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ABSTRACT

Desynchronization is useful for scheduling nodes to perform
tasks at different time. This property is desirable for re-
source sharing, TDMA scheduling, and collision avoiding.
Inspired by robotic circular formation, we propose DWARF

(Desynchronization With an ARtificial Force field), a novel
technique for desynchronization in wireless networks. Each
neighboring node has artificial forces to repel other nodes
to perform tasks at different time phases. Nodes with closer
time phases have stronger forces to repel each other in the
time domain. Each node adjusts its time phase proportion-
ally to its received forces. Once the received forces are bal-
anced, nodes are desynchronized. We evaluate our imple-
mentation of DWARF on TOSSIM, a simulator for wire-
less sensor networks. The simulation results indicate that
DWARF incurs significantly lower desynchronization error
and scales much better than existing approaches.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Distributed Networks

General Terms

Algorithms, Design, Performance

Keywords

desynchronization, self-organizing, sensor networks, wireless
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1. INTRODUCTION
Networked, distributed systems usually cooperate to have

a common notion of time in order to accomplish tasks with
consistent results through time synchronization protocols
(e.g., TPSN[5], FTSP[9], GTSP[16], and EGTSP[1]). How-
ever, some systems simply require nodes to work at the same
time (e.g., Firefly Synchronicity [17]). In such systems, a
global notion of time may not be necessary. Conversely,
some systems require nodes not to work at the same time
(i.e., to desynchronize). Desynchronization organizes all ac-
cesses to a shared resource to be collision-free and even equi-
table. A concrete example is a system using a Time Division
Multiple Access (TDMA) protocol. Nodes access the shared
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Figure 1: Desynchronization Framework. (a) Nodes
are placed and labeled on the time circle. Node i
has the time phase φi and the phase difference ∆i

with its previous phase neighbor. ∆i+1 is the phase
difference between node i and its next phase neigh-
bor. (b) The positions of nodes in the perfect desyn-
chrony state.

media only in their time slots to send messages with no colli-
sion. Other potential applications are techniques to increase
a sampling rate in multiple analog-to-digital converters, to
schedule resource in multi-core processors, and to control
traffic at intersections.

DESYNC [4] proposes a simple desynchronization frame-
work as depicted in Figure 1. The perimeter of a time circle
represents a configurable firing period T of nodes’ oscilla-
tors. The time position or phase of each node represents its
turn to access a shared resource. The system is desynchro-
nized when all nodes are equally separated in the time circle.
Desynchronization can be categorized into two groups:

1. Weak desynchronization (e.g., INVERSE-MS [13]) dis-
tributes nodes equally in the time circle but distorts
the time period (i.e., the period is extended). There-
fore, it is not suitable for systems that require an exact
time period to access resources.

2. Strong desynchronization (e.g., DESYNC [4], M-DE-
SYNC [8]) is more desirable than weak desynchroniza-
tion because of no period distortion.

Similar to DESYNC, we focus only on strong desynchro-
nization due to their mentioned desirable property. The
DESYNC algorithm is simple and effective. The phase of
each node is an average phase of its two phase neighbors
on the time circle. However, DESYNC’s error is quite high
even after convergence because a phase error of a node can



propagate to its phase neighbors and indefinitely circulate
in the network (see Section 6).

In this paper, we present DWARF (Desynchronization
With an ARtificial Force field), a novel desychronization
protocol that incurs low desynchronization error even in a
highly dense network. Our work is inspired by the robot cir-
cular formation with an electromagnetic-like force field [2].
In that work, robots of the same type have artificial forces to
repel each other whereas robots of the different types have
attracting forces. For a certain coefficient of forces, a cir-
cle of heterogeneous robots can be formed (see Figure 2).
Similarly, if we think of nodes on a time circle as the robots
of the same type, the nodes will repel each other and keep
time intervals from their neighbors as far as possible. Once
all received forces are balanced, nodes are equally spread
out in the time circle (i.e., desynchronized).

