
Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2012, Article ID 171738, 12 pages
doi:10.1155/2012/171738

Research Article

Logic Macroprogramming for Wireless Sensor Networks

Supasate Choochaisri, Nuttanart Pornprasitsakul, and Chalermek Intanagonwiwat

Department of Computer Engineering, Chulalongkorn University, Bangkok 10330, Thailand

Correspondence should be addressed to Chalermek Intanagonwiwat, intanago@yahoo.com

Received 3 October 2011; Accepted 17 December 2011

Academic Editor: Tai Hoon Kim

Copyright © 2012 Supasate Choochaisri et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

It is notoriously difficult and tedious to program wireless sensor networks (WSNs). To simplify WSN programming, we propose
Sense2P, a logic macroprogramming system for abstracting, programming, and using WSNs as globally deductive databases.
Unlike macroprograms in previous works, our logic macroprograms can be described declaratively and imperatively. In Sense2P,
logic macroprogrammers can easily express a recursive program or query that is unsupported in existing database abstractions
for WSNs. We have evaluated Sense2P analytically and experimentally. Our evaluation result indicates that Sense2P successfully
realizes the logic macroprogramming concept while consuming minimal energy as well as maintaining completeness and
soundness of the answers.

1. Introduction

Wireless sensor networks (WSNs) have been widely used for
collecting data from environments [1–4]. However, sensor
nodes are resource constrained and distributed all over
the monitored area. Programming WSNs to acquire such
data is notoriously difficult and tedious. Traditional WSN
programming requires system programming in low-level
details (e.g., wiring nesC [5] components, coordinating the
program flow among nodes in a distributed manner, routing,
discovering resources, accessing, and managing remote data)
while maintaining low energy consumption and memory
usage [6].

Several programming abstractions have been proposed
to simplify WSN programming with high-level languages
and to hide the low-level details from programmers [6–12].
The WSN programming abstractions have been divided into
two classes: local-behavior class and global-behavior class
(also called macroprogramming class). The abstraction in the
former class simplifies the programming task of specifying
the local behavior of each node for distributed computation.
Local-behavior abstractions include abstract regions [11,
12] and DSN [6]. These local-behavior abstractions can
efficiently hide some of the above low-level programming
details but the programmers still need to write a distributed

code for routing, coordinating the program flow among
nodes, accessing, and managing remote data.

Conversely, the abstraction of the macroprogramming
class enables expressing the global behavior of the dis-
tributed computation by programming the WSN in the large
[7]. These macroprogramming abstractions can hide even
more low-level programming details than the local-behavior
abstractions do. In a sense, macroprogrammers take a cen-
tralized view of programming a distributed system rather
than a distributed view. The macrocompiler is responsible for
translating the macroprogram into a distributed version for
execution.

There are two subclasses of macroprogramming abstrac-
tions: node dependent and node independent. In the node
dependent subclass, a WSN is abstracted as a collection of
nodes that can be simultaneously tasked within a single
program. Examples of the node-dependent subclass include
Kairos [7], Regiment [10], Split-C [13], SP [14], and DRN
[8].

By contrast, in the node-independent subclass, a WSN
is abstracted and programmed as a whole or a unit instead
of several interacting nodes. Low-level programming details
are completely abstracted out in this subclass as there are
no longer networks or nodes in the programmer’s view.
Examples of this subclass include TinyDB [9] and Cougar

2 International Journal of Distributed Sensor Networks

[15]. Both have abstracted WSNs as relational databases
that are programmed or queried in a SQL-like language.
This abstraction is reasonable because WSNs have also
been queried for data in relation [16]. Given this database
abstraction, WSN programming is reduced to database
querying.

However, SQL is a pure declarative programming lan-
guage for specifying what the programmer wants, not how
to algorithmically obtain the desired result. Despite its
simplicity, declarative programming may not be applicable
to several WSN applications, especially complex tasks or
queries. Undoubtedly, imperative programming (or proce-
dural programming) is more appropriate for such complex
tasks where efficient algorithmic details are application
specific, unobvious, or difficult to generate automatically.
Declarative and imperative programming approaches func-
tion well within their domain and complement one another.
Integration of both approaches can form a powerful pro-
gramming paradigm suitable for both domains.

Widely considered such integration, logic programming
is the use of logic as both a declarative and imperative
representation language [17]. A logic program consists of
declarative sentences in the form of implications. Based on
a backwards reasoning theorem prover, logic programming
treats the implications as goal-reduction procedures. Logic
programmers can exploit the problem-solving behavior of
the theorem prover to achieve efficiency. This is similar
to how imperative programmers use programs to con-
trol the behavior of a program executor. However, unlike
pure imperative programs, the correctness of logic pro-
grams can be ensured with their declarative and logical
interpretation.

In this paper, we propose Sense2P, a logic macropro-
gramming system for abstracting and programming WSNs
as globally deductive databases. Unlike macroprograms in
previous works, our logic macroprograms can be described
declaratively and imperatively. As a result, Sense2P is
highly expressive and efficient, compared to SQL-based
systems.

Another advantage of logic macroprogramming is its
capability to easily express a recursive program. Even though
one can express a recursive query in SQL, the recursive SQL
query is rather verbose (see appendix A) and unsupported in
existing systems for WSNs.

Our evaluation result indicates that Sense2P can realize
the logic macroprogramming concept while consuming min-
imal energy and maintaining completeness and soundness of
the answers.

The remainder of the paper is described as follows.
Section 2 reviews related work about macroprogramming
and logic programming in WSNs. Section 3 describes the
logic macroprogramming approach to WSNs. Then, we
explain Sense2P in Section 4. Sections 5 and 6 cover our
programming model and system architecture, respectively.
We mathematically analyse the communication cost of
our approach in Section 7 and experimentally evaluate the
performance of our system in Section 8. Finally, Section 9
concludes the paper.

2. Related Work

Various macroprogramming abstractions have been pro-
posed for several years. However, no abstraction fits all
domains. We discuss the differences of our abstraction from
those existing ones in this section.

Of a particular interest are Kairos [7], Regiment [10],
and DRN [8]. Kairos presents the programming model that
computes a set of sensor devices in parallel and provides
a facility to sequentially access remote variables. Unlike
Kairos, Regiment is the spatiotemporal macroprogramming
system that is based on the concept of functional reactive
programming. However, Regiment is designed for long-
running queries (not well-suited for short-lived queries).

