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Abstract—This paper proposes an Orthodontics-inspired
desynchronization algorithm for scheduling wireless sensor nodes
to avoid conflicts on resource sharing by not accessing the
resource at the same time. Applications of desynchronization
include TDMA scheduling, wake-sleep scheduling, and collision
avoiding. Although existing desynchronization approaches per-
form reasonably well, their errors highly fluctuate. This high
fluctuation implies overshooting and results in high errors even
after convergence. For smoother convergence and lower error,
we design a mechanism analogous to an orthodontic teeth-
alignment technique. In Orthodontics, an orthodontist prevents
the already-correct-positioning teeth from moving by tying them
with a power chain. We apply the similar concept to the existing
desynchronization method to prevent nodes with correct phases
from adjusting their time phases.

We evaluate our implementation of DESYNC-ORT on
TOSSIM, a simulator for wireless sensor networks. The sim-
ulation result indicates that our method significantly helps the
existing desynchronization algorithm to converge smoothly with
lower error (reducing approximately 20-60% of errors caused by
existing approaches).

I. INTRODUCTION

Wireless sensor networks (WSNs) have been deployed for a
wide range of applications such as environmental monitoring,
industrial monitoring, and target tracking. Several tasks of such
applications require sensor nodes not to work at the same
time (i.e. to be desynchronized). For example, nodes in the
same wireless collision domain have to eschew simultaneous
transmission for successful communication. Nodes in the same
sensing area should not be on all the time simply to detect the
redundant event. They should take turns to sleep and to wake
up at different time for energy savings while maintaining the
sensing coverage of the network [1].

In addition to TDMA scheduling and coverage preserving
for WSNs, desynchronization can also be applied to other
systems such as multi-core computers, analog-to-digital con-
verters (ADC), and automated traffic light systems [2].

A desynchronization framework has been introduced by
Degesys et al. [2] (Figure 1). The framework consists of nodes
cycling counter clockwise around the time circle or the time
period. A node position on a time circle represents a phase of
that node. Each node rotates around the perimeter of the circle
as time passes. The node accesses the shared resource (e.g.,
fires a message in a wireless channel, wakes up for sensing)

Fig. 1: Desynchronization Framework. Left: starting state.
Right: Desynchronized state.

every time when its phase reaches zero. The system reaches
the desynchronized state when nodes are equally distributed
in the time space.

Degesys et al. have also proposed DESYNC, a simple
algorithm to achieve the desynchronized state. Each node
continuously adjusts its phase to the middle between its next
and previous phase neighbors. By repeating this simple mech-
anism, nodes will be evenly distributed in the time domain
or desynchronized. However, the desynchronization error of
DESYNC highly fluctuates and remains rather high even after
the algorithm converges due to overshooting.

We observe that, in DESYNC, nodes with correct phases
may continuously adjust their phases simply because its phase
neighbors are at the improper time position. This behavior is
counter-intuitive. Nodes with incorrect phases should be the
ones to adjust their time positions whereas nodes with correct
phases should not. To reduce the desynchronization error and
its fluctuation, we present DESYNC-ORT, an Orthodontics-
inspired desynchronization algorithm for WSNs. In our work,
phase-neighboring nodes form into a group and stay together if
their phase differences are already correct. This mechanism is
analogous to orthodontic teeth alignment. An orthodontist ties
up the already-correct-positioning teeth with a power-chain
in order to maintain the correct teeth gaps (i.e., to prevent
them from moving). We apply this same principle to the
desynchronization algorithm to ensure that the nodes maintain
correct phase differences.

DESYNC-ORT has the following contributions.
• DESYNC-ORT ensures the less-fluctuating error that

leads to smoother convergence and lower error.
• DESYNC-ORT is a distributed algorithm that does not

require neither global information nor a centralized node.
Therefore, this algorithm is scalable since it uses only
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Fig. 2: Wrong adjustment

local information to achieve the desynchronized state.
• DESYNC-ORT is lightweight and simple to implement.

It requires no extra message or message payload.
• DSYNC-ORT concept can be applied to other desynchro-

nization algorithms that adapt time phases dynamically.

We have implemented DESYNC-ORT on TinyOS (runnable
on real hardware) and evaluated our approach on TOSSIM,
a simulator for wireless sensor networks. Our simulation
results indicate that DESYNC-ORT significantly outperforms
DESYNC by achieving 20-60% reduction in error, especially
in dense networks.