DWARF have the following contributions:

• DWARF is a distributed desynchronization algorithm
using time phases of all neighbors to achieve the desyn-
crhony state.

• DWARF does not require time synchronization, does
not assume already slotted time, and does not incur
any control message overhead.

• DWARF is simple due to low complexity in terms of
computation and memory. Therefore, it is suitable for
resource-constraint networks, such as wireless sensor
networks. Additionally, message complexity is low be-
cause the algorithm relies on the timing of the message,
not information inside the message.

• We have implemented and evaluated DWARF on TOS-
SIM, a simulator for wireless sensor networks. Our re-
sults indicate that DWARF scales well with network
size and outperforms DESYNC significantly by achiev-
ing 10 - 63% reduction in desynchronization error.

The rest of the paper is organized as follows. Section 2
covers the related works about desynchronization in wire-
less networks. In Section 3, we overview the robot circular
formation that motivates our work. We describe our desyn-
chronization protocol in Section 4. Section 5 analyses the
convergence property of the protocol. Then, we evaluate the
performance in Section 6. Finally, Section 7 concludes the
paper and discusses limitations as well as future works.

2. RELATED WORK
To the best of our knowledge, DESYNC [4] is the first to

introduce the desynchronization problem. In DESYNC, a
node simply attempts to stay in the middle between its pre-
vious and next phase neighbors. By repeating this simple
algorithm, all nodes will eventually be spread out. How-
ever, the error is also propagated to the phase neighbors
and indefinitely circulated inside a network. Therefore, the
DESYNC’s error is quite high even after convergence. Using
phases of all neighbors, DWARF can achieve significantly
lower desynchronization error than that of DESYNC.

Designed to converge faster than DESYNC, INVERSE-
MS [13] is an inverse algorithm of the synchronicity work by
Morollo and Strogatz [10]. At a steady state, INVERSE-MS
maintains a dynamic equilibrium (i.e., nodes keep changing

time phases while maintaining desynchronization). How-
ever, the time period is distorted (i.e., weak desynchro-
nizaiton).

M-DESYNC [8] proposes a localized multi-hop desynchro-
nization protocol that works on a granularity of time slots.
M-DESYNC is strong desynchronization protocol that is de-
signed to work on a multi-hop network. The protocol esti-
mates the required number of time slots with a two-hop max-
imum degree. This estimation helps M-DESYNC converge
very fast. However, M-DESYNC requires that all nodes have
a global notion of time in order to share the common percep-
tion of time slots. Additionally, M-DESYNC also requires
additional message overhead for claiming the slots. Con-
versely, DWARF does not require a global notion of time or
additional message overhead. Neither does DESYNC.

Motskin et al. [11] proposes a simple and lightweight
strong desynchronization algorithm that is based on a graph
coloring model. Lightweight coloring algorithm works on
general graph networks and does not need global time. To
ensure that the selected time slot does not overlap with oth-
ers’, a node needs to listen to the media for a full time period
before claiming the slot. Without a common notion of time,
the starting time of each slot is quite random. As a result,
several time gaps are too small to be used as time slots. This
external fragmentation problem reduces resource utilization
of the system. Additionally, to converge faster, their algo-
rithm overestimates the number of time slots. Hence, several
large time gaps are also left unused and the resource utiliza-
tion is low. In contrast, DESYNC and DWARF fully utilize
resources even without a global notion of time.

Recently, Degesys and Nagpal [3] extend DESYNC to sup-
port multi-hop networks. We also plan to similarly extend
DWARF for multi-hop networks in our future work as well.

Other works that are similar to desynchronization proto-
cols are distributed TDMA protocols. Most of distributed
TDMA protocols (e.g., TRAMA [14], Parthasarathy [12],
ED-TDMA [6], and Herman [7]) assume time is already slot-
ted or all nodes are synchronized to achieve the same global
clock. Some distributed TDMA protocols do not require
time synchronization. However, they require more states
and incur control message overhead. For example, DRAND
[15] requires the control overhead for sending request, reject,
release, and grant messages. In our work, again, we do not
require time synchronization, do not assume already slotted
time, and do not incur any control message overhead.