DRN is a hybrid approach between imperative program-
ming and declarative programming. Resources and nodes are
declaratively named whereas the core algorithm is impera-
tively programmed. Similar to DRN, Sense2P is also a hybrid
approach, given that logic programming is an integration
of imperative programming and declarative programming.
Kairos, Regiment, and DRN are node dependent but Sense2P
is node independent.

Semantic Stream [18] is a macroprogramming frame-
work with logic programming features that allows users
to pose declarative queries over semantic interpretations of
sensor data. However, Semantic Stream focuses on finding
available services and providing the quality of services
instead of problem solving. Furthermore, it is not designed
specifically for wireless sensor nodes with limited resources.

Chu et al. [6] have further developed the concept of
logic programming into Snlog for programming WSNs and
enabling recursive queries. Snlog, however, is designed for
low-level programmers, not for application-level program-
mers. Unlike Sense2P programmers, Snlog programmers
must write rules by focusing on local behaviors of each
sensor node (instead of the global behavior as a whole).
Therefore, Snlog does not support a join between different
nodes. Additionally, the Snlog programmers must deal with
networking details and protocols, such as routing, query
disseminating, and data collecting. In summary, Sense2P is
a macroprogramming approach but Snlog is not.

TinyDB [9] and Cougar [15] are probably the most cited
node-independent abstractions for macroprogramming
WSNs. Those approaches abstract a WSN as a relational
database. Consequently, WSN programming is reduced to
database querying. However, there are several limitations in
the mentioned approaches.

First, supported queries in the previous works are quite
limited. For example, there is only one table accessible at
a time. This may not work in networks of heterogeneous
sensors. In other words, their queries do not support a join
between different sensor nodes. In addition, only conjunctive
comparison predicates are supported, and arithmetic expres-
sions are limited to operations of an attribute and a constant.
As a result, tuple selection is inflexible. Furthermore, sub-
queries and column aliases are not allowed either.

Second, each sensed data item is kept as a tuple associated
with each node. Constraints in the query are applied only
to attributes in the same tuple as well as the same node

International Journal of Distributed Sensor Networks 3

Table 1: Characteristics comparison.

Approach
Characteristic

Programming model Abstraction level Node dependency
Communication

transparency
Recursive query

Kairos Imperative (procedural programming) Network level (global) Node dependent Yes No

Regiment Declarative (functional programming) Network level (global) Node dependent Yes Yes

DRN
Declarative and imperative
(procedural programming with
resource variable)

Network level (global) Node dependent Yes No

Cougar Declarative (SQL) Network level (global) Node independent Yes No

TinyDB Declarative (SQL) Network level (global) Node independent Yes No

Semantic
Stream

Declarative (logic programming) Network level (global) Node independent Yes No

Snlog
Declarative and imperative (logic
programming)

Node level (local) Node dependent No Yes

Sense2P
Declarative and imperative (logic
programming)

Network level (global) Node independent Yes Yes

[9]. Therefore, the constraints are local, not global. It is not
designed for deriving data that is related with other data
from different nodes. As a result, they cannot support a join
operation.

Third, they do not support recursive queries. It is well
documented that the recursive queries can improve the
capability of a database [19, 20].

Finally, previous systems with a relational-database ab-
straction do not support a logic-based query frequently used
in deductive databases and expert systems.

Unlike TinyDB and Cougar, our approach abstracts a
WSN as a globally deductive database that can be logically
programmed. As a result, our approach does not suffer from
the above limitations.

We summarize the characteristic differences of related
works in Table 1.

3. Logic Macroprogramming

Logic programming is a logic-based declarative approach
to knowledge representation that allows recursive program-
ming. Logic programming is widely used in many artificial-
intelligence applications such as knowledge-based systems,
expert systems, and smart information-management sys-
tems, and so forth. Prolog [17] is a de facto language for
logic programming in traditional systems. Logic program-
ming can be combined with relational databases in order
to construct “deductive database” systems that support a
powerful formalism and operate quickly even with very large
data sets. Their powerful features include a capability to
process recursive queries and their superior expressiveness
over relational databases. For example, a Prolog system can
be loosely coupled with a relational database system [21]
to become a deductive database system (i.e., a relational
database system with an inference engine). Our early work in
abstracting WSNs as deductive databases has been presented
in [22].

Given this deductive-database abstraction, tasks can be
logically macroprogrammed in a Prolog-like language. In
WSNs, each node senses the environmental data periodically
or reactively. The sensed data is locally stored and viewed as
a fact in our system (see Section 4 for more details). These
facts are available to logic macroprogrammers as if the facts
are on the centralized database. Logic macroprogrammers
simply focus on what data they need (declaratively) and how
to process the data (imperatively) but not on how to retrieve
those data. The macroprogrammers can create facts and rules
as well as inject queries into our network-transparent system
as if the network is a deductive database.

Furthermore, the macroprogrammers can also write
rules for deducing new facts from existing facts and rules
recursively.

4. Sense2P

Sense2P is our prototype for logic macroprogramming
WSNs in a Prolog-like language. Our system allows pro-
grammers to write recursive and nonrecursive rules (pro-
grams) without being concerned with low-level program-
ming details. Additionally, Sense2P is sufficiently simple for
application-level users who only want to query the system
for interested data. Our programming model and system
architecture are described as follows.

5. Programming Model

Briefly, our programming language in Sense2P is Prolog like.
The language consists of predicates, facts, rules, and queries.

5.1. Predicate. Predicates are relations of data (or tables in
the relational-database terminology). For example, a pred-
icate temperature (NodeID, Temperature Value) describes
a relation between a node identification number and a
temperature value. From this example, temperature is a
predicate name while NodeID and Temperature Value are

4 International Journal of Distributed Sensor Networks

variable arguments. In general, an argument is a variable
if it begins with the capital letter. Conversely, an argument
is a constant if it begins with the small letter or it is a
number. Predicates in Sense2P are divided into 3 categories:
user defined, built-in, and sensor specific. The first predicate
type includes arbitrary predicates defined by programmers.
The second type includes general predicates that are already
built in the system. Examples of built-in predicates are sum
(for computing the summation of two values) and abs (for
computing the absolute value). The last type includes only
built-in predicates that are specific to sensors. The previously
mentioned temperature predicate is such a sensor-specific
predicate. In Sense2P, the sensor-specific predicates are
processed differently from other types. We describe our
processing methodology in the next subsection.

