
1

Computer System Architecture

Pipelining Part III

Chalermek Intanagonwiwat

Slides courtesy of David Patterson

Pipeline Hazards Again
I-Fet ch DCD MemOpFetch OpFetch Exec Store

IFetch DCD ° ° °
Structural
Hazard

I-Fet ch DCD OpFetch Jump

IFetch DCD ° ° °

Control Hazard

 IF DCD EX Mem WB

 IF DCD OF Ex Mem

RAW (read after write) Data Hazard

WAW Data Hazard
 (write after write)

 IF DCD OF Ex RS WAR Data Hazard
 (write after read)

 IF DCD EX Mem WB

 IF DCD EX Mem WB

Data Hazards

• Avoid some “by design”
– eliminate WAR by always fetching operands

early (DCD) in pipe
– eleminate WAW by doing all WBs in order

(last stage, static)
• Detect and resolve remaining ones

– stall or forward (if possible)

Hazard Detection
• Suppose instruction i is about to be issued and a

predecessor instruction j is in the instruction
pipeline.

• A RAW hazard exists on register ρ if ρ ∈ Rregs(
i) ∩ Wregs(j)
– Keep a record of pending writes (for inst's in

the pipe) and compare with operand regs of
current instruction.

– When instruction issues, reserve its result
register.

– When on operation completes, remove its
write reservation.

2

Hazard Detection (cont.)

• A WAW hazard exists on register ρ if ρ ∈
Wregs(i) ∩ Wregs(j)

• A WAR hazard exists on register ρ if ρ ∈
Wregs(i) ∩ Rregs(j)

Record of Pending Writes
• Current operand

registers
• Pending writes
• hazard <=

((rs == rwex) &
regWex) OR

((rs == rwmem) &
regWme) OR

((rs == rwwb) &
regWwb) OR

((rt == rwex) &
regWex) OR

((rt == rwmem) &
regWme) OR

((rt == rwwb) &
regWwb)

npc

I mem

Regs

B

alu

S

D mem

m

IAU

PC

Regs

A im op rwn

op rwn

op rwn

op rw rs rt

Resolve RAW by forwarding
• Detect nearest

valid write op
operand register
and forward into
op latches,
bypassing
remainder of the
pipe

• Increase muxes
to add paths from
pipeline registers

• Data Forwarding
= Data Bypassing

npc

I mem

Regs

B

alu

S

D mem

m

IAU

PC

Regs

A im op rwn

op rwn

op rwn

op rw rs rt
Forward

mux

What about memory operations?
° If instructions are initiated in
order and operations always
occur in the same stage, there
can be no hazards between
memory operations!

° What does delaying WB on
arithmetic
 operations cost?
 – cycles ?
 – hardware ?

° What about data dependence
on loads?
 R1 <- R4 + R5
 R2 <- Mem[R2 + I]
 R3 <- R2 + R1
=>

"Delayed Loads"

A B

op Rd Ra Rb

op Rd Ra Rb

 Rd

to reg
file

R

T Rd

3

Compiler Avoiding Load Stalls:

% loads stalling pipeline

0% 20% 40% 60% 80%

tex

spice

gcc

25%

14%

31%

65%

42%

54%

scheduled unscheduled

What about Interrupts,
Traps, Faults?

• External Interrupts:
– Allow pipeline to drain,
– Load PC with interrupt address

• Faults (within instruction, restartable)
– Force trap instruction into IF
– disable writes till trap hits WB
– must save multiple PCs or PC + state

Refer to MIPS solution

Exception Handling

npc

I mem

Regs

B

alu

S

D mem

m

IAU

PClw $2,20($5)

Regs

A im op rwn

detect bad instruction address

detect bad instruction

detect overflow

detect bad data address

Allow exception to take effect

Exception Problem

• Exceptions/Interrupts: 5 instructions
executing in 5 stage pipeline
–How to stop the pipeline?
–Restart?
–Who caused the interrupt?