3. MOTIVATION
We observe that the desynchronization framework is sim-

ilar to the circular formation of heterogeneous robots [2].
In robotics, some tasks are too difficult for a single robot
to accomplish by itself. Some even require multiple robots
with different types. For such tasks, heterogeneous robots
are distributedly grouped into teams that are equally spread
out to cover the monitored area. Each robot has no global
knowledge of others’ absolute positions but can detect rela-
tive positions of the others with respect to itself as well as the
type of the others. To form a circle, an artificial force is used
as an abstraction for velocity adaptation of a robot. Robots
of different types have attracting forces to each other. Con-
versely, robots of the same type have repelling forces. As a
result, the circle of heterogeneous robots will be formed and
robots are nicely spaced on the circle (see Figure 2).

In our work, a node (like a robot) does not have a global



Figure 2: Results of Robotic Circular Formation in
[2]. Robots with two different types form the circle.

notion of time but each node can measure relative time dif-
ferences with other nodes. The circle of robots is similar to
our circle of time period. The distribution of robots can be
mapped to the distribution of nodes on the time circle. The
work inspires us to design a novel desynchronization proto-
col for wireless networks based on an artificial force field.
In this paper, the circle is temporal rather than spatial and
only repelling forces are required to space nodes on the time
circle.

4. DESYNCHRONIZATION PROTOCOL
We first describe the concept of an artificial force field in

Section 4.1 and explain our algorithm in Section 4.2.
Like DESYNC [4] and INVERSE-MS [13], we assume a

one-hop network in this paper. Similar to DESYNC, our
protocol can also be extended for multi-hop networks. We
discuss this assumption in Section 7.

4.1 Artificial Force Field
An artificial force field is an analogy to the circle of a

time period. Nodes are in the same force field if they can
communicate with each other.

If node i and node j are on the same force field, they have
repelling forces to push one another away. A closer pair of
nodes has a higher magnitude of force than a farther pair
does. The time interval between two nodes is derived from
the phase difference between them. If two nodes have a
small phase difference, they have a high magnitude of force
and vice versa. In other word, a repelling force is an inverse
of a phase difference between two nodes:

fij =
1

∆φij/T
,∆φij ∈ (−

T

2
,
T

2
), (1)

where fij is the repelling force from node j to node i on
a time period T and ∆φij is the phase difference between
node i and j. We note that ∆φij is not equal to 0 because
if two nodes fire at the same time, their firings collide and
two nodes do not record other’s firing. Additionally, at T

2
or

−T
2
, a node does not repel an opposite node because they

are balanced.
A repelling force can be positive (clockwise repelling) or

negative (counterclockwise repelling). A positive force is
created by a node on the left half of the circle relative to
the considered node whereas a negative force is created by a
node on the right half. Figure 3 represents a field of repelling
forces on node 1.

Each node in the force field moves to a new time position
or phase proportional to the total received force. Given n
nodes in a force field, the total force on a node i is the

Figure 3: Artificial Force Field. Arrow lines repre-
sent repelling forces from node 2, 3, and 4 to node
1. A shorter and thicker line is a stronger force. A
force from node 4 is a positive force and two forces
from node 2 and 3 are negative forces.

following:

Fi =

n
∑

j=1
j 6=i

fij . (2)

Eventually, nodes reach an equilibrium state whereby the
total force of the system is close to zero and each pair of
phase neighboring nodes has the same time interval. This
equilibrium state also indicates the desynchrony state be-
cause all nodes are equally spaced on the time circle.

4.2 Algorithm
We assume that, initially, nodes are not desynchronized.

Each node sets a timer to fire in T time unit. After setting
the timer, each node listens to all neighbors until its timer
expires.