5.2. Fact. A fact is a predicate whose arguments are all
constant. One may consider facts as already-existing data in
the system. Facts can be instantiated in three forms: user
defined, sensor generated, and rule deduced. Users can define
known facts in the program such as location (1, 33, 45). This
fact indicates that a node ID 1 is located at coordinate (33,
45). Some facts are data-sensed from sensors. For example,
temperature (3, 25) is a fact that indicates a temperature of
25◦C sensed by a node ID 3. Finally, facts can also be deduced
from existing facts and rules.

5.3. Rule. Rules are clauses that deduce new facts from exist-
ing facts. Rules are represented as Horn clauses that contain
head and body parts. An example of a rule is shown in
Listing 1.

Specifically, an area has a hot spot if an arbitrary node in
that area senses temperature with a value over 50 degrees.
The left-hand side of a clause is called head and the
right-hand side is called body. In Listing 1, the head is
hotSpotArea(AreaID) and the body is temperature(NodeID,
Temp), Temp > 50, area(NodeID, AreaID). A rule will be
satisfied only if every predicates in the body are satisfied or
matched by at least one fact.

5.4. Query. Queries are questions that a user asks to retrieve
data from the system. A query is represented by ?-followed by
a predicate. For example, ?-hasHotSpotArea(X) is a query to
retrieve IDs of all areas that has a hot sensor node.

Queries can be classified into 4 groups. The first group
is a fact-checking query that is intended for checking the
existences of certain facts. This query type is expressed
by a predicate with no variable argument, for example, ?-
temperature(2, 5). The second group includes fact-retrieving
queries that are designed for retrieving all data that satisfy
the fact types and constraints in the queries. This query type
contains at least one variable in a predicate, for example,
?-temperature(X, Y). The third group consists of queries
for checking whether existing rules can deduce a certain
fact. It is almost like the fact-checking query except that
the predicate matches with a rule (instead of a fact), for
example, ?-hotSpotArea(5). The final group is composed of
deductive queries for retrieving all data that satisfy the rules

hotSpotArea(AreaID):- temperature(NodeID, T)
, T > 50
, area(NodeID, AreaID)

Listing 1: Example of a rule.

danger(AreaID):- temperature(NodeID,T)
, T > 80
, area(NodeID, AreaID).

danger(AreaID):- humidity(NodeID, H)
, H < 40
, area(NodeID, AreaID)
, adjacent(AreaID, AdjAreaID)
, winddir(AdjAreaID, AreaID)
, danger(AdjAreaID).

Query: ?-danger(X).

Listing 2: Example of recursive query rules.

in the queries, for example, ?-hotSpotArea(X). A query will
be recursive if its predicate matches with a recursive rule
whose body contains the same predicate name as that in its
head. For example, one can write recursive rules for detecting
sensor nodes in danger as shown in Listing 2.

The first rule is a base case of a recursive program that
describes properties of areas in danger. An area will be in
danger if there is at least one node (in that area) whose sensed
temperature is greater than 80 degrees (which may be on
fire). The second rule is a recursive case. Basically, an area will
be in danger if there is at least one node (in the area) whose
sensed relative humidity is lower than 40 % (the weather
is dry) and there is wind from the adjacent area in danger.
When the Sens2P program starts, a user can define facts and
rules before injecting a query into the system.

6. System Architecture

Sense2P consists of two major components: the query
processing engine and the data-gathering engine (Figure 1).
The query processing engine resides on the base station while
the data-gathering engine resides on each wireless sensor
node.

6.1. Query Processing Engine. The query processing engine is
crucial for logic macroprogramming WSNs. The main tasks
are to interpret a user program (consisting of facts, rules, and
queries) and to process queries to find satisfying answers.

Sense2P query processing engine consists of three main
components: a compiler unit, a run-time processing unit,
and a network interface unit. The compiler unit parses a
logic macroprogram into a compiled code that runs on
the run-time processing unit. The run-time processing unit
is required to treat sensor-specific facts differently from
those of other ordinary facts. Sensor-specific facts are data

International Journal of Distributed Sensor Networks 5

Subquery processing layer

Routing layer

Link layer

Physical layer

Network interface unit

Compiler unitQuery processing

Data gathering

Base station

Gateway node

Wireless sensor node

Wire communication

Wireless communication

Run-time processing unit

Figure 1: System Architecture.

locally sensed and stored by sensor nodes in the network.
Processing queries related to these facts requires special
attention because unnecessary data transmissions are costly
in WSNs.

In this paper, we consider three previously proposed
schemes for query processing in deductive databases. These
schemes include top-down, bottom-up, and Prolog-style
evaluation approaches [21].

Prolog-style systems (coupled with database systems) are
similar to the top-down systems in a sense that their exe-
cution starts from the goal and a query can be solved by
executing each subgoal until the deduced facts match the
goal. However, Prolog-style systems produce answers one
tuple at a time whereas top-down methods produce one set
at a time without in-order execution of subgoals.

Conversely, the bottom-up methods start from existing
facts and attempt to deduce new facts from rules that are
related to the query. Only facts that match with the goal of
the query are selected as the answers. We refer to [21] for
more information of each implementation scheme.

Many works suggest that the bottom-up methods have
many advantages over top-down methods in traditional
deductive database systems [20, 21, 23]. However, in wireless
sensor networks, we argue that top-down and Prolog-style
approaches are more appropriate.

Understandably, facts in a wireless sensor network are
data that are sensed from an environment. They are locally
kept within sensing nodes and sent to the base station only
when requested. To process a query in a bottom-up manner,
we need facts from all relevant nodes so that new facts can
be globally deduced. Therefore, each node may be required
to send its data to a rendezvous point (e.g., a base station,
an inference engine) for such a deduction. Undoubtedly,
the mentioned mechanism consumes excessive energy. To
reduce this energy consumption, only relevant data should
be delivered.

hotObject(Obj, AreaID):- detect(Obj, AreaID)
, temperature(Obj, T)
, T > 50.