4

Exception Problem (cont.)
Stage Problem interrupts occurring
IF Page fault on instruction fetch;
 misaligned memory access;
 memory-protection violation
ID Undefined or illegal opcode
EX Arithmetic exception
MEM Page fault on data fetch; misaligned

memory access;
memory-protection violation;
memory error

Resolution:
Freeze
above &
Bubble
Below

npc

I mem

Regs

B

alu

S

D mem

m

IAU

PC

Regs

A im op rwn

op rwn

op rwn

op rw rs rt

bubble

freeze

Summary
• Pipelines pass control information down the

pipe just as data moves down pipe
• Forwarding/Stalls handled by local control
• Exceptions stop the pipeline
• MIPS I instruction set architecture made

pipeline visible (delayed branch, delayed
load)

• More performance from deeper pipelines,
parallelism

Partitioned Instruction Issue
(simple Superscalar)

Single Issue Total Time = Int Time + FP Time

Max Speedup: Total Time
 MAX(Int Time, FP Time)

Int Reg Inst Issue
and Bypass

FP Reg

Operand /
Result
Busses

Int Unit

I-Cache

Load /
Store
Unit

FP Add FP Mul

D-Cache

independent int and FP issue to separate pipelines

5

Example
Basic Loop: Cycles

load Ra <- Ai 1

load Ry <- Yi 1

fmult Rm <- Ra*Rx 7

faddRs <- Rm+Ry 5

store Ai <- Rs 1

inc Yi 1

dec i 1

inc Ai 1

branch 1

Total Single Issue Cycles: 19 (7 integer, 12 floating point)
Minimum with Dual Issue: 12
Potential Speedup: 1.6 !!!

Multiple Pipes/ Harder
Superscalar

Register
File

A B

R

T

D$

AB

R

T

D$

IR0 IR1 Issues:
Reg. File ports

Detecting Data
 Dependences
Bypassing
RAW Hazard
WAR Hazard

Multiple load/store ops?

Branches

Getting CPI < 1: Issuing Multiple
Instructions/Cycle

Type PipeStages
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX1 EX2 EX3 MEM WB

Int. instruction IF ID EX MEM WB
FP instruction IF ID EX1 EX2 EX3 MEM

Int. instruction IF ID EX MEM WB
FP instruction IF ID EX1 EX2 EX3

Unrolled Loop that Minimizes
Stalls for Scalar

1 Loop: LD F0,0(R1)
2 LD F6,-8(R1)
3 LD F10,-16(R1)
4 LD F14,-24(R1)
5 ADDD F4,F0,F2
6 ADDD F8,F6,F2
7 ADDD F12,F10,F2
8 ADDD F16,F14,F2
9 SD 0(R1),F4
10 SD -8(R1),F8
11 SD -16(R1),F12
12 SUBI R1,R1,#32
13 BNEZ R1,LOOP
14 SD 8(R1),F16 ; 8-32 = -24

14 clock cycles, or 3.5 per iteration

LD to ADDD: 1 Cycle
ADDD to SD: 2 Cycles

1. Loop: LD F0, 0(R1)
2. ADDD F4, F0, F2
3. SD 0(R1), F4
4. SUBI R1, R1, #8
5. BNEZ R1, Loop

Delayed Branch

6

Loop Unrolling in Superscalar
Integer instruction FP instruction Clock cycle

Loop: LD F0,0(R1) 1
LD F6,-8(R1) 2
LD F10,-16(R1) ADDD F4,F0,F2 3
LD F14,-24(R1) ADDD F8,F6,F2 4
LD F18,-32(R1) ADDD F12,F10,F2 5
SD 0(R1),F4 ADDD F16,F14,F2 6
SD -8(R1),F8 ADDD F20,F18,F2 7
SD -16(R1),F12 8
SD -24(R1),F16 9
SUBI R1,R1,#40 10
BNEZ R1,LOOP 11
SD -32(R1),F20 12

• Unrolled 5 times to avoid delays (+1 due to SS)
• 12 clocks, or 2.4 clocks per iteration

Software Pipelining
• Observation: if iterations from loops are

independent, then can get ILP by taking
instructions from different iterations

• Software pipelining: reorganizes loops so
that each iteration is made from
instructions chosen from different
iterations of the original loop (­ Tomasulo
in SW) Iteration

0 Iteration
1 Iteration

2 Iteration
3 Iteration

4

Software-
pipelined
iteration

Horizontal not Vertical

Software Pipelining Example
Before: Unrolled 3 times
 1 LD F0,0(R1)
 2 ADDD F4,F0,F2
 3 SD 0(R1),F4

