
1

Computer System Architecture

Introduction

Chalermek Intanagonwiwat

Slides courtesy of Peiyi Tang, David Culler, Graham Kirby, and Zoltan
Somogyi

Why take this class?
• To design the next great instruction

set?...well...
– Instruction Set Architecture (ISA) has largely

converged
– Especially in the desktop / server / laptop space
– Dictated by powerful market forces

• Tremendous organizational innovation relative
to established ISA abstractions

Why take this class? (cont.)
• Many New instruction sets or equivalent

– embedded space, controllers, and
specialized devices

• Design, analysis, implementation
concepts vital to all aspects of CE & CS

• Equip you with an intellectual toolbox
for dealing with a host of systems
design challenges

Forces on Computer
Architecture

Computer
Architecture

Technology Programming
Languages

Operating
Systems

History

Applications

2

What is “Computer
Architecture”?

I/O systemInstr. Set Proc.

Compiler

Operating
System

Application

Digital Design
Circuit Design

Instruction Set
 Architecture

Firmware

•Coordination of many levels of abstraction
•Under a rapidly changing set of forces
•Design, Measurement, and Evaluation

Datapath & Control

Layout

Computer Design

• What are the principal goals?
– performance, performance, performance...
– but not at any cost

• Trade-offs:
– need to understand cost and performance

issues
– need models and measures of cost and

performance

Tasks of Computer Designers
(Architects)

• Designing a computer involves:
– instruction set architecture (ISA) – programmer

visible
– computer organization – CPU internals, memory,

buses, ...
– computer hardware – logic design, packaging, …

• Architects must meet:
– functional requirements

»market & application driven
– performance goals
– cost constraints

Functional Requirements
• Application area

– general purpose, scientific, commercial
• Operating system requirements

– address space, memory management,
protection

– context switching, interrupts
• Standards

– floating-point, I/O interconnect, operating
systems, networks, programming languages

3

Functional Requirements (cont.)

• Given these requirements, optimize
cost/performance trade-off
– e.g., hardware or software implementation

of a feature
• Design complexity

– time to market is critical

Technology Trends
• Software trends

– increasing memory usage (from increasing
functionality?)
» 1.5x to 2x per year - up to one address bit/year

– use of high-level languages - use of compilers
» ISA designed for the compiler, not the
programmer

– improved compiler technology – optimization,
scheduling

Technology Trends (cont.)
• Hardware trends

– IC technology – density & size - transistor count;
cycle time

– DRAM – capacity 4x per 3 years, but slow cycle
time change

– disk – capacity was 2x per 3 years before 1990,
now 4x per 3 years,
» slow change in access time

• Need to be aware of trends when designing
computers
– design for requirements and technology at time of

shipping

Moore’s Law

http://www.intel.com/research/silicon/mooreslaw.htm

4

http://www.frc.ri.cmu.edu/~hpm/talks/revo.slides/power.aug.curve/power.aug.html

Cost and Trends in Cost

• Learning curve brings manufacturing
cost down
– DRAM cost drops 40% per year

• Large volume increases purchasing and
manufacturing efficiency
– bringing both cost and selling price down

• Commodization brings both cost and
price down

Memory Price Pentium III Cost

5

IC Cost

• Manufacture of an IC involves
– making the wafer
– testing dies on the wafer
– chopping wafer into dies
– packaging
– final testing

Wafer
• 8 inch diameter
• 564 MIPS

processors
• 0.18µ process

Pentium 4 Die Cost of Die
• Manufacturing process determines

– cost of wafer, wafer yield, defect rate
• IC designer controls die area
• Area determined by both circuit elements and

I/O pads
– lots of pins increases die cost

• Cost of die ∝ Arean

– where n between about 2.0 and 4.0
• Also fixed costs (e.g., mask costs, setting up

fabrication)

6

Cost of Die (cont.) Cost of Components
• Example: component costs in a workstation:

– Cabinet & packaging 4% 6%
– Circuit board – processor 6% 22%
– DRAM (64/128MB) 36% 5%
– video system 14% 5%
– PCB & I/O system 4% 5%
– I/O devices – keyboard/mouse 1% 3%
– monitor 22% 19%
– disk (1/20GB) 7% 9%
– CD/DVD drive 6% 6%

Cost of Components (cont.)

• Although IC cost is a differentiator
– it is not a major cost component

• Cost reductions over time offset by
increased resources required
– E.g., more DRAM & disk,...

From Component Costs to Product
Prices

• Direct Cost:
– 20-40% of component cost for labor,

warranty, etc.
• Gross Margin:

– 20-55% of the average selling price for
research and development, marketing, etc.