Listing 3: Example of a rule that two predicates related to each
other with Obj.

However, it is not easy for a node to selectively send
relevant data without knowing priori what all other nodes
have. A fact in a node may be relevant simply because another
fact from another node happens to have a certain value.

Conversely, the top-down approach can use information
from a query to suppress irrelevant facts from being sent.
For example, a predicate detect(ObjectID, AreaID) in a system
means a sensor node can detect an object with the identifi-
cation number ObjectID in the region AreaID. When a user
injects a query ?-detect(oiltank,X), only sensor nodes that can
detect an object named oiltank will send answers back. Other
nodes are suppressed.

Furthermore, we can even suppress unnecessary query
forwarding and redundant answering. The benefit is evident
in fact-checking queries, such as ?-detect(oiltank, area70). In
our system, only the first node detecting oiltank in area 70
will reply, although there may be other nodes (in the same
area) that detect the same event. This is reasonable, given that
one’s reply about the fact existence is sufficient to satisfy the
query. Therefore, the first detecting node does not need to
forward the query further. Thus, there is no other replier (see
Section 6.2 for more details).

In addition, we can use an answer set from the previous
subgoal to filter out (or suppress) the irrelevant facts of the
next subgoal. For example, consider the rule in Listing 3.

When a user injects a query ?-hotObject(X, area70), the
system will match the query with the above rule. Therefore,
the variable AreaID in the rule will be bound with the
constant area70. Then, the system will attempt to match
each predicate in the body of the rule. Each body predicate
becomes a subquery that needs to be satisfied.

In this example, the first subquery is detect(ObjectID,
area70). This subquery is disseminated into the network.
Only eligible repliers are nodes with facts or rules that
match the subquery. Others are suppressed. Consequently,
only objects in area70 will be bound to the variable
ObjectID. Then, each ObjectID will be used to bind tempera-
ture(ObjectID, Temp) predicate and can be used to filter out
or suppress irrelevant facts from being sent. Furthermore,
we can also use a constraint Temp > 50 as another filter
before injecting a subquery temperature(ObjectID, Temp) to
the network.

Due to these filtering techniques, this top-down ap-
proach can significantly reduce the consumption of energy
that is limited in wireless sensor networks [16]. Therefore,
the Prolog-style top-down approach is used and combined
with our filtering techniques in this paper.

In our system, most relevant facts are pulled from the
network except the persistent ones that do not change over

6 International Journal of Distributed Sensor Networks

time. The persistent facts can be cached or kept in the
backend database of the inference engine for future uses.

Additionally, we propose a superset-caching technique to
reduce even more energy consumption. With this technique,
Sense2P will cache the answer set of the first-timer query
(that requires sensor-specific predicates) for future use. If a
user injects a new query, Sense2P will check whether one of
the previous queries is a superset of the current query or not.
If a previous query is the superset, Sense2P will search the
satisfying answers in the cache rather than in the network.
Otherwise, the query will be disseminated into the network.

For example, an answer set of a query ?-light(X,Y)
is a superset of a query ?-light(3,X) because light(X,Y)
contains every possible answers in the network. Conversely,
an answer set of a query ?-light(5,X) or ?-light(X,20) is not
a superset of ?-light(3,X). However, this caching technique
is not perfect, especially when the data in the environment
is volatile. Therefore, a timer to flush cache may be needed.
Nevertheless, the flushing period is a trade-off between the
data freshness and the energy consumption.

Finally, the network interface unit is responsible for
disseminating queries or subqueries into the network. The
queries are transformed into a format known in sensor
networks, serialized, and sent into the network. The unit is
also responsible for receiving answers from the network. This
requires deserialization and transformation of messages back
into the Prolog-like predicates.

Our approach works well on both recursive and nonre-
cursive queries. The query-processing flow is illustrated in
Figure 2.

6.2. Data-Gathering Engine. Data-gathering engine is re-
sponsible for finding answers that are relevant to injected
queries. This engine consists of the routing layer, the query-
processing layer, the link layer, and the physical layer.
However, our work simply focuses on the routing layer
and the query processing layer. Both mentioned layers are
handled by our LogicQ sub-system.

LogicQ is the underlying subsystem for subquery pro-
cessing in Sense2P. Running on each sensor node, LogicQ is
implemented in TinyOS [24], the operating system for the
sensor mote platform. The functionality of LogicQ is to find
answers for each subgoal that needs data from wireless sensor
networks and minimizes the energy consumption.

When Sense2P starts up, LogicQ constructs a routing tree
for disseminating subqueries from the base station to sensor
nodes and for collecting answers that satisfy the subqueries.
We use a drain routing tree of TinyOS as our routing tree.
A root of the tree is the gateway node connected to the base
station. Each node can have many child nodes but only one
parent node. When disseminating the queries, we simply
forward queries along the drain tree except suppressible
queries (i.e., no longer necessary to be forwarded because
the queries have been satisfied). Then, when answers are
ready, each node sends its answers back along this routing
tree.

Subgoal predicates that LogicQ is responsible to sup-
port are sensor-specific built-in predicates. Such predicates

Compiler unit

Wireless sensor network

(data-gathering engine)

Answer(s)

Compiled program/query

Macroprogram
/query

Run-time processing unit

Subquery
answer(s)

Network interface unit

Sensor specific
subquery

Figure 2: Query processing flow.

include predicates that are related to specific functions
of sensor nodes’ capabilities, such as temperature(NodeID,
Temp) for sensing the temperature and connect(NodeID1,
NodeID2) for checking connectivity, and so forth. These
built-in functions are defined prior to the system installation.
The Sense2P’s inference engine will solve the subgoals that
require sensor-specific predicates by injecting subqueries
that correspond to the subgoals into the network.

In the programming model subsection, we classify
queries into 4 groups. However, in this lower layer, there
are only facts in sensor nodes. As a result, sensor-specific
subqueries are classified into two types, one for existence
checking and another for retrieving all satisfied predicates.
To check an existence of a fact, every argument in this
first query type is constant and the answer is only true
or false (e.g., detect(oiltank, area 70) whereby oiltank and
area 70 are constant). Therefore, this type of query is not
necessarily disseminated to all sensor nodes. If only one node
has a fact that satisfies the query, the system does not need
answers from other nodes. Conversely, the second query type
requires at least one variable as an argument. For example,
detect(ObjectID, area 70) contains a variable ObjectID and a
constant area70. Hence, the system will find every possible
answer of ObjectID that is detected in area70. It is necessary
to disseminate this type of queries to all nodes.

