawatcharawanit, S. Choochaisri, C. Intanagonwiwat, and K. Ro-
jviboonchai, “V-desync: Desynchronization for beacon broadcasting on
vehicular networks,” in In the Proceedings of the 75th IEEE Vehicular
Technology Conference (IEEE VTC), 2012.

[5] A. Motskin, T. Roughgarden, P. Skraba, and L. Guibas, “Lightweight
coloring and desynchronization for networks,” in INFOCOM 2009,
IEEE, 2009, pp. 2383–2391.

[6] H. Kang and J. Wong, “A localized multi-hop desynchronization algo-
rithm for wireless sensor networks,” in INFOCOM 2009, IEEE, 2009,
pp. 2906 –2910.

[7] “The Network Simulator ns-2,” http://www.isi.edu/nsnam/ns/.
[8] “The Network Simulator ns-3,” http://www.nsnam.org/.
[9] P. Levis, N. Lee, M. Welsh, and D. Culler, “Tossim: accurate and scalable

simulation of entire tinyos applications,” in SenSys ’03: Proceedings of
the 1st international conference on Embedded networked sensor systems.
New York, NY, USA: ACM, 2003, pp. 126–137.

[10] L. Bajaj, M. Takai, R. Ahuja, K. Tang, R. Bagrodia, and M. Gerla,
“Glomosim: A scalable network simulation environment,” Tech. Rep.,
1999.

[11] P. Levis, S. Madden, J. Polastre, R. Szewczyk, A. Woo, D. Gay, J. Hill,
M. Welsh, E. Brewer, and D. Culler, “Tinyos: An operating system for
sensor networks,” in in Ambient Intelligence. Springer Verlag, 2004.


