Computer System Architecture

Introduction

Chalermek Intanagonwiwat

Slides courtesy of Peiyi Tang, David Culler, Graham Kirby, and Zoltan
Somogyi

Why take this class?

+ To design the next great instruction

set?..well...

- Instruction Set Architecture (ISA) has largely
converged

- Especially in the desktop / server / laptop space
- Dictated by powerful market forces

+ Tremendous organizational innovation relative

to established ISA abstractions

Why take this class? (cont.)

* Many New instruction sets or equivalent

- embedded space, controllers, and
specialized devices

+ Design, analysis, implementation
concepts vital to all aspects of CE & CS

+ Equip you with an intellectual toolbox
for dealing with a host of systems
design challenges

Forces on Computer

Architecture
Technology Programming
Languages
Applications

\ Computer
Architecture
Operating / \

Systems

History

What is "Computer
Applcation | Architecture"?

Operating
System

[compiler| [Fi

1 Instruction Set

’ Architecture

| Instr. Set Proc. | 110 systeml

| Datapath & Control |

| Digital Design |

*Coordination of many /evels of abstraction
*Under a rapidly changing set of forces
*Design, Measurement, and Evaluation

Computer Design

* What are the principal goals?
- performance, performance, performance...
- but not at any cost

+ Trade-offs:

- need fo understand cost and performance
issues

- heed models and measures of cost and
performance

Tasks of Computer Designers
(Architects)

+ Designing a computer involves:
- instruction set architecture (ISA) - programmer
visible
- computer organization - CPU internals, memory,
buses, ...
- computer hardware - logic design, packaging, ...
* Architects must meet:
- functional requirements
»market & application driven
- performance goals
- cost constraints

Functional Requirements

* Application area
- general purpose, scientific, commercial
* Operating system requirements

- address space, memory management,
protection

- context switching, interrupts
+ Standards

- floating-point, I/O interconnect, operating
systems, networks, programming languages

Functional Requirements (cont.)

* Given these requirements, optimize
cost/performance trade-off

- e.g., hardware or software implementation
of a feature

+ Design complexity
- time to market is critical

Technology Trends

- Software trends

- increasing memory usage (from increasing
functionality?)

» 1.Bx to 2x per year - up to one address bit/year
- use of high-level languages - use of compilers
» ISA designed for the compiler, not the
programmer
- improved compiler technology - optimization,
scheduling

Technology Trends (cont.)

+ Hardware trends

- IC technology - density & size - transistor count;
cycle time

- DRAM - capacity 4x per 3 years, but slow cycle
time change

- disk - capacity was 2x per 3 years before 1990,
now 4x per 3 years,

» slow change in access time
* Need to be aware of trends when designing
computers
- design for requirements and technology at time of
shipping

Moore's Law

transistors
Pentiumn 4 F'rr)ct‘\'.‘.{)t/A ‘OO'OOOOOO
Pentium# Il Processor
MOORE'S LAW -
Pentium® il Processor
Pentium® Processor s
486™ DX Processor /

1,000,000

386™ }Jrccp‘;ml‘ L

286

/ 100,000
8086
8080 / 10,000

8008
4004 &4

10,000,000

. 1000
1970 1975 1980 1985 1990 1995 2000

http://www.intel.com/research/silicon/mooreslaw.htm

o - ot Power | C
MIPS per 1000 Evolution of Computer Power/Cost
Bilion (%59

Ml
1000
1
L
1000
enrc
-
Million
& s
Bes Manual 258
o
1 . e "‘l.. 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050
Billion oo cacuer g7 @ o
° /;/
° 1900 °¢ 1920 1940

http://www.frc.ri.cmu.edu/~hpm/talks/revo.slides/power.aug.curve/power.aug.html

Cost and Trends in Cost

* Learning curve brings manufacturing
cost down
- DRAM cost drops 40% per year

+ Large volume increases purchasing and
manufacturing efficiency
- bringing both cost and selling price down

+ Commodization brings both cost and
price down

Memory Price

Dollars per
DRAM chip

Year

intel k5t price
(1000 unis, $500 |

Pentium IIT Cost

$1000

900

L PP PP PP LSS PP P g
O A N A S 2R A L LR S

. Date

0

IC Cost

* Manufacture of an IC involves
- making the wafer
- testing dies on the wafer
- chopping wafer into dies

- packaging
- final testing
_ Cost die +Cost testing +Cost packaging
Cost c — Final Test Yield

+ 8 inch diameter
- 564 MIPS

+ 0.18u process

processors

© 2003 Elsaviar Science (USA). Al rights reserved

Pentium 4 Die

© 2003 Elsavier Sciance (USA). All rights resanved

Cost of Die

* Manufacturing process determines

- cost of wafer, wafer yield, defect rate

+ IC designer controls die area
* Area determined by both circuit elements and

I/0 pads

- lots of pins increases die cost

+ Cost of die < Arean

- where n between about 2.0 and 4.0

+ Also fixed costs (e.g., mask costs, setting up

fabrication)

Cost of Die (cont.)