The subquery processing algorithm for each sensor node
can be written as a pseudocode in Algorithm 1. Once receiv-
ing an existence-checking query (Line 1), a sensor node
checks its facts locally first whether it has a fact that satisfies
the query or not (Line 2). If a sensor node has a satisfying
fact, it will send an answer true to its parent immediately
(Line 3). Given that one answer is sufficient for this query

International Journal of Distributed Sensor Networks 7

if subquery is checking existence then
if have local satisfied fact then

send answer up to parent;
else

forward query to children;
end

else if subquery is asking all Satisfied value then
forward query to children;
if have local satisfied fact then

send answer up to parent;
end

end

Algorithm 1: Subquery processing algorithm.

type, the replying node does not further forward the query.
Otherwise, it will forward the query to its children (Line 4-5).

If the query type requires all satisfied answers (Line 6),
a sensor node will forward the query immediately (Line 7).
Regardless of the local existence of the satisfying facts, the
system still needs satisfying answers from all sensor nodes.
After the query is forwarded, the node checks for local
satisfying answers. If it has one, it will send the answer up
to its parent (Line 8-9).

7. Cost Analysis

In this section, we analyse the communication cost of
bottom-up and top-down schemes. In all cases, we assume
uniform distribution of facts in the network of M nodes.
There are n subgoals in a query. |Gi| represents a number
of all available facts of the ith subgoal.

7.1. Cost of Bottom-Up Processing Scheme. Understandably,
in the bottom-up scheme, all facts in the network must be
sent to the central base station. Therefore, the total com-
munication cost consists of rule dissemination cost, query
dissemination cost, and facts retrieval cost.

The cost of rule dissemination depends on a number of
subgoals because many subgoals increase the message size.
For simplicity, we assume that overhead incurred by one
subgoal equals to one message. Therefore, the dissemination
cost of a rule with n-subgoal to M nodes in the network is

Crule = nM. (1)

The cost of query dissemination is obvious that a query
is disseminated to all M nodes in the network. Therefore, the
dissemination cost of a query is

Cquery =M. (2)

Finally, the cost of facts retrieval equals to the cost of
sending all facts of each subgoal in the network to the base
station. Let |Gi| be a number of facts related to ith subgoal.
Therefore, the facts retrieval cost is

Cfact = D
n∑

i=1

|Gi|, (3)

where D is an average distance from arbitrary node to the
base station.

Therefore, from (1), (2), and (3), the total communica-
tion cost of the bottom-up processing scheme is

Cbottom-up = Crule + Cquery + Cfact

= nM + M + D
n∑

i=1

|Gi|

= (n + 1)M + D
n∑

i=1

|Gi|.

(4)

7.2. Cost of Top-Down Processing Scheme. In our top-down
processing scheme, we perform the join-computation pro-
cess at the central base station and distributively collect only
needed facts from the network.

In retrieving all satisfying answers, our scheme incurs
broadcasting a subquery for each subgoal. However, only
the selected facts (that satisfy the constraints caused by all
previous subgoals) for that subquery are sent back to the
base station. In other words, previous satisfied subgoals can
suppress many unrelated facts in the network.

A rule, in this scheme, is not necessary to be disseminated
into the network because the base station only disseminates a
subquery of a subgoal into the network at a time. This kind of
subquery is certainly a predicate that each node priori knows
before deployment. Therefore, the total communication cost
consists of subqueries dissemination cost and fact retrieval
cost.

The cost of subqueries dissemination depends on an-
swers of previous subgoals. These answers are used to filter
irrelevant facts of the next subgoal.

Let σi1,i2 be a selectivity factor to select facts of i2th
subgoal after solving 1st to i1th subgoal. For example, if σ2, 3

equals 0.05, after solving the 1st and 2nd subgoal, only 5
percent of facts related to the 3rd subgoal are sent back to
the base station. σ−1,0 and σ0,1 equal to 1.

The number of subqueries for the ith subgoal equals to a
number of all distinct answers from the (i − 1)th subgoal.
Therefore, the number of subqueries for the ith subgoal
equals to μi−1(σi−2,i−1|Gi−1|), where μi is a distinct factor for
answers from ith subgoal and μ0 equals to 1. For example, if
there are 10 answers from several nodes but there are only 2
distinct values, the distinct factor equals to 0.2 in this case.
Each subquery is disseminated to M nodes in the network.
That is

Cith subquery =M
(
μi−1

(
σi−2,i−1|Gi−1|

))
. (5)

For n subgoals, the cost of n subqueries is

Csubqueries =
n∑

i=1

Cith subquery

=M
n∑

i=1

(
μi−1

(
σi−2,i−1|Gi−1|

))
.

(6)

8 International Journal of Distributed Sensor Networks

The cost of subgoal fact retrieval is similar to (3) except
only a portion of facts are selected and sent back to the base
station. Therefore, the subgoal fact retrieval cost is

Csubgoal-fact = D
n∑

i=1

σi−1,i|Gi|. (7)

From (6) and (7), we derive the total communication cost
of the top-down processing scheme,

Ctop-down = Csubqueries + Csubgoal-fact

=M
n∑

i=1

(
μi−1

(
σi−2,i−1|Gi−1|

))

+ D
n∑

i=1

σi−1,i|Gi|.

(8)

Noticeably, our approach already includes the cost of
producing all answers and the cost of sending all answers to
the base station.

Note that the cost of top-down processing scheme is
lower than the cost of bottom-up processing scheme when
the selectivity factor is low whereas there are superfluous
facts in the network. These characteristics of selectivity factor
and number of facts are norm in anomaly detection appli-
cations that values exceeding defined constraints are rarely
found. In the next section, we evaluate the performance of
our implemented system.

8. Evaluation

To evaluate our system performance, we write and inject
various queries into Sense2P that is connected to TOSSIM
[25], a TinyOS simulator. For viability testing, the result
is compared with that of 3 other approaches: TinyDB,
bottom-up, and simplified Sense2P (a simple integration
of an existing Prolog system and LogicQ without other
Sense2P features). This experiment shows the impact of
Sense2P features that are specifically designed for WSNs.
These features include query suppressing, data filtering, and
superset caching.