When receiving a firing message from its neighbor, the
(positive or negative) repelling force from that neighbor is
calculated based on the phase difference. When the timer
expires, a node broadcasts a firing message to neighbors.
Then, the node calculates a new time phase to move on the
circle based on the summation of forces from all neighbors
and sets a new timer according to the new time phase.

Reasonably, one may wonder how far a node should move
or adjust its phase. In our work, given the total received

force Fi, the node i adjusts to a new time phase φ
′

i,

φ
′

i = (φi +KFi) mod T, (3)

where φi is the current phase of the node i.
Undoubtedly, the proper value of the coefficient K leads

to the proper new phase. The value of K is similar to a step
size which is used in artificial intelligence techniques. There-
fore, if the value of K is too small, the system takes much
time to converge. On the other hand, if the value of K is too
large, the system may overshoot the optimal value and does
not converge. We observe that, given the same time period,
fewer nodes in the system result in bigger phase difference
between two phase neighbors. To be desynchronized, nodes
in sparse networks must make a bigger adjustment to their
time phases than nodes in dense networks must. Therefore,
the same total received force should have a bigger impact on
a node in sparse networks than on a node in dense networks.
To reflect this observation, the coefficient K is inversely pro-
portional to a power of a number of nodes n,

K = c1 × n−c2 , c1, c2 ≥ 0. (4)

Therefore, we have conducted an experiment to find the
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Figure 4: Relation of the coefficient K with a num-
ber of nodes n

proper value of c1 and c2. We set the time period T to
1000. Additionally, we have varied a number of nodes and
have searched for the K values that led to low errors (see
Figure 4). Using power regression on the result, we have
deduced a relation of K and n (the trendline). We have also
found the proper value of c1 and c2 as follows:

K = 38.597 × n−1.874.

However, this K value is derived by setting T equal to
1000. Therefore, for arbitrary T ,

K = 38.597 × n−1.874 ×
T

1000
. (5)

We explain other details of the experiment and proof of
Equation 5 in Appendix A.

All nodes in the artificial force field (in the period circle)
iteratively run the same algorithm until the force is balanced
(i.e., all nodes are in the desynchrony state). The pseudo-
code of this algorithm is shown in Appendix B.

5. STABILITY ANALYSIS
To mathematically analyze the stability of the algorithm

(i.e., the algorithm converges to the steady desynchronized
state) is rather complicated. The stability analysis of stan-
dard dynamical systems does not suffice because the force
function is non-linear and the transformation matrix to find
the eigenvalues cannot be formed. Therefore, we have tested
the stability by simulation. In each simulation scenario,
nodes randomly wake up. Our simulation result shows that
the system always converge except when there are too many
nodes within a short period (i.e., the time gap between each
firing may be shorter than the message delay). In other
words, the system is over-saturated. The result is shown in
Section 6.3. We believe that the non-linear dynamic systems
analysis based on the Lyapunov stability theory could prove
our conjecture.

However, one of the reasons that the system converges
(nodes are nicely spread) is because our objective function
(i.e., the summation of received forces at all nodes) is con-
vex. Therefore, it contains only one global minima and no
local minima. The proof of convexity is shown in Appendix
D. Our algorithm attempts to reduce the value of the ob-
jective function overtime and eventually reach a value near
the global minima. However, the system does not always
converge. To converge, the system must meet two criteria.
First, the value of K must be proper (see Section 4.2). Sec-
ond, a number of nodes within a time period must not be
too high. Otherwise, the system may be over-saturated.
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6. EVALUATION
In this section, we evaluate the performance of our pro-

posed mechanism and compare with DESYNC [4] because
DESYNC and our mechanism shares the same goal and re-
quirement. Particularly, they do not require time synchro-
nization, do not assume already slotted time, do not need to
look into the packet content, and do not incur control pack-
ets but still achieves equivalent time spaces. Other protocols
(e.g., M-DESYNC [8], Lightweight [11]) assume different re-
quirements. Therefore, we only discuss our differences with
such protocols in Section 2.