The rest of the paper is organized as follows. We explain
how orthodontic teeth alignment motivates our work in Section
2 and describe our algorithm in Section 3. We evaluate and
compare our work with DESYNC in Section 4. Related works
are overviewed and compared with our work in Section 5.
Finally, section 6 concludes the paper and discusses limitations
as well as future works.

II. MOTIVATION

Our work is motivated by the following two observations.
First, we observe that the DESYNC protocol converges with a
high error. In addition, even after the protocol converges, the
error still fluctuates. This high fluctuation of error is caused by
the phase adjustment of the already-correct-positioning nodes.
Second, we also observe that the orthodontic teeth arrangement
shares a similar idea in some aspects with desynchronization.
In Orthodontics, already-correct-positioning teeth are tied up
to prevent them from moving. We believe that this technique
can reduce fluctuating errors.

In this section, we begin with an overview of DESYNC
and explain its pitfall. Then, we describe how to apply an
orthodontic method to our desynchronization protocol.

In DESYNC, each node fires a message periodically. After
each firing, a node listens to others’ firings. The first firing
neighbor is selected as the next phase neighbor whereas the
last firing neighbor (before the node fires again) is selected
as the previous phase neighbor. Then, the node calculates the
midpoint φmid between its previous and next phase neighbors
as follows:

φmid = [φprev + φnext]/2, (1)

where φprev is the phase of the previous phase neighbor and
φnext is the phase of the next phase neighbor. The phase is
calculated from the firing time modulo the time period T .

ARCH WIRE

O-RING

POWER CHAIN

BRACKET

Fig. 3: Orthodontic braces diagram

Finally, the node adjusts its phase to φnew by the exponential
moving average method as follows:

φnew = (1− α)φcurrent + αφmid, (2)

where φcurrent is the current phase and α is a step size for
adjustment.

However, the above adjustment mechanism (based on two
phase neighbors of DESYNC) has a pitfall (see Figure 2). On
the left figure, node 1, 2, and 3 have correct phase differences
between each pair of them, but node 4 is at a wrong position.
Later, node 3 adjusts its phase to the midpoint between node
2 and 4 (the middle figure). Then, in the right figure, the node
2 adjusts its phase to the midpoint between node 1 and 3.
Consequently, only one wrong node can adversely affects other
correct nodes. This pitfall results in the high-fluctuating error.

In order to reduce such an error and its fluctuation, nodes
that are in correct positions should stay together whereas
the wrong nodes should adjust themselves to the correct
positions. This is analogous to orthodontic teeth alignment.
An orthodontist uses brackets, arch wires, O-rings, and power
chains to align the teeth (Figure 3). Brackets are attached to the
teeth. An arch wire links up each bracket and puts pressure
on the teeth. O-rings hold arch wires to brackets and help
put more pressure. The pressure forces the teeth to align into
desirable positions. In order to put more pressure to move teeth
into a specific direction or to close gaps between each teeth,
an orthodontist uses a rubber band called power chain to tie
up teeth that are already in desirable positions together.

We can apply the similar principle to a desynchronization
algorithm as follows. A node that is already in a correct phase
position should be tied up with its neighbor and should not
move away. If several consecutive nodes can be tied up as a
large group, we put more pressure to them to stay together.
To put more pressure, we add one weight unit for each
consecutive tying up. The node that is tied up with others
has more weight than a single node. This weight lets a node
know how correct its position is. A heavy weight of a node
means that the node is tied up with many nodes. Therefore, the
node implicitly knows that it stays in a correct position with
a high probability. If a node is heavy, it should not adjust its
phase or should adjust only slightly (see Figure 4).

III. ORTHODONTICS-INSPIRED PROTOCOL

In this section, we present our Orthodontics-inspired desyn-
chronization protocol in details. The core of our algorithm
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can move whereas heavy nodes attempt to stay together.

Algorithm 1 Initialization

1: T ← TimePeriod {Configurable Time Period}
2: PGAP ← T/NumNeighbors {Perfect phase diff}
3: nextNbrT ime, prevNbrT ime, lastReceiveT ime← 0
4: lastF iringT ime, bckwdWeight, fwdWeight← 0
5: chaining ← BACKWARD
6: call SetFiringTimer(T )

consists of weight determination and phase adjustment mech-
anisms.