8.1. Performance Metrics. In this section, we use 3 metrics
for performance comparison: completeness, soundness, and
communication cost. Completeness is the ratio of retrieved
answers to the total existing answers in the networks. This
indicates whether our system can successfully retrieve all
existing answers or not. Similarly, we measure the soundness
by the ratio of the relevant answers retrieved to the total
retrieved answers. The soundness metric is for assuring
that our system does not retrieve irrelevant answers. In
this evaluation, the communication cost is measured by the
number of sent messages in the system. Communication cost
indicates the amount of energy consumed. For a system to
be viable for WSNs, the communication cost of that system
must be minimized.

8.2. Simulation Environment. We implement Sense2P on
TinyOS and simulate each sensor node on TOSSIM. We

assume reliable communication (i.e., no packet loss because
of bit errors or collisions) to discard the problem caused by
radio transmissions. In our simulation, each sensor node can
sense the temperature of its environment. The temperature
values are randomly assigned between 20 and 80◦C. We set
up the simulation such that 5 percent of nodes sense the
temperature value over 50◦C.

8.3. Top-Down versus Bottom-Up. In this subsection, we
conduct two experiments in order to compare the communi-
cation cost between the top-down evaluation of Sense2P and
the traditional bottom-up evaluation. In the first experiment,
we inject three temperature queries into the network of
temperature sensors. The first query is for checking the
existence of a predicate. All arguments in the query are
constant. The second query contains one constant argument
and one variable argument. In the third query, all arguments
are variable. This experiment is quite simple, given that these
queries are satisfied by facts, not rules.

Our message counts in answering three mentioned
queries are compared with that of the bottom-up method.
Regardless of the argument types, the bottom-up approach
always incurs a certain amount of messages sent because all
facts must be delivered to the base station (see Figure 3(a)).

Sense2P will significantly reduce the communication cost
if the query contains at least one constant argument to
suppress irrelevant answers. However, Sense2P will incur
the communication cost similar to that of the bottom-
up approach if all arguments in the query are variable.
Understandably, all facts are required in order to answer such
a nonconstant query under our investigated scenarios.

Nevertheless, in our simulation, we assume all nodes are
equipped with the same sensor type. If the sensor nodes are
heterogeneous, Sense2P will still reduce the communication
cost significantly even with the nonconstant query because
only relevant nodes with the matched sensing capability will
send back the data, unlike the bottom-up approach that
needs all facts and filters out by the inference engine at the
base station.

In the second experiment, we program the rule in
Listing 1 on Sense2P and inject two queries into the system:
constant type and nonconstant type. Both queries must
be satisfied by the mentioned rule. Expectedly, the result
in Figure 3(b) indicates that our system outperforms the
bottom-up approach regardless of the query types (including
the nonconstant type).

However, our savings in nonconstant queries can still
be improved. In our implementation, each answer from the
previous subgoal is used to bind the variable in the current
subgoal. The number of subqueries for the current subgoal
depends on the number of answers from the previous
subgoal because each answer may bind the variable with a
different value.

As the number of nodes is increased, the number of
answers for the previous subgoal is also increased. Conse-
quently, the number of subqueries for the current subgoal
is unavoidably increased. This causes more messages sent
into larger networks. However, this problem can be solved

International Journal of Distributed Sensor Networks 9

Bottom-up
Sense2P: temperature (VAR1, VAR2)
Sense2P: temperature (const, VAR)
Sense2P: temperature (const1, const2)

M
es

sa
ge

 c
ou

n
t

(p
ac

ke
t)

20 40 60 80
0

50

100

150

200

250

300

350

400

450

500

Number (node)

(a)

Bottom-up
Sense2P: hot(VAR)
Sense2P: hot(const)

M
es

sa
ge

 c
ou

n
t

(p
ac

ke
t)

Number (node)

0

100

200

300

400

500

600

700

800

900

1000

20 40 60 80

(b)

Figure 3: Comparison between traditional bottom-up evaluation and Sense2P top-down evaluation. (a) Simple predicate, tempera-
ture(NodeID, T). (b) Rule, hot(AreaID): temperature(NodeID,T), T > 50, area(NodeID, AreaID).

by sending only one subquery for the current subgoal with
a list of different values that are bound with the variable.
Nevertheless, we have not yet implemented this optimization
in this paper. We intend to further explore this technique and
other optimization approaches in our future work.

8.4. Query Suppression. In this subsection, we conduct an
experiment for comparing Sense2P with TinyDB because
TinyDB is also a node-independent macroprogramming
paradigm. Given that TinyDB does not support many query
types that Sense2P can (see Section 2), we only focus on
queries that both approaches can perform.

We inject two temperature queries into the network. One
is with two variable arguments for retrieving all temperature
facts. Another is with two constant arguments for checking
the existence of a temperature fact.

Expectedly, the message count of Sense2P is significantly
smaller than that of TinyDB, especially in the constant
query (Figure 4). Understandably, the efficiency of Sense2P
is due to its query suppression. Sense2P suppresses (does not
forward) queries that are already satisfied whereas TinyDB
always sends queries to all nodes. The efficiency of Sense2P
will be more evident if we measure the byte count instead of
the message count, given that the message size of Sense2P is
also smaller than that of TinyDB.

However, we are surprised that TinyDB sends more query
messages when there are more conditions in the WHERE
clause of the query. Our query with two constant arguments
corresponds to a SQL query with two conditions in the
WHERE clause. Evidently, TinyDB sends more query mes-
sages in the constant query than in the nonconstant query.

8.5. Data Filtering. In this subsection, we analyze the impact
of data filtering on the performance of Sense2P. We program
the rule in Listing 1 and inject two queries into the Sense2P
system: a constant type and a nonconstant type. After that,

we disable the data filtering feature in Sense2P and repeat the
experiment.