The performance metrics in this evaluation are desynchro-
nization error and convergence time. The former indicates
how close the current state is to the perfect desynchrony
state. The latter indicates how fast the algorithm converges.

6.1 Evaluation Environment
We implement DWARF on TinyOS, an operating system

for wireless sensor networks and evaluate the protocol on
TOSSIM, a TinyOS simulator. We vary the one-hop net-
work size from 4 to 64 nodes. Each node periodically fires a
message that contains only application data with no extra
control overhead. This zero overhead is the advantage of
both DWARF and DESYNC because, to avoid collisions, a
node only needs to know the timing of the firing rather than
the control information inside a packet. In our simulation,
for both DWARF and DESYNC, we use a 2-byte node ID
and a 2-byte counter as the data. However, we do use the
regular 11-byte CC2420 header for TOSSIM. Therefore, we
do not measure the overhead in our evaluation. We set the
time period to 500 milliseconds and compare our result with
that of DESYNC. The step size (α) of DESYNC is set to
0.95 (the same value used in [4]). Initially, the phase of each
node is random in a range of 0 to 500.

6.2 Desynchronization Error
To measure the desynchronization error, we run the simu-

lation for 300 time periods. In each network size, we run the
simulation for 30 times. Then, we measure the average root
mean square error (RMSE). The error (ERR) is the mea-
sured phase difference minus the perfect phase difference:

ERRi = ∆φij − T/n,

RMSE =

√

∑n
i=1 ERR2

i

n
,

where node j is the next phase neighbor of node i. ∆φij is
the phase difference between node i and node j on the time
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(a) Sparse
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Figure 6: Convergence time and root mean square error normalized by expected phase difference

period T . Given that n is a total number of nodes, T/n is
the perfect phase difference.

However, a smaller absolute error in a dense network is
not necessarily better than a bigger error in a sparse network
because the perfect phase difference in a dense network is
also smaller than that in a sparse network. Thus, for a
comparable view of each network size, we also measure a
normalized root mean square error (NRMSE) that is a ratio
of the root mean square error and the perfect phase differ-
ence of each network size. Figure 5 illustrates the result of
the normalized desynchronization error in each network size
after 300 time periods. (see Figure C.1 in Appendix C for
the absolute root mean square errors).

The result indicates that, in all network sizes (4 - 64
nodes), DWARF achieves significantly better desynchrony
states than DESYNC does. Understandably, using informa-
tion from all neighbors (as in DWARF) leads to lower errors
than using information from only two phase neighbors (as
in DESYNC) does. Furthermore, DESYNC’s mechanism
allows a phase error of a node to propagate to its phase
neighbors. A part of this error will propagate back and forth
between two phase neighbors as well as circulate inside the
network. As a result, DESYNC’s error after convergence is
still quite large. In contrast, DWARF is robust to this error
propagation. Even though the error propagation may still
occur, the impact is not significant. Given that DWARF
uses the sum of forces from all neighbors, an error from one
neighbor does not overwhelm the system.

We note that we show RMSE and NRMSE after 300 pe-
riods because, by that time, the errors of all simulation sce-
narios seem to be stable. The actual convergence time in
most scenarios is much lower than 300 rounds (see the next
section).

6.3 Convergence Time
In desynchronization error evaluation, we only measure

the performance after 300 time periods. However, the pre-
vious result does not indicate whether the protocols have
converged or not. Neither does it indicate how fast the pro-
tocols have converged. Hence, we also measure the absolute
root mean square error and normalized root mean square
error for each time period (absolute root mean square errors
are shown in Appendix C).