• Average Discount:
– 40-50% of the list price for retailers'

margin

7

Price Components Measurement and Evaluation
Architecture is an iterative process
 -- searching the space of possible designs
 -- at all levels of computer systems

Good IdeasGood Ideas
Mediocre Ideas

Bad Ideas

Cost /
Performance
Analysis

Design

Analysis

Creativity

Performance

• Many performance metrics are context
dependent
– response time: time from start to

completion of a job
– throughput: rate of job completion

• Usual question: how much faster is X
than Y?
– depends on execution time

Performance (cont.)

• “X is n times faster than Y” means:

8

Measuring Performance

• Difficulties
– what to measure
– interference
– reproducibility
– comparability

• Only consistent and reliable measure:
– the time taken to run real programs

Measuring Performance (cont.)

• Execution time best measured using elapsed
time
– e.g. from the clock on the wall
– includes all aspects of execution — what the user

sees
• Can use a tool such as Unix time command to

make measurements:
graham% time ls
2003-09-30.xbk week_01.pdf week_01_handout.ppt
misc week_01.ppt
0.000u 0.010s 0:00.00 0.0%

Measuring Performance (cont.)

• On a multi-programmed system, some
time spent on other jobs
– use an otherwise unloaded system to make

measurements

Benchmarks
• Real applications

– the kind of programs run in real life, with real I/O,
options, ...
» e.g., compiler, text processor

• Scripted applications
– to reproduce interactive or multi-user behavior

• Kernels
– key parts of real programs used to evaluate

aspects of performance

9

Benchmarks (cont.)

• Toy benchmarks - small programs with
known results

» e.g., Quicksort
• Synthetic benchmarks

– constructed to match typical behavior of
real programs
» e.g., Whetstone, Dhrystone

SPEC Benchmarks
• Benchmark suite

– better indication of overall performance?
• Standard Performance Evaluation

Corporation (SPEC)
– formed in response to lack of believable

benchmarks
– SPEC92, SPEC95, SPEC2000 — mix of

integer & floating-point benchmarks,
including kernels, small programs and real
programs

SPEC Benchmarks (cont.)
• SPEC reports

– detailed machine configuration and compiler
options, and includes measured data
» aim for reproducibility
» unlike figures often reported in magazines!

– also compare baseline with optimized performance
• Result summarized as SPECmarks

– relative to reference machine: VAX-11/780 = 1

http://www.spec.org/

Integer SPEC Results

10

Floating Point SPEC Results Reporting Performance

• Want repeatable results
– experimental science
– predict running time for X on Y

• How do we compare machines based on
collections of execution times for each?

Reporting Performance: Example

40s110s1001sTotal

20s100s1000sProgram P2

20s10s1sProgram P1

Computer
C

Computer
B

Computer
A

Combining Performance
Measures

11

Weighted Means Combining Relative Ratios

Comparison

• Equal-time Weighted arithmetic mean
can be influenced
– by the peculiarity of the machine and the

size of program input
• Geometric mean of normalized time is

independent of them
– Relative to referenced machine for the

same program on the same input

Comparison (cont.)

• Geometric mean rewards relative
improvement regardless the size of the
program
– Improvement from 2 sec to 1 sec ==

improvement from 2000 sec to 1000 sec
• Geometric mean cannot predict actual

performance

12

Quantitative Principle of
Computer Design

• Make The Common Case Fast
– Make frequent cases simpler, faster and use

less resources
– Improving frequent cases has greatest

impact on overall performance
• Examples:

– in ALU, most operations don’t overflow
» make non-overflowing operations faster,
even if overflow case slows down

– exception handling in Java

Amdahl’s Law

• Law of diminishing returns
• Overall effect of an enhancement is

weighted by proportion of time that the
enhancement is used

Amdahl’s Law Quantified Amdahl’s Law Example

13

Clocks, Cycles, etc. CPU Performance Model

Example
• CPU A

– compare to set the condition code (20%)
– conditional branch based on the condition code

(20%)
• CPU B

– compare is included in the conditional branch
(20%)

– Cycle time is 25% slower than in CPU A.
• The conditional branch takes 2 cycles. All

other instructions take one cycle.

Example (cont.)
• NIA = # of instructions on A
• CTA = cycle time of A
• CPU time A = 0.8 * NIA * 1 * CTA +

 0.2 * NIA * 2 * CTA
 = 1.2 * NIA * CTA

• CPU time B = 0.6 * NIA * 1 * 1.25*CTA +
 0.2 * NIA * 2 * 1.25*CTA

 = 1.25 * NIA * CTA