Not surprisingly, Sense2P with data filtering performs
better than Sense2P without data filtering in both query
types (Figure 5). Data filtering is undoubtedly beneficial to
the constant query. However, one may wonder how the filter-
ing technique improves the performance of the nonconstant
query. Such improvement is possible in Sense2P when the
nonconstant query must be satisfied by a rule, especially
the rule whose body contains a constraint to a predicate’s
variable argument. For example, the rule hot(AreaID), in
Listing 1, contains a constraint, Temp > 50. In the body of the
rule, the temperature predicate is the first subgoal whereas
the above constraint is the second subgoal. Traditionally, a
Prolog system resolves this rule from left to right. Therefore,
the traditional system must retrieve every possible value
of the temperature predicate before filtering the irrelevant
answers with that constraint. However, in Sense2P, our run-
time processing engine binds that value constraint to the
temperature predicate before sending the first subquery into
the network. Therefore, the number of answers for the first
subgoal is reduced. Consequently, the number of messages
sent in the system is also reduced.

8.6. Superset Caching. To study the impact of superset
caching, we inject two set of temperature queries into
Sense2P with and without superset caching. A temperature
query is injected every 20 seconds in our experiment. The
first 3 queries of the first set are in the form of temperature
(const, VAR) where const is different for each query. The
remaining queries of the first set are in the form of tempera-
ture (const1, const2). Some remaining queries are the subsets
of the first 3 queries. When they are, they do not incur any
radio transmission because Sense2P can search their answers
in the superset caching (Figure 6(a)).

10 International Journal of Distributed Sensor Networks

M
es

sa
ge

 c
ou

n
t

(p
ac

ke
t)

0

20

40

60

80

100

120

(VAR1, VAR2) (const1, const2)

Sense2P

TinyDB

Query arguments of “temperature (NodeID, T)”

Figure 4: Comparison of Sense2P with query suppression and
TinyDB with no query suppression.

Number (node)

0

100

200

300

400

500

600

700

800

900

Hot(VAR) without filtering
Hot(const) without filtering
Hot(VAR) with filtering
Hot(const) with filtering

20 40 60 80

M
es

sa
ge

 c
ou

n
t

(p
ac

ke
t)

Figure 5: The impact of data filtering technique.

The impact of the superset caching is more significant
when the superset is larger. This is evident in the second set
of queries. The first 3 queries of the second set are in the
form of temperature (VAR1, VAR2). The remaining queries
contain at least one constant argument. Given that the first
query is the superset of all remaining queries, there is no
radio transmission necessary for answering these queries
(Figure 6(b)). Consequently, the energy consumption is
significantly reduced.

However, the superset caching has a trade-off issue. If the
sensed data of the environment is frequently changed, the
cached answer will be stale and useless. Thus, similar to most
caching techniques, the superset caching is associated with an
application-specific expiration timer or data popularity for
flushing stale cached data. Understandably, the flushing rate
is a trade-off between data freshness, storage size, and energy
consumption. The cache replacement policy is out of scope
of this work.

20 40 60 80 100 120 140 160 180

Time (s)

Without caching

With superset caching

Temperature (const1, const2)
Temperature
(const, VAR)

0

20

40

60

80

100

120

M
es

sa
ge

 c
ou

n
t

(p
ac

ke
t)

(a)

0

40

80

120

160

200

240

280

320

360
Temperature (VAR1, VAR2)

20 40 60 80 100 120 140 160 180

Time (s)

Without caching

With superset caching

Temperature (const, VAR)
or

Temperature (const1, const2)

M
es

sa
ge

 c
ou

n
t

(p
ac

ke
t)

(b)

Figure 6: The impact of superset caching.

8.7. Completeness and Soundness. Due to the reliable com-
munication in our experiment, there is no packet loss.
Sense2P can achieve 100% completeness and 100% sound-
ness under investigated scenarios because of our filtering and
suppressing techniques. In practice, there would be some
loss due to interference, collision, and congestion. However,
to handle loss in the network is out of the scope of this
work which mainly focuses on the programming language
perspective.

9. Conclusion

This paper proposes a logic node-independent macropro-
gramming approach for abstracting, programming, and
using WSNs as globally deductive databases. Unlike macro-
programs in previous works, our logic macroprograms can
be described declaratively and imperatively. Furthermore,
logic macroprogrammers can easily express a recursive
program or query that is unsupported in existing database
abstractions for WSNs.

To efficiently process queries and their subqueries (either
recursive or nonrecursive), the top-down approach is more
appropriate than the bottom-up approach. This is due to

International Journal of Distributed Sensor Networks 11

WITH RECURSIVE ancestor(anc, desc) AS (
(SELECT par AS anc, child AS desc FROM parent)
UNION
(SELECT ancestor.anc, parent.child AS desc

FROM ancestor, parent
WHERE ancestor.desc = parent.par))

SELECT anc FROM ancestor WHERE desc=“John”

Listing 4: SQL programming to solve Ancestors problem and List-
ing.

ancestor(anc, desc):- parent(anc, desc).
ancestor(anc, desc):- parent(anc, X), ancestor(X, desc).
?-ancestor(anc, “John”).

Listing 5: Logic programming to solve Ancestors problem.

its capability to bind subgoal arguments that can be used
to reduce communication cost by suppressing irrelevant
answers and already satisfied subqueries from being sent or
forwarded.

Finally, our evaluation results indicate that Sense2P can
significantly reduce energy consumption while maintaining
100% completeness and soundness under our investigated
scenarios.

Appendix

Recursive Query in SQL Language and
Logic Programming Language

In this section, we describe the verboseness of a SQL language
in expressing a recursive query. We also show the conciseness
of a logic programming language in expressing the same
recursive query for comparison.

To simplify the comparison, we use a well-known
recursive query example: the Ancestors problem. Given a
set of parent(par, child) relations, we would like to find all
ancestors of “John”.

The SQL program in Listing 4 demonstrates how to solve
this problem.

Concisely, we can solve the same problem in logic
programming as in Listing 5.

The logic program is so much shorter and easier to
express. The advantage will be even more if the problem is
more complex.

Acknowledgments

The authors would like to thank Rawin Youngnoi and
UbiNET research group members for their valuable sug-
gestions and effort to improve this work. This work was
supported by the Thailand Research Fund (TRF) under

Grant MRG5080449 and the CU CP Academic Excellence
Scholarship from Department of Computer Engineering,
Faculty of Engineering, Chulalongkorn University.