In sparse networks (Figure 6a), both protocols converge
with similar small error but DWARF converges slightly faster.
In dense networks (Figure 6b) and extremely dense networks
(Figure 6c), DESYNC converges but errors highly fluctuate

whereas DWARF converges faster and errors are more sta-
ble. Furthermore, in dense and extremely dense networks,
the normalized root mean square errors of DESYNC after
convergence is higher or equal to 1. This means that the
error is very large compared to the perfect phase difference.
Conversely, the normalized error of DWARF is lower than 1
even in the extremely dense networks. Therefore, DWARF
scales well with the network density whereas DESYNC does
not.

In a denser network, the errors of DESYNC and DWARF
are higher because the probability of message collisions in-
creases (see the next section).

6.4 Correlation of Packet Loss andDesynchro-
nization Error

In this section, we investigate the correlation of packet loss
and desynchronization error by setting all nodes to wake up
simultaneously. Due to space limitation, we only include the
results of DWARF in networks of 8, 32, and 64 nodes for 300
time periods (Figure 7). However, in networks of 4, 16, and
48 nodes, the results are similar (not shown).

At the beginning, the network is far from the desynchrony
state and messages from different nodes are simultaneously
fired. This results in lost packets and errors. However,
over time, nodes gradually adapt their time phases. Conse-
quently, a number of lost packets and the error also gradually
drop.

7. CONCLUSION AND DISCUSSION
In this paper, we present DWARF, a novel strong desyn-

chronization protocol that enables nodes in a system to per-
form tasks at different time. To the best of our knowledge,
DWARF is the first desynchronization protocol that is based
on the concept of electromagnetic fields, a foundation of
physics.

Our protocol is completely distributed and localized with
no reliance on a centralized node or a global notion of time.
Due to low complexity in terms of computation, memory,
and message overhead, DWARF is suitable for traditional
wireless networks as well as resource-constraint wireless sen-
sor networks. Our preliminary evaluation indicates that
DWARF can significantly outperform DESYNC by reduc-
ing 10 - 63% of the desynchronization error. In addition,
DWARF scales well with network size given that the nor-
malized error is lower than 1 even in extremely dense net-
works.



 0

 1

 2

 3

 4

 5

 50  100  150  200  250  300
 0

 0.2

 0.4

 0.6

 0.8

 1

N
o
rm

a
liz

e
d
 r

o
o
t 
m

e
a
n
 s

q
u
a
re

 e
rr

o
r

L
o
s
s
 R

a
te

Round

NRMSE
Loss Rate

(a) 8 nodes

 0

 1

 2

 3

 4

 5

 50  100  150  200  250  300
 0

 0.2

 0.4

 0.6

 0.8

 1

N
o
rm

a
liz

e
d
 r

o
o
t 
m

e
a
n
 s

q
u
a
re

 e
rr

o
r

L
o
s
s
 R

a
te

Round

NRMSE
Loss Rate

(b) 32 nodes

 0

 1

 2

 3

 4

 5

 50  100  150  200  250  300
 0

 0.2

 0.4

 0.6

 0.8

 1

N
o
rm

a
liz

e
d
 r

o
o
t 
m

e
a
n
 s

q
u
a
re

 e
rr

o
r

L
o
s
s
 R

a
te

Round

NRMSE
Loss Rate

(c) 64 nodes

Figure 7: Correlation of packet loss and desynchronization error

Given that this work is still in an early stage, there is room
to improve and to extend the idea before we can realize the
full potential of DWARF. Recently, Degesys [3] has extended
the DESYNC concept to support multi-hop topologies. The
extension is also applicable to DWARF. Therefore, we be-
lieve that DWARF can be similarly extended for multi-hop
topologies as well. In addition, the force function of DWARF
is not limited to the sum of rational functions. Other differ-
ent force functions (e.g. squared, cubed) are possible and vi-
able for further investigation. We plan to evaluate DWARF
on real wireless devices and to explore other extensions in
our future work.
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APPENDIX

A. FINDING K-N RELATION
In this section, we explain in details how we find the

proper values of c1 and c2 for the relation between K and n
values.