- Cost of wafer
Cost of die =

Dies per water x Die yield

7 x (Wafer Diameter/2)* 7 x Wafer Diameter

Dies per water = - - e
Dies area v2 X Die area

Die yield = Wafer yield x (1

&

where « is the manufacturing complexity factor, which is 3.0 for
the multilevel metal CMOS in 1995.

+ Defects per unit area X Die area \)_O

Cost of Components

+ Example: component costs in a workstation:

- Cabinet & packaging 4% 6%

- Circuit board - processor 6% 22%
- DRAM (64/128MB) 36% 5%
- video system 14% 5%
- PCB & I/0O system 4% 5%
- I/0 devices - keyboard/mouse 1% 3%
- monitor 22% 19%
- disk (1/206B) 7% 9%
- CD/DVD drive 6% 6%

Cost of Components (cont.)

* Although IC cost is a differentiator
- it is not a major cost component

+ Cost reductions over time offset by
increased resources required
- E.g., more DRAM & disk,...

From Component Costs to Product
Prices

* Direct Cost:

- 20-40% of component cost for labor,
warranty, etc.

* Gross Margin:

- 20-55% of the average selling price for
research and development, marketing, etc.

* Average Discount:

- 40-50% of the list price for retailers'
margin

Price Components

ust

Measurement and Evaluation

Architecture is an iterative process
-- searching the space of possible designs
-- at all levels of computer systems

Creativity —

Mediocre Ideas

Bad Ideas

price
Average
230 clscount
Average
seling
price
s Gross i Gross
margin 5% margn
25% | Directcosts 12.5% | Direcicosts 8% | Cirectcosis
. Componant Component Component Comporent
e costs 75% costs 37.5% ©05%s 25% costs
- B A >
— Ac 239 for k"A:.o 100% %or AcC 50% for
direct cos's gross margin 3verage discount

* Many performance metrics are context
dependent

- response time: time from start to
completion of a job

- throughput: rate of job completion
* Usual question: how much faster is X

than Y?
- depends on execution time

Performance (cont.)

« "X is n times faster than Y" means:

Performance , Execution Time

n= = —
Performance ¢ Execution Time

Measuring Performance

- Difficulties
- what to measure
- interference
- reproducibility
- comparability
* Only consistent and reliable measure:
- the time taken to run real programs

Measuring Performance (cont.)

+ Execution time best measured using elapsed

time
- e.g. from the clock on the wall

- includes all aspects of execution — what the user
sees

+ Can use a tool such as Unix time command to

make measurements:

graham% time Is

2003-09-30.xbk week_01.pdf week_01_handout.ppt
misc week_01.ppt

0.000u 0.010s 0:00.00 0.0%

Measuring Performance (cont.)

*+ On a multi-programmed system, some
time spent on other jobs

- use an otherwise unloaded system to make
measurements

Benchmarks

* Real applications

- the kind of programs run in real life, with real I/0,
options, ...
» e.g., compiler, text processor

+ Scripted applications

- Yo reproduce interactive or multi-user behavior

+ Kernels

- key parts of real programs used to evaluate
aspects of performance

Benchmarks (cont.)

+ Toy benchmarks - small programs with
known results
» e.g., Quicksort
* Synthetic benchmarks

- constructed to match typical behavior of
real programs

» e.g., Whetstone, Dhrystone

SPEC Benchmarks

* Benchmark suite
- better indication of overall performance?

+ Standard Performance Evaluation
Corporation (SPEC)

- formed in response to lack of believable
benchmarks

- SPEC92, SPEC95, SPEC2000 — mix of
integer & floating-point benchmarks,
including kernels, small programs and real
programs

SPEC Benchmarks (cont.)

* SPEC reports

- detailed machine configuration and compiler
options, and includes measured data

» aim for reproducibility
» unlike figures often reported in magazines!
- also compare baseline with optimized performance
+ Result summarized as SPECmarks
- relative to reference machine: VAX-11/780 = 1

http://www.spec.org/

Integer SPEC Results

600 250
I\ B SPECbase CINT2000 225

+ \
500 \ & SPEC CINT2000 200
performance/cost

\ 41
400 N\ 7%

\ 150

SPECbase
CINT2000

100
200 s
100 - s L
I - B
e @ %

0

0 L "
Compaq Dell Dell HP Sun 1BM Sun
Presario Precision Precision Workstation Sunblade ~ RS8000 Sunblade

7000 530 420 ¢3600 1000/1750 44P/170 100

® 2003 Elsevier Science {USA). All rights resarved.