A. Weight Determination

When a node starts, it initializes variables and timers (see
Algorithm 1). In order to determine its weight, each node
calculates the total number of nodes that can be consecutively
tied up with itself. A node counts the number of consecutive
nodes before its firing and after its firing.

Given a time period T , a node i can be tied up with its
consecutive phase neighbors n1, n2, ..., nk if and only if

∀j ∈ [1, k] : |∆φi,nj − (T/N) ∗ j| ≤ ε, (3)

The total number of node N is calculated each time the node
fire its timer. If the node can not hear a neighbor fire for 3
consecutive time then it will delete that neighbor from the
list. Whereby T/N is a perfect phase difference, and ε is an
allowable error.

We note that the allowable error ε is a configurable param-
eter that depends on a system running this desynchronization
mechanism. In our investigated scenario, our system runs this
mechanism on the application layer. Thus, we set ε to 4
milliseconds to compensate for data delay and MAC access
time.

After setting the timer, each node listens to neighbors’
firings. During this period, a node counts consecutive tied-
up nodes on its backward side. Upon receiving a firing from
its neighbor (line 1 in Algorithm 2), the node records the time
if the firing is from the next phase neighbor (line 2-5). Then,
the node checks whether this firing can be tied up with itself
as in eq. 3. However, for the backward side, the node does
not know the sequence order of the received firing. Therefore,
the node checks that the backward phase difference between
itself and the received firing is a multiple of the perfect phase
difference with the allowable error . In addition, it also checks
that the difference between the current received firing and
the last received firing is about the perfect phase difference.

Algorithm 2 Weight Determination Algorithm

1: Upon receiving a firing message
2: receiveT ime← currentT ime
3: if lastReceiveT ime ≤ lastF iringT ime then
4: nextNbrT ime← receiveT ime
5: end if
6: if chaining is BACKWARD then
7: diff ← T − (receiveT ime− lastF iringT ime)
8: neighborDiff ← receiveT ime− lastReceiveT ime
9: if (neighborDiff ≤ ε)

AND ((diff mod PGAP ≤ ε) OR (PGAP − (diff
mod PGAP ) ≤ ε)) then

10: bckwdWeight← bckwdWeight+ 1
11: else
12: bckwdWeight← 0
13: end if
14: else {chaining is FORWARD}
15: diff ← receiveT ime− lastF iringT ime
16: if |diff − (PGAP ∗ (fwdWeight+ 1))| ≤ ε then
17: fwdWeight← fwdWeight+ 1
18: else {chain is broken}
19: call Phase adjustment
20: end if
21: end if
22: lastReceiveT ime← receiveT ime

23: Upon firing timer expire
24: call SendFiringMessage()
25: lastF iringT ime← currentT ime
26: diff ← currentT ime− lastReceiveT ime
27: if |diff − PGAP | ≤ ε then
28: bckwdWeight← bckwdWeight+ 1
29: else
30: bckwdWeight← 0
31: end if
32: prevNbrT ime← lastReceiveT ime
33: chaining ← FORWARD
34: call SetFiringTimer(T )

If errors are in the allowable range, the node increases its
backward weight by 1 (line 6-10).

Otherwise, the node resets its backward weight (line 11-13)
since the consecutive chain is broken before reaching itself.
Then, the node records the current neighbor’s firing as the
latest received firing for comparing the phase difference with
the next neighbor’s firing (line 22). The node repeats this
procedure for each received firing until the firing timer expires.

When the timer expires, the node fires a message (line 23-
24) and checks whether it can be tied up with the previous
phase neighbor (line 25-31). Then, the node sets the timer of
the next firing and begins counting consecutive nodes on its
other side (line 32-34 and 14-17). The counting process is
repeated until the consecutive chain is broken. Then, the node
invokes the phase adjustment mechanism (line 18-20).



B. Phase Adjustment Mechanism

After the weight determination process is over, the node
invokes the phase adjustment mechanism (line 44) to calculate
the next phase to move as follows:

• if the node is tied with both previous and next phase
neighbors, it sets α to 0 to stay at the same phase position
(line 1-2 in Algorithm 3).

• if the node is the end of the consecutive chain, it sets α
to 0.1 (line 3-4). This allows the node to slightly move.

• if the node is not tied up, it sets α to 0.95 as same as in
DESYNC (line 5-7).

Then, the node calculates and sets the next firing time as in
eq. 1 and 2 (line 8-9) and repeats the weight determination
procedure (line 10-11).