References

[1] C. Gui and P. Mohapatra, “Power conservation and quality of
surveillance in target tracking sensor networks,” in Proceedings
of the 10th Annual International Conference on Mobile Comput-
ing and Networking (MobiCom ’04), pp. 129–143, ACM, New
York, NY, USA, 2004.

[2] T. He, S. Krishnamurthy, J. A. Stankovic et al., “Energy-
efficient surveillance system using wireless sensor networks,”
in Proceedings of the 2nd International Conference on Mobile
Systems, Applications, and Services (MobiSys ’04), pp. 270–283,
ACM, New York, NY, USA, 2004.

[3] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J.
Anderson, “Wireless sensor networks for habitat monitoring,”
in Proceedings of the 1st ACM International Workshop on
Wireless Sensor Networks and Applications (WSNA ’02), pp. 88–
97, ACM, New York, NY, USA, 2002.

[4] N. Xu, S. Rangwala, K. K. Chintalapudi et al., “A wireless
sensor network for structural monitoring,” in Proceedings
of the 2nd International Conference on Embedded Networked
Sensor Systems (SenSys ’04), pp. 13–24, ACM, New York, NY,
USA, November 2004.

[5] D. Gay, P. Levis, E. Brewer, R. Von Behren, M. Welsh,
and D. Culler, “The nesC language: a holistic approach to
networked embedded systems,” in Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’03), pp. 1–11, ACM, New York, NY,
USA, June 2003.

[6] D. Chu, L. Popa, A. Tavakoli et al., “The design and
implementation of a declarative sensor network system,” in
Proceedings of the 5th International Conference on Embedded
Networked Sensor Systems (SenSys ’07), pp. 175–188, ACM,
New York, NY, USA, 2007.

[7] R. Gummadi, N. Kothari, R. Govindan, and T. Millstein,
“Kairos: a macro-programming system for wireless sensor
networks,” in Proceedings of the 20th ACM Symposium on
Operating Systems Principles (SOSP ’05), pp. 1–2, ACM, New
York, NY, USA, 2005.

[8] C. Intanagonwiwat, R. K. Gupta, and A. Vahdat, “Declarative
resource naming for macroprogramming wireless networks
of embedded systems,” in ALGOSENSORS, Lecture Notes in
Computer Science, vol. 4240, pp. 192–199, Springer, 2006.

[9] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong,
“TinyDB: an acquisitional query processing system for sensor
networks,” ACM Transactions on Database Systems, vol. 30, no.
1, pp. 122–173, 2005.

[10] R. Newton, G. Morrisett, and M. Welsh, “The regiment
macroprogramming system,” in Proceedings of the 6th Interna-
tional Conference on Information Processing in Sensor Networks
(IPSN ’07), pp. 489–498, ACM, New York, NY, USA, 2007.

[11] M. Welsh and G. Mainland, “Programming sensor networks
using abstract regions,” in Proceedings of the 1st Conference on
Symposium on Networked Systems Design and Implementation
(NSDI ’04), p. 3, USENIX Association, Berkeley, Calif, USA,
2004.

[12] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler, “Hood: a
neighborhood abstraction for sensor networks,” in Proceedings

12 International Journal of Distributed Sensor Networks

of the 2nd International Conference on Mobile Systems, Applica-
tions, and Services (MobiSys ’04), pp. 99–110, ACM, New York,
NY, USA, 2004.

[13] A. Krishnamurthy, D. E. Culler, A. Dusseau et al., “Parallel
programming in split-C,” in Proceedings of the ACM/IEEE
Conference on Supercomputing (Supercomputing ’93), pp. 262–
273, ACM, New York, NY, USA, November 1993.

[14] C. Borcea, C. Intanagonwiwat, P. Kang, U. Kremer, and L.
Iftode, “Spatial programming using smart messages: design
and implementation,” in Proceedings of the 24th International
Conference on Distributed Computing Systems (ICDCS ’04),
pp. 690–399, IEEE Computer Society, Washington, DC, USA,
2004.

[15] Y. Yao and J. Gehrke, “The cougar approach to in-network
query processing in sensor networks,” SIGMOD Record, vol.
31, no. 3, pp. 9–18, 2002.

[16] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed
diffusion: a scalable and robust communication paradigm
for sensor networks,” in Proceedings of the 6th Annual
International Conference on Mobile Computing and Networking
(MobiCom ’00), pp. 56–67, ACM, New York, NY, USA, 2000.

[17] I. Bratko, Prolog Programming for Artificial Intelligence,
Addison-Wesley Longman Publishing, Boston, Mass, USA,
1986.

[18] K. Whitehouse, F. Zhao, and J. Liu, “Semantic Streams: a
framework for composable semantic interpretation of sensor
data,” in Wireless Sensor Networks, vol. 3868 of Lecture Notes in
Computer Science, pp. 5–20, Springer, 2006.

[19] F. Bancilhon and R. Ramakrishnan, “An amateur’s intro-
duction to recursive query processing strategies,” SIGMOD
Record, vol. 15, no. 2, pp. 16–52, 1986.

[20] Y. K. Hinz, “Datalog bottom-up is the trend in the deductive
database evaluation strategy,” Tech. Rep. INSS 690, University
of Maryland, 2002.

[21] K. Ramamohanarao and J. Harland, “An introduction to
deductive database languages and systems,” The VLDB Journal,
vol. 3, no. 2, pp. 107–122, 1994.

[22] S. Choochaisri and C. Intanagonwiwat, “A system for using
wireless sensor networks as globally deductive databases,” in
Proceedings of the IEEE International Conference on Wireless
& Mobile Computing, Networking & Communication (WIMOB
’08), pp. 649–654, IEEE Computer Society, Washington, DC,
USA, 2008.

[23] R. Ramakrishnan and S. Sudarshan, “Top-down vs. bottom-
up revisited,” in Proceedings of the International Logic Program-
ming Symposium, pp. 321–336, MIT Press, 1991.

[24] P. Levis, S. Madden, J. Polastre et al., “Tinyos: an operating
system for sensor networks,” in Ambient Intelligence, Springer,
2004.

[25] P. Levis, N. Lee, M. Welsh, and D. Culler, “Tossim: accurate
and scalable simulation of entire tinyos applications,” in
Proceedings of the 1st International Conference on Embedded
Networked Sensor Systems (SenSys ’03), pp. 126–137, ACM,
New York, NY, USA, 2003.