 4 LD F0,-8(R1)
 5 ADDD F4,F0,F2
 6 SD -8(R1),F4

 7 LD F0,-16(R1)
 8 ADDD F4,F0,F2
 9 SD -16(R1),F4
 10 SUBI R1,R1,#24
 11 BNEZ R1,LOOP

After: Software Pipelined
(at least 3 iterations)

SUBI R1,R1,#16
LD F0,16(R1)
ADDD F4,F0,F2
LD F0,8(R1)

 1 SD 16(R1),F4 ;Stores M[i]
 2 ADDD F4,F0,F2 ; Adds to M[i-1]
 3 LD F0,0(R1); Loads M[i-2]
 4 SUBI R1,R1,#8
 5 BNEZ R1,LOOP

SD 16(R1), F4
ADDD F4,F0,F2
SD 8(R1),F4

Limits of Superscalar
• While Integer/FP split is simple for the

HW, get CPI of 0.5 only for programs
with:
– Exactly 50% FP operations
– No hazards

• If more instructions issue at same time,
greater difficulty of decode and issue
– Even 2-scalar => examine 2 opcodes, 6

register specifiers, & decide if 1 or 2
instructions can issue

7

HW Schemes: Instruction
Parallelism

• Why in HW at run time?
– Works when can’t know real dependence at compile time
– Compiler simpler
– Code for one machine runs well on another

• Key idea: Allow instructions behind stall to proceed
DIVD F0,F2,F4

ADDD F10,F0,F8

SUBD F12,F8,F14

– Enables out-of-order execution => out-of-order
completion

– ID stage checked both for structural & data
dependencies

HW Schemes: Instruction
Parallelism (cont.)

• Out-of-order execution divides ID stage:
1.Issue—decode instructions, check for

structural hazards
2. Read operands—wait until no data hazards,

then read operands
• Scoreboards allow instruction to execute

whenever 1 & 2 hold, not waiting for prior
instructions

• CDC 6600: In order issue, out of order execution,
out of order commit (also called completion)

Iteration Instructions Issues Execute MEM WR
(no.) (clock-cycle number) (comment)
1 LD F0,0(R1) 1 2 3 4 First Issue
1 ADDD F4,F0,F2 1 5,6,7 8 Wait LD
1 SD 0(R1),F4 2 3 9 Wait ADDD
1 SUBI R1,R1,#8 2 4 5 Wait ALU
1 BNEZ R1,LOOP 3 6 Wait SUBI
2 LD F0,0(R1) 4 7 8 9 Wait BNEZ
2 ADDD F4,F0,F2 4 10,11,12 13 Wait LD
2 SD 0(R1),F4 5 8 14 Wait ADDD
2 SUBI R1,R1,#8 5 9 10 Wait ALU
2 BNEZ R1,LOOP 6 11 Wait SUBI
­ 3 clocks per iteration
Branch and Load can’t be issued at the same time

Performance of Dynamic
Superscalar

HW support for More ILP
• Speculation: allow an instruction to issue that

is dependent on branch predicted to be taken
without any consequences (including exceptions)
if branch is not actually taken (“HW undo”)

• Often try to combine with dynamic scheduling
• Separate speculative bypassing of results from

real bypassing of results
– When instruction no longer speculative,

write results (instruction commit)
– execute out-of-order but commit in order

8

Dynamic Scheduling in Pentium
Pro

• PPro doesn’t pipeline 80x86 instructions
• PPro decode unit translates the Intel
instructions into 72-bit micro-operations (­
MIPS)
•Takes 1 clock cycle to determine length of
80x86 instructions + 2 more to create the
micro-operations

Dynamic Scheduling in Pentium
Pro (cont.)

• Most instructions translate to 1 to 4
micro-operations
• Complex 80x86 instructions are executed
by a conventional microprogram (8K x 72
bits) that issues long sequences of micro-
operations

Limits to Multi-Issue Machines

• Difficulties in building HW
– Duplicate FUs to get parallel execution
– Increase ports to Register File
– Increase ports to memory

Summary
• MIPS I instruction set architecture made

pipeline visible (delayed branch, delayed
load)

• More performance from deeper pipelines,
parallelism

• Superscalar
– CPI < 1
– Dynamic issue vs. Static issue
– More instructions issue at same time, larger

the penalty of hazards

9

Summary (cont.)

• SW Pipelining
– Symbolic Loop Unrolling to get most from

pipeline with little code expansion, little
overhead