Algorithm 3 Phase adjustment algorithm

1: if bckwdWeight ≥ 1 AND fwdWeight ≥ 1 then
2: α← 0
3: else if bckwdWeight ≥ 1 XOR fwdWeight ≥ 1 then
4: α← 0.1
5: else
6: α← 0.95
7: end if
8: goalT ime ← (((1 − α) ∗ lastF iringT ime) + (α ∗

(prevNbrT ime+ nextNbrT ime)/2)) + T
9: call SetFiringTimer(goalT ime− currentT ime)

10: bckwdWeight, fwdWeight← 0
11: chaining ← BACKWARD

C. Algorithms complexity

It is clearly that both weigh determination algorithm and
phase adjustment algorithm running time is O(1). Since the
weight determination algorithm will run N time, where N is
the number of neighbor, we can conclude that our protocol
running time is O(N ) in each period.

IV. EVALUATION

In this section, we evaluate our algorithm (DESYNC-ORT)
by comparing with DESYNC to measure the impact of our
algorithm on an existing protocol. The performance metrics
of this experiment are converging time and desynchroniza-
tion error. The former indicates how fast an algorithm can
converge. The latter indicates how close the system is to the
perfect desynchronized state. The fast algorithm that incurs
low errors is preferred.

A. Evaluation Environment

We implement DESYNC-ORT (an integration of our mech-
anism with DESYNC) on TinyOS (an operating system for
WSNs) so that our code can run on TOSSIM (a TinyOS
simulator) as well as real hardware. We conduct our evaluation
on TOSSIM and compare the performance of DESYNC-ORT
with that of DESYNC. We test both algorithms on single-
hop networks of 4-96 nodes because DESYNC is originally
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Fig. 5: Root mean square error after 300 time periods
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Fig. 6: Root mean square error normalized by perfect phase
difference after 300 time periods

designed to work in this environment. It is possible to extend
DESYNC to work in multi-hop networks and to integrate
our mechanism on the extended DESYNC. However, such an
extension is out of scope for this paper.

Each node fires a message that consists of node ID and a
sequence number every time period. We set the time period (T )
to 1,000 milliseconds and all nodes randomly start within the
range of 0-1000 milliseconds. The step size (α) of DESYNC
is 0.95 (the same value used in [2]).

B. Desynchronization Error

In order to obtain the convincing simulation result, we
simulate each algorithm 30 times per one network size and
average the results. We run each simulation for 300 time
periods (T ) and calculate the desynchronization error of each
approach. The desynchronization error is the average root
mean square error (RMSE) shown in the equations below.

ERRi = ∆φij − T/N, (4)

RMSE =

√∑N
i=1ERR

2
i

N
. (5)

The error (ERR) is the measured phase difference minus
by the perfect phase difference whereby node j is the next
phase neighbor of node i. ∆φij is the actual phase difference
between node i and node j on the time period T . Given that
N is the total number of nodes, T/N is the perfect phase
difference.

Our simulation result after 300 time periods (Figure 5) indi-
cates that DESYNC-ORT significantly outperforms DESYNC
as expected. However, the absolute phase error can not be
used to compare the performance of algorithms since the
perfect phase difference is not the same for each network size.
We normalize the absolute phase error by the perfect phase
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Fig. 7: Convergence time and root mean square error
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Fig. 8: Convergence time and root mean square error normalized by expected phase difference

difference (T/N ) to obtain the comparable view of our result
(see Figure 6).

Our result indicates that our approach significantly improve
the performance of DESYNC from 20-60%, especially in
the dense network scenarios. In the sparse networks, both
protocols converge very fast since the error of only phase
neighbors will be partially eliminated per round. Thus, the
system with fewer nodes converges faster. In the dense net-
works, DESYNC-ORT converges with less-fluctuating errors
and achieves up to 60% reduction in desynchronization errors.
In extremely dense networks, even though both protocols
suffer from the high message loss , DESYNC-ORT still
converges with a lower bound of errors.

In DESYNC-ORT, the lessen step size α of nodes in the
group prevents the nodes from over-adjusting their phases.
Additionally, an error from a phase neighbor cannot easily
propagate to a node in the group any more. In DESYNC, a
part of this error will propagate back and forth between two
phase neighbors as well as circulate inside the network. As a
result, DESYNC’s error after convergence is still quite large.
DESYNC-ORT successfully prevents this from happening as
evident in less-fluctuating RMSE.