We set a time period T to 1000 and vary a number of
nodes. In a specific number of node, we first simulate to see
the trend of the value K that leads to small errors. Then,
we select a range of good K values. After that, we simulate
100 times to obtain the average desynchronization error for
each K value. In each simulation, we randomly set an initial
phase of each node between 0 and T (period value). Finally,
we select the K value that results in the lowest error. After
getting the proper K value for each number of node, we plot
the relation between K and a number of nodes (Figure 4)
and use a mathematic tool to calculate the power regres-
sion. The obtained relation function between K and n (the
trendline in Figure 4) consists of c1 and c2 values as follows:

K = 38.597 × n−1.874.

However, this K value is derived by setting T equal to 1000.
Therefore, for arbitrary T ,

K = 38.597 × n−1.874 ×
T

1000
.

Proof. From Equation 2 and 3, the phase of node j is
adjusted by KFj = K

∑n
i6=j fi,j =

∑n
i6=j Kfi,j . Therefore,

we can analyze the value of K from only single force fi,j .
For a time circle of a period Tp, let θp be an angle between

two nodes on the circle and Θp be an angle between the new
adjusted phase and the old phase based on a single force
where θp,Θp ∈ (0, 2π). Hence,

θp
2π

=
∆φi,j

Tp
, (6)

and

Θp

2π
=

Kfi,j
Tp

. (7)

If θ1 of T1 equals to θ2 of T2, both of them should be adjusted
with the same angle amount Θ1 = Θ2. Thus, from Equation
7,

Θ1 = Θ2

K1fi,j(1)
T1

=
K2fi,j(2)

T2
.

From Equation 1 and 6, fi,j = 1
∆φi,j/Tp

= 2π
θp

, consequently,

K12π

T1θ1
=

K22π

T2θ2
K1

T1
=

K2

T2

K2 = K1
T2

T1
. (8)

At T = 1000, we get K = 38.597×n−1.874. Therefore, from
Equation 8, for arbitrary T ,

K = 38.597 × n−1.874 ×
T

1000
.
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Figure C.1: Absolute root mean square error after
300 time periods

B. PSEUDOCODE

1: Initialization
2: T = T imePeriod {Configurable Time Period}
3: n = 1 {Number of receiving messages including itself}
4: F = 0 {Force Summation}
5: lastF iringT ime = localT ime
6: currentPhase = localT ime modulo T
7: Set a firing timer to be T unit time

8: Upon timer firing
9: Broadcast a firing message to neighbors
10: lastF iringT ime = localT ime
11: currentPhase = localT ime modulo T
12: K = 38.597 × n−1.874 × T

1000
13: newPhase = currentPhase+ (K × F)
14: if newPhase < 0 then
15: newPhase = T + newPhase
16: end if
17: Set a firing timer to be fired at newPhase
18: F = 0
19: n = 1

20: Upon receiving a firing message
21: n = n+ 1
22: phaseDiff = localT ime− lastF iringT ime
23: if phaseDiff == 0.5T then
24: F = F + 0 {Balanced force}
25: else if phaseDiff < 0.5T then
26: F = F + | 1

phaseDiff/T
| {Positive force}

27: else
28: F = F − | 1

(T−phaseDiff)/T
| {Negative force}

29: end if

C. ABSOLUTE ROOTMEAN SQUARE ER-

ROR
In this section, we show the simulation results of average

root mean square errors without normalization.
Figure C.1 indicates the absolute root mean square errors

after 300 rounds that we evaluate in Section 6.2.
Figure C.2 indicates the convergence time and the abso-

lute root mean square errors that we evaluate in Section 6.3.

D. PROOF OF CONVEXITY

Theorem 1. The system force summation function has
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Figure C.2: Convergence time and absolute root mean square error

one global minima and no local minima.