300 \ {125 SPEC CINT2000
— por $1000 in prico

SPECbase
CFP2000

Floating Point SPEC Results

IL

El SPECbase CFP2000

i SPEC CFP2000
perlov mance/cost

- 1125 SPECCFP2000
per $1000 in price
i 100
i 5
50
-] 25

Dell Compaq HP Sun

Precision Presario Workstation Sunblade

530 7000

Del

Sun

RSGG]O Precision Sunblade

©3500 10001750 44PN70 420

@ 2003 Elsevier Science (USA). All rights reserved.

100

Reporting Performance

+ Want repeatable results
- experimental science
- predict running time for X on Y

* How do we compare machines based on
collections of execution times for each?

Reporting Performance: Example

Computer | Computer | Computer
A B c
Program P1 1s 10s 20s
Program P2| 1000s 100s 20s
Total 1001s 110s 40s

Combining Performance
Measures

» Arithmetic mean tracks total execution time in this case

* Performance is often expressed as a rate

- e.g. millions of instructions per second

- inverse of time

* Use harmonic mean — inverse of (average of inverses)

10

Weighted Means

- If different programs run with different frequencies
* weight each component with its relative frequency
- Weighted arithmetic mean

n

Time . = > (Weight , x Time,)

i=1

* Weighted harmonic mean

1
mean ~ N Weighti

Rate,

Rate

i=1

Comparison

+ Equal-time Weighted arithmetic mean
can be influenced
- by the peculiarity of the machine and the
size of program input
* Geometric mean of normalized time is
independent of them

- Relative to referenced machine for the
same program on the same input

Combining Relative Ratios

* Approach used by SPEC
-normalised results

»for each program in the suite, calculate time ratio w.r.t.
reference

- use geometric mean to combine ratios

n
Ratio = r‘f’ H Ratio |
i=1

Comparison (cont.)

* Geometric mean rewards relative
improvement regardless the size of the
program
- Improvement from 2 sec to 1 sec ==

improvement from 2000 sec to 1000 sec

* Geometric mean cannot predict actual
performance

1

Quantitative Principle of
Computer Design

* Make The Common Case Fast

- Make frequent cases simpler, faster and use
less resources

- Improving frequent cases has greatest
impact on overall performance
+ Examples:
- in ALU, most operations don't overflow

» make non-overflowing operations faster,
even if overflow case slows down

- exception handling in Java

Amdahl's Law

* Law of diminishing returns

* Overall effect of an enhancement is
weighted by proportion of time that the
enhancement is used

Amdahl's Law Quantified

» Speedup is ratio of execution times:

T old

overall —

S

enh

* Let F_,, be fraction of original execution time that
enhancement is used

Tenh = Told X ((l - Fenh)+ %ﬂhj

enh

1
Soreral/ = F
(1 _F) 4 —<ul

enh
enh

. F,

Amdahl's Law Example

- Suppose

- we can modify branch instructions to take half as long

- measurements show branches account for 10% of execution

time
=01,5,,=2,s0

enh

1 1

s = - =1.05
overall)+g 0.9+0.05
2

(1-0.1

* Thus improvement is only 5%
- if enhancement costs more than 5% extra, is it worth it?

12

Clocks, Cycles, etc.

- What does 26Hz mean?

- clock frequency

- clock signal used to synchronize operation of the processor
- CPU time = number of cycles for a program x cycle time

+ Instruction count =

number of instructions executed in the program

- Average cycles per instruction (CPT) =
cycle count / instruction count

CPU Time = IC x CPI x T,

- Parameters are interrelated:

- cycle time depends on hardware technology

- IC depends on instruction set and compiler

- CPI depends on CPU organisation and instruction set

CPU Performance Model

* If we have ninstruction classes, each taking different number

of cycles
- IC; = instruction count for class 7
- CPI;= CPI for class 7

CPU Time = Y_(IC, x CPI,)x T,

i=1

> (IC, x CPL,) I
CPl = H—o —Lx CP].J
C ‘ C i

Example

- CPU A
- compare to set the condition code (20%)
- conditional branch based on the condition code
(20%)
- CPUB
- compare is included in the conditional branch
(20%)
- Cycle time is 25% slower than in CPU A.
+ The conditional branch takes 2 cycles. All
other instructions take one cycle.

Example (cont.)

NIA = # of instructions on A

+ CTA = cycle time of A

« CPU time A=08*NIA*1*CTA +

02*NIA*2*CTA

=12*NIA*CTA

« CPU time B=0.6 * NIA*1* 1.25*CTA +

0.2* NIA*2*125*CTA
=125* NIA*CTA

13