C. Convergence Time

The above result only indicates the error after 300 time
periods of adjustment. The result does not indicate whether
the protocols converge or not. Neither does it indicate how
fast they converge. Hence, we measure the root mean square
error (RMSE) and normalized RMSE for each time period to
observe the convergence property and time in this experiment.

In sparse networks (Figure 7a and 8a), both protocols con-
verge with the similar small errors and the same rate of con-
vergence but DESYNC-ORT converges with less-fluctuating
errors. In dense networks (Figure 7b and 8b), DESYNC-ORT
significantly outperforms DESYNC up to 60%. Even though
DESYNC’s error is stabilized earlier, DESYNC-ORT’s error at
that time is already lower. In extremely dense networks (Figure
7c and 8c), both protocols converge with a slower rate due to
message collision and loss.

D. Correlation of Weight and Desynchronization Error

In this section, we investigate the relationship between a
weight and a desynchronization error. For the purpose of
comparison among different network sizes, we use NRMSE
(normalized root means square error) to represent the desyn-
chronization error. In sparse networks, the average weight is
rapidly increased and stabilized near the network size when
our protocol converges. However, in dense networks, the
average weight is gradually increased and stabilized just below
5. This indicates that the convergent state is not the perfect
desynchronized state even with our approach. We notice that
the higher weight usually implies the lower error. In extremely
dense networks, the average weight increases only slightly and
fluctuates throughout the simulation. This is due to high packet
collisions and losses in such environments. The stabilized
weight below 3 implies the difficulty in grouping the nodes.
As a result, the desynchronization error is quite high when
compared with that of sparser networks.
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Fig. 9: Correlation of average weight and desynchronization error

V. RELATED WORK

Our work has been motivated by previous research efforts
described in this section. The most cited paper on desynchro-
nization is DESYNC due to its originality and simplicity. In
DESYNC, each node adjusts its phase to the middle between
two phase neighbors. By repeating this simple algorithm,
nodes will be equally spread out in the time circle. Using only
local information from phase neighbors for phase adjustment
is the strength of DESYNC. However, this is also its weakness
(see Section II). The correct-positioning node may adjust its
phase only because its phase neighbor is wrong. This results
in high errors and fluctuations even after convergence. Our
work addresses this weakness by grouping the correct nodes
together and preventing them from adjusting their phases.

Inspired by the firefly synchronization work of Mirollo and
Strogatz [3], INVERSE-MS [4] allows all nodes to adjust
their phases once they hear a firing message from any node.
INVERSE-MS converges rather fast but at the expense of time-
period distortion. As a result, INVERSE-MS only provides
weak desynchronization whereas DESYNC and our work
support strong desynchronization.

Based on the concept of an artificial force fields, DWARF
[5] achieves significantly less error than DESYNC by com-
paring phase difference with all neighbors to calculate
proper phase adjustment. Degesys and Nagpal [6] also ex-
tend DESYNC to support multi-hop networks by reducing
the desynchronization problem in to graph-coloring prob-
lem. Recently, several multi-hop desynchronization protocols
have been proposed. These include M-DESYNC [7] and
Lightweight Coloring protocol [8]. However, none of the
above protocols possesses a mechanism to prevent fluctuation
errors. We believe that our approach can also be adapted
to suit these desynchronization algorithm as well. We plan
to incorporate our Orthodontics-inspired method with these
protocols in our future work.

VI. CONCLUSION AND DISCUSSION

In this paper, we present DESYNC-ORT, an Orthodontics-
inspired desynchronization technique for wireless networks.
DESYNC-ORT is completely distributed and localized. No
additional message overhead is required. Our technique is sim-
ple, intuitive, and effective in providing smoother convergence

as well as incurring lower errors. We implement DESYNC-
ORT on TinyOS (runnable on real hardware) and conduct
our experiment on TOSSIM for performance evaluation. Our
result indicates that our technique can significantly improve
the performance of DESYNC by lowering error fluctuation and
achieving up to 60% reduction in desynchronization errors.

We believe that our technique is sufficiently general and
undoubtedly applicable to other desynchronization protocols.
Furthermore, we currently use weights only to determine
whether nodes should adjust their phases or not. In our future
work, we plan to investigate other variations of this scheme
as well as integrate this concept with other desynchronization
techniques to prove its generality.
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