To prove Theorem 1, let Fi be the force summation at node
i and ∆i,j ∈ (−T

2
, T

2
) is an interval between node i and j. If

∆i,j > 0, the node j repels the node i in a positive direction.
In contrast, if ∆i,j < 0, the node j repels the node i in a
negative direction.

Therefore, for n nodes, Fi can be formulated as the fol-
lowing equation,

Fi =
n
∑

j=1
j 6=i

1

∆i,j
.

The objective function E of the system is the summation
of absolute received forces at all nodes,

E =
n
∑

i=1

|Fi| =
n
∑

i=1

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

j=1
j 6=i

1

∆i,j

∣

∣

∣

∣

∣

∣

∣

∣

(9)

To prove the function E is a convex function, we must prove
that two following conditions are satisfied; 1) the set of all
∆i,j is a convex set and 2) the Hessian matrix of E is positive
semidefinite.

Proposition 1. A set of all possible interval ∆i,j is a

convex set.

Proof. A set of (−T
2
, T

2
) is a line connecting between

−T
2

and T
2
. Therefore, any ∆i1,j1 , ∆i2,j2 ∈ (−T

2
, T

2
) and

α ∈ R with 0 ≤ α ≤ 1,

α∆i1,j1 + (1− α)∆i2,j2 ∈ (−
T

2
,
T

2
).

Proposition 2. The Hessian of the function E is posi-

tive semidefinite.

Proof. Let H be the Hessian matrix of the objective
function E,

H =

















∂2E
∂∆2

1,2

· · · ∂2E
∂∆1,2∂∆n,n−1

∂2E
∂∆1,3∂∆1,2

· · · ∂2E
∂∆1,3∂∆n,n−1

...
. . .

...
∂2E

∂∆n,n−1∂∆1,2
· · · ∂2E

∂∆2

n,n−1

















.

For any ∆x,y, we derive the first-order derivative as fol-
lows,

∂E

∂∆x,y
=

∑n
j=1
j 6=x

1
∆x,j

∣

∣

∣

∣

∑n
j=1
j 6=x

1
∆x,j

∣

∣

∣

∣

(

−
1

∆2
x,y

)

.

For the second-order partial derivatives, if we differentiate
with the same ∆x,y,

∂2E

∂∆2
x,y

=

∑n
j=1
j 6=x

1
∆x,j

∣

∣

∣

∣

∑n
j=1
j 6=x

1
∆x,j

∣

∣

∣

∣

(

2

∆3
x,y

)

.

In the other hand, if we differentiate with other ∆u,v,

where u 6= x or v 6= y, ∂2

∂∆u,v∆x,y
E = 0.

Therefore, the Hessian matrix of the function E is

H =











a1,2 0 · · · 0
0 a1,3 · · · 0
...

...
. . .

...
0 0 · · · an,n−1











,

where ai,j = ui

|ui|

(

2
∆3

i,j

)

and ui =
∑n

j=1
j 6=i

1
∆i,j

.

To show that the Hessian matrix of the function E is
positive semidefinite, we show that ~∆TH~∆ ≥ 0 for all ~∆
when ~∆ 6= 0.

~∆TH~∆ =
(

∆1,2 ∆1,3 · · · ∆n,n−1

)

H











∆1,2

∆1,3

...
∆n,n−1











=

n
∑

i=1

n
∑

j=1
j 6=i

ui

|ui|

(

2

∆i,j

)

= 2
n
∑

i=1

ui

|ui|

n
∑

j=1
j 6=i

1

∆i,j

= 2

n
∑

i=1

ui

|ui|
ui = 2

n
∑

i=1

|ui|

≥ 0

Therefore, we can conclude that ~∆TH~∆ ≥ 0 and the Hes-
sian matrix of E is positive semidefinite.

From Proposition 1 and 2, we derive the following lemma.

Lemma 1. the function E is a convex function.

From Lemma 1, we consequently prove Theorem 1 that the
system force summation function has one global minima and
no local minima.